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Abstract—We present the CUDA implementation of the par-
allel multigrid solver for the linear complementarity problem.
As a smoother, the Projected SOR method is used. We describe
implementation of all parts of the multigrid cycle on GPU. We
explain, what specific properties of the GPU must be taken into
account during the parallelization. The efficiency of the final
algorithm is demonstrated on the constrained level-set method
used in image segmentation. For this task, the speed-up up to 3
was achieved on Nvidia GeForce GTX 480 compared to more
expensive 12 core AMD Opteron.

Index Terms—complementarity problem, geometric multi-
grid, projected SOR, GPU.

I. INTRODUCTION

WE consider the linear complementarity problem in the
following form

Ax ≥ b, (1)
x ≥ c, (2)

(Ax− b)
T

(x− c) = 0, (3)

where A is symmetric positive definite matrix and c is
a given vector (constraint). This kind of problems arises
in computational mechanics [5], financial mathematics [8]
and/or image processing [6] and can be solved by the
Projected SOR (PSOR) method introduced in [10]. If such
problem arises from the discretization of a PDE with a con-
straint, the geometric multigrid method [3] with the PSOR
method used as a smoother can be applied [8], [14]. We
present a parallelization of this method which is applicable
even to problems with sparse matrix A. The parallel solver
is implemented in CUDA to run on the GPU.

II. CONTRIBUTION

We have developed a parallel algorithm for geometric
multigrid method with the PSOR method as smoother which
runs efficiently on GPUs. The algorithm is based on matrix
coloring and works well with sparse matrices. To show its
efficiency we solve constrained level-set method in image
segmentation. Even though the test matrix is symmetric and
penta-diagonal these properties are only used during creation
of transition operators and coarser system matrices, main
iterative part of the algorithm (multigrid cycle) can work
with general matrices. Therefore in future it can be used
in combination with Algebraic multigrid, which is able to
automatically create transition operators and coarser system
matrices just from the original system matrix, to solve larger
range or problems.
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III. PROJECTED SOR METHOD

The PSOR method [10] is a modification of the well
known SOR method. We repeat the following updating of
the vector x̃(p):

rpi =

bi −
∑
j<i

aijx̃
(p+1)
j −

∑
j>i

aijx̃
(p)
j

 ,

x̂
(p+1)
i = (1− ω) x̃

(p)
i +

ω

aii
rpi , (4)

x̃
(p+1)
i = max{x̂(p+1)

i , ci}, (5)

until the prescribed tolerance level for the modified (zero
for restricted points, i.e. points where xi = ci) `2 residual
norm is achieved. The equation (4) is, in fact, common
SOR method and the equation (5) ensures that the prescribed
constraint x ≥ c is satisfied. For the convergence study of
this method we refer to [10]. However, to improve overall
convergence, we use the multigrid method for solving the
problem instead of the plain PSOR and PSOR is used as a
smoother in it. In the following section, we briefly summarize
essential parts of the geometric multigrid method.

IV. GEOMETRIC MULTIGRID

Term multigrid methods [3], [7] covers a group of methods
for solving linear systems arising from the discretization of
PDEs. The multigrid methods profit from use of hierarchical
structure of grids with different numbers of elements.

Conventional stationary iterative methods (like Jacobi,
Gauss-Seidel or SOR) quickly eliminate the oscillatory com-
ponents of the error (high frequencies), while the smooth
components have low reduction rate of 1 − O(h2). This
renders them inefficient for large linear systems. To overcome
this issue multigrid methods solve problem simultaneously
on coarser grids. The former smooth components become
more oscillatory on them and thus can be easily eliminated
by the stationary solvers (referred to as smoothers in the
context of multigrid algorithms). This makes the multigrid
methods much faster than standard solvers.

To formulate problem on coarser grids and use solution
from them to improve solution on the finer grids, the so
called transition operators are needed. The exact appearance
of these operators depends on the chosen discretization, but
they can be computed before the main iterative cycle and
stored as matrices. Their application then consist only in one
matrix vector multiplication.

Projected multigrid method [8] modifies the standard
multigrid cycle to be able to solve linear complementarity
problems. This is done by transferring also the solution
constraints on the coarser grids. Projected multigrid V-cycle
then looks as follows:
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Algorithm 1: Projected multigrid V-cycle

1) Start with initial approximate solution xh0
2) Relax (do few smoother iterations) the current solution

to get new estimate xh

3) Compute the fine-grid residual rh = bh −Ahxh
4) Compute difference between given constraint and cur-

rent solution dh = ch − xh
5) Restrict residual and constraint difference to the coarse

grid by restriction operator r2h = I2hh rh, d2h = I2hh dh

6) Solve A2he2h = r2h with constraint d2h

7) Interpolate error correction to the fine grid by prolon-
gation operator eh = Ih2he

2h

8) Correct current solution xh = xh + eh

9) Repeat from 2 (if needed)

This is a case of two grid hierarchy. If more grids are to be
used, one simply replaces the direct solution of the coarse-
grid problem with a recursive call to this algorithm on all
grids except the coarsest one.

We use PSOR method both as a smoother for finer grids
and as a solver on the coarsest one.

V. PARALLEL ALGORITHM

The parallelization of the algorithm mentioned above con-
sists of the following steps: 1) Parallelization of the coarse
grid solver, 2) parallelization of the transition operators, 3)
parallelization of residual calculation and 4) parallelization
of the underlying smoother.

As a coarsest grid solver, some direct solver is often used.
However its parallelization can be difficult, so we rather used
the fine grid smoother also for this task. This shouldn’t hinder
the final performance, because not much time is spent on the
coarsest grid.

Parallelization of the transition operators and residual
calculation is rather trivial. Both these tasks are basically
a simple matrix vector multiplication combined with vector
subtraction (residual) or addition (improvement of fine grid
solution). The parallelization of the smoother is discussed in
the following text,

Essential issue with SOR parallelization is that it is (same
as Gauss-Seidel method) inherently sequential. To compute
xn+1
i we need to know xn+1

i−1 . A remedy is to decompose the
matrix A into several independent components (or colors)
and process them separately. This method is known as
red-black [11] or in general multicolor/vertex [1], [2], [4]
coloring.

Such decomposition must meet following conditions: Let
P (i) denote the set of the column indices of the non-zero
elements of the i-th row of matrix A minus index i ,i.e.,
P (i) ≡ {k ∈ 1, . . . , N | k 6= i ∧ aik 6= 0}. Then the coloring
of the set of all indices 1, . . . , N is the system of disjoint
subsets N = {N1, . . . , Nm} such that N1∪N2∪ . . .∪Nm ≡
{1, . . . , N} and

(∀j ∈ {1, . . . ,m})(∀i ∈ Nj)(P (i) ∩Nj = 0). (6)

Let us denote Nk =
k⋃
i=1

Ni and N0 = ∅. Then for any color
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Fig. 1. Red-black reordering of the sample 1D system matrix. On the
left is matrix using natural element ordering and on the right matrix using
red-black ordering.

k ∈ {1, . . . ,m} the recurrences

rni =

bi − ∑
j∈Nk−1

aijx
n+1
j −

∑
j 6∈Nk−1∪{i}

aijx
n
j

 ,

xn+1
i =

ω

aii
rni + (1− ω)xni for all i ∈ Nk, (7)

are independent (in the meaning that we can process them
in any order) and therefore they can be processed in parallel.
Individual colors, however, must still be processed sequen-
tially. Consider the following algorithm:

Algorithm 2: Multi-colored SOR
1) Decompose the set {1, . . . , N} into a system of disjoint

subsets N = {N1, . . . , Nm} such that (6) holds, set
n = 0 and x0i = xinii for all i = 1, . . . , N and some
initial state xini.

2) Repeat until convergence:
3) for k = 1, . . . ,m do (sequentially)
4) For all i ∈ Nk update xni in parallel by (7).
In our case we can use simple red-black coloring, since

our problems are defined on uniform square grid.
The unknowns are also reordered by this coloring, so that

elements of the same color are grouped together, taking the
red ones are first. For example the system matrix is changed
so that its first half contains only rows belonging to the red
elements and the second half only the rows belonging to the
black ones (see fig. 1 for visualization).

Generally it means that the system of Ax = b becomes[
Dr Urb
Lrb Db

] [
xr
xb

]
=

[
br
bb

]
, (8)

where Dr and Db are diagonal matrices, so from this form it
can be clearly seen that update of red elements only depend
on the values of black elements and vice versa.

This reordering is done because PSOR method in each
phase processes only elements of one color and so it needs
to read only those matrix rows, that belong to this elements.
Therefore it is advantageous to have them in continuous
block of memory. It also simplifies processing of the ele-
ments of only one color, because it is not needed to compute
or fetch the color of each element and then skip elements
with the wrong one, instead based on the currently processed
color only the first or the second half of the elements is
updated.

Of course all vectors and transitions operators must be
changed accordingly, but this is done already during the
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creation of all system matrices, vectors and transition op-
erators, so it imposes no additional work or change of the
used algorithms (all multigrid parts only expect ordering to
be consistent, but does not require any particular one).

VI. GPU ARCHITECTURE

GPUs are highly parallel devices with shared memory
similar to vector architectures. They have evolved from
simple graphics accelerators to powerful tools for the high
performance computing. Unlike the classical multi-core pro-
cessors which have at most tens of cores, they consist of
hundreds to thousands of computational units. Therefore they
are best utilized on massively parallel problems.

Compared to other types of parallel programming (i.e.
OpenMP, MPI), programming for GPU has some specifics
given by the type of calculations the GPUs were designed
for. It is important to know them and keep them in mind
when creating programs for GPU in order to fully utilize its
potential. In the rest of this section the most important ones
will be pointed out:
• Dedicated memory GPU does not use standard RAM,

instead it has its own video RAM referred as the global
memory. This isn’t issue when problem is completely
solved on GPU, but in the case of converting only
the most computationally demanding parts on the GPU
and doing rest of the work on the processor, constant
copying can easily become a bottleneck.

• Branching The multiprocessors can be compared to
SIMD architecture. Each thread must process the same
instructions as the others. Therefore each 32 consecutive
threads are synchronized implicitly and they are called
the warp. Because of this, branching of threads in
kernels can lead to inefficiencies. If the condition result
isn’t same for all threads in the warp, both branches
must be taken by all warp threads, even though each of
them will only work in their correct branch and idly wait
in the other. This situation is called threads divergence
or that threads diverge and can be major issue for some
types of the problems see [15].

• Coalescing Graphics card have much bigger bandwidth
than standard RAM when reading blocks of data. More
precisely when one warp try to read or write continuous
block of data it can be coalesced into single operation
and so whole block can be loaded more than thirty times
faster. This is extremely important feature for bandwidth
limited problems

• Thread hierarchy Computational threads form a two
layer hierarchy. On the first one, the threads are grouped
into blocks. On the second one, all blocks create the so
called grid. Number of blocks in the grid is completely
up to the programmer and it should match the size of the
solved problem. Size of the block can be also chosen,
however it must be at most 1024. The reason for this
two level hierarchy is that only threads that are in the
same block can communicate between each other. This
means that blocks have to be completely independent.

VII. MULTIGRID GPU PARALLELIZATION

The parallel code for the GPU is written in CUDA
framework [13]. The algorithms described above are used
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Fig. 2. Visuazlization of RgCSR format. For simplicity each group contains
only 4 rows instead of 32. General matrix is used as an example to better
show all properties of RgCSR. Image taken from [12]

without any modification. The only difference is that special
sparse matrix format was used on GPU in order to achieve
coalesced accesses (CPU version uses standard CSR).

All matrices are therefore stored in our own RgCSR
format for general sparse matrices described in [12]. It
works (fig. 2) so that it groups 32 matrix rows together.
Each such group is transposed and stored in the Ellpack
format. This means that the non-zero matrix element are not
ordered by rows but by their appearance in the rows. More
exactly firstly the first non-zero elements in the rows are
stored into a sequential block. Then they are followed by
the block of the second non-zero elements in the rows and
so on. This way we can (unlike for CSR format) achieve
coalesced accesses on GPU during both sparse matrix vector
multiplication and Red-black PSOR updates, note that there
is no need to change algorithm 2, sparse matrix format only
affects how the

∑
j∈Nk−1

aijx
n+1
j and

∑
j 6∈Nk−1∪{i} aijx

n
j

will be computed. Let us demonstrate the coalesced accesses
on SpMV kernel parallelized by matrix rows (code fragment
taken from [12]):

__global__ void SpMV_RgCSR(
int mSize, double* vals, int* cols,
int* grpPtrs, int* rowLens,
double* x, double* Ax )

{
int row = blockIdx.x * blockDim.x
+ threadIdx.x;

if( row >= mSize ) return;
int grpOffset = grpPtrs[blockIdx.x];
int currentGrpSize = blockDim.x;

// The last group may be smaller
if((blockIdx.x+1)*blockDim.x > mSize)
currentGrpSize = mSize % blockDim.x;

double product = 0.0;
const int rowLen = rowLens[row];
int i = grpOffset + threadIdx.x;
for( int j = 0; j < rowLen; j++ )
{
//Coalesced read on vals and cols
product += vals[i] * x[ cols[i] ];
i += currentGrpSize;

}

//Coalesced write
Ax[row] = product;

}

Compared to the Ellpack format, our format needs less
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memory when storing general matrices with different number
of non-zeroes in each row, which however is not the case
for our test matrices because they are all penta-diagonal.
This penta-diagonality also means that special formats for
diagonal matrices could have been used, but our goal was to
keep most of the program able to work with general matrices
and thus usable for larger range of problems.

With this changes in place it is easy to effectively convert
remaining parts. Transition operators and residual calculation
are SpMV multiplication whose parallelization was already
described. Vector addition and subtraction (for improving the
solution and residual calculation) are trivial to parrallelize
and reduction operation for computing the residual norm uses
algorithm from CUDA reduction example [13].

Main and most complex is the PSOR update kernel, which
is however quite similar to SpMV one:

__global__ void PSOR_RgCSR(
int mSize, double* vals, int* cols,
int* grpPtrs, int* rowLens,
double* x, double *b, double *c
double omega, int startI, int endI)
{
int row = blockIdx.x * blockDim.x
+ threadIdx.x + startI;

if( row >= endI ) return;
int grpOffset = grpPtrs[blockIdx.x];
int currentGrpSize = blockDim.x;
if((blockIdx.x+1)*blockDim.x > mSize)
currentGrpSize = mSize % blockDim.x;

const int rowLen = rowLens[row];
int i = grpOffset + threadIdx.x;

double diag=1, nondiag=0, xr=0;
for( int j = 0; j < rowLen; j++ )
{
int col = cols[i];
double val = vals[i];
double xc = x[col];
if (col==row) {diag=val; xr=xc;}
else nonDiag += val * xc;
i += currentGrpSize;

}
xr = omega*(b[row]-nonDiag)/diag

+ (1.0-omega)*xr;
double con = c[row];
if (xr > con) xr = con;
x[row] = xr;

}

Most of the read/write operations are coalesced as well.
Newly there are two branching operations that should be
discussed. The first is

if (col==row) {diag=val; xr=xc;}
else nonDiag += val * xc;

which can hinder the performance if diagonal elements have
different index j in each row and thus threads divergence
occur. Note however that the read operation from global
memory isn’t part of the condition statement, so this ef-
fect is quite limited. We have tested effect of eliminating
the branching issues by changing row position of diagonal

elements (by moving their respective values in vals and cols
arrays) and find out that
• For the worst case when diagonal elements are randomly

positioned and therefore have different indeces j, there
was slowdown about 3% compared to original test
matrices.

• In the best case, where all diagonal elements have same
index j and so no thread divergence occurs, the same
performance as for the test matrices has been observed.

• Case with no branching (achieved by moving diagonal
elements to the beginning of each row, so that all of
them have same known index j = 0, which means
that they can be fetched separately before the for loop
and the loop processes only non-diagonal elements) was
about 2% faster. This was probably due to some com-
piler optimization previously blocked by the condition.
However this improvement wasn’t implemented because
it was not worth making RgCSR format more complex.

Neither the second condition

if (xr > con) xr = con;

which keeps solution bellow the given constraint should
affect the performance much. Even if the threads diverge,
they have to wait only for one assignment operation between
variables in local registers. It is very fast and therefore quite
negligible compared to the total kernel computation time.

Final note can be made about the data transfers between
main CPU memory and the GPU global memory. Since our
algorithm runs completely on GPU all data must be uploaded
to the global memory only once and then only final results
are fetched after the computation.

VIII. EXPERIMENTAL RESULTS

We demonstrate the efficiency of the CUDA implementa-
tion of the Projected SOR method on the constrained level-set
method in image segmentation [6]. We only briefly expose
the problem we solve. We assume having an image intensity
function I0 defined on the domain Ω ≡ (0, 1)2. We set initial
curve Γ0 as an initial guess of the segmented object on the
image. We also set two disjoint subsets Ωin and Ωout of
the domain Ω such that Ωin lies in the segmented object
interior and Ωout in exterior. We define function v ∈ C (Ω)
(constraint) such that v is negative everywhere in Ωin and
positive everywhere in Ω \ Ωin. Finally let uini ∈ C(Ω)
be a level-set function such that its zero level-set equals Γ0.
We construct a time-dependent level-set function u = u(x, t)
such that it satisfies the following problem.

ut ≤ Q∇ ·
(
g0
∇u
Q

)
u(x, t) ≤ v(x)

for (x, t) ∈ Ω× (0, T ], (9)

∂νu = 0 at ∂Ω, (10)
u |t=0 = uini in Ω, (11)

where Q is regularized norm of gradient of u defined by
Q =

√
ε2 + |∇u|2 and g0 is edge detector (i.e. function

going to 0 near the edges in original image and to 1 near
parts of the image with constant intensity), in our case it is
defined by g0 = 1/(1 + K|∇I|2), where I is the original
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TABLE I
PERFORMANCE COMPARISON OF THE SOLVER RUNNING ON SINGLE

CORE (CORE2 DUO) AND ON THE GPU (GTX 480) FOR THREE
DIFFERENT RESOLUTIONS OF THE INPUT IMAGE.

Resolution CPU GTX 480
Time Time Speed-up

256x256 25.3 s 2.6 s 9.7
512x512 368 s 25 s 14.7

1024x1024 5431 s 267 s 20.3

TABLE II
COMPUTATIONS TIMES OF OPENMP VERSION ON MULTI CORE OPTERON

AND SPEED-UP OF GPU VERSION ON GTX 480 COMPARED TO THEM.

Cores 256x256 512x512 1024x1024
Time Speed-up Time Speed-up Time Speed-up

1 50 s 19.2 669 s 26.8 10830 s 40.6
2 25.3 s 9.7 341 s 13.6 5575 s 20.9
4 14.1 s 5.4 174 s 7.0 2748 s 10.3
8 7.6 s 2.9 89 s 3.6 1392 s 5.2
12 6.4 s 2.5 61 s 2.4 935 s 3.5

grayscale image. ε and K are constants which were chosen
by hand to ε = 1,K = 10.

With the numerical discretisation from [6], the problem
above can be converted to the following linear complemen-
tarity problem:

(Aũ)i ≤ bi

ũi ≤ vi

for i ∈ I (12)

where I is the set of all pixels of the segmented image
and the matrix A is pentadiagonal, symmetric, diagonally
dominant M-matrix (see [11]) and therefore positive definite.
The matrix coloring is obtained by checker board style red-
black coloring of the image pixels.

Testing system was equipped by Intel Core2 Duo 2.6 GHz
and Nvidia GeForce GTX 480. OpenMP version was tested
on AMD Opteron with 12 cores running on 2.2 GHz. Three
different resolutions of the input image were used.

Comparison of GPU and single core version is in Table I,
Table II then shows results compared to OpenMP version.

Results show that the GPU can perform the computations
much faster than the standard CPU. It can outperform even
more expansive multi-core system, even though the OpenMP
version has very good scaling.

IX. CONCLUSION

This article presented an implementation of parallel multi-
grid solver for the Projected SOR method on the GPU. It
shows that the GPUs are very suitable platform for such
tasks and that they can be used to extensively speed-up the
computation.
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