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Segmentation of MRI Images by Adaptive
Degenerate Diffusion

Radek Maca, Michal BeneS, and Jaroslav Tintéra

Abstract—This article presents the application of a segmen-  This paper presents the latest results of used method
tation algorithm based on numerical solution of a partial already published in [6]. Mainly, it introduces tailored pa-
differential equation of the level set type with incorporated rameters set-up to obtain best possible results on given set

a priori knowledge of the processed data. The semi-implicit . ) -
complementary-volume numerical scheme is used to derive the of MRI image data. The robustness and applicability of

algorithm. In particular, we focus on the segmentation of the Proposed segmentation algorithm is proven on wider set of
left heart ventricle from the cardiac MRI data. Using a suitable MRI data series. Last but not least, an unique comparison

modification of the level set equation together with an image study on fifteen different patients with rich variety of heart
thresholding, the objects in the image such as the left ventricle myocardium viability is introduced.

or the papillary muscles can be detected. The purpose of the Th . K of i L I h
article is to indicate how the algorithm parameters are set up e main task of image segmentation Is a partitioning the

and how the a priori knowledge helps to getting satisfactory image plane into multiple segments (sets of pixels defining

segmentation results. meaningful areas). Over the last few decades a large amount
Index Terms—image segmentation, partial differential equa- ©f Segmentation algorithms have been proposed [7]. An
tion, level set method, co-volume method, cardiac MRI enormous impact in the segmentation community had the

Snakes approach introduced by Kass et al. in [8]. Aftewards,
this approach were thoroughly studied, e.g. in [9], [10], [11],
[12]. Among other approaches to the image segmentation we
N the early years of the magnetic resonance imagimgscribe a given segment in the image as a hyperdiane
(MRI) in medicine, the heart was the most difficulte.g. as a curve in the case2id images. There are two main
organ to investigate. Over the last two decades MRI hdsscription ofl". First, the parametric approach can be used.
evolved to become an important clinical imaging techniqué means that the curve is parameterized with respect to the
for heart and great vessels. Nowadays, imaging is an esserttialve parameter (see [13], [14]). Secorid]s represented
part of medical decision-making (see [1]). The presentéaplicitly as the level line of some embedding function. The
work is motivated by the need of medical practice fomost popular method using implicit approach are the level set
automatic evaluation of the dynamical images of the hearethods [15], [16], [17]. Last but not least the region based
obtained by cardiac MRI. A typical example could be asegmentation can be described using a statistical formulation
accurate measurement of the heart ventricle volume durifi@], [19], [20], [21].
the heart contraction showing the contractive ability of the In the field of medical image processing we could men-
myocardium. Within this framework, the main task is tdion approaches based on the diffusion driven segmentation.
find the region inside the ventricle which corresponds ®roadly using models include so called level set equation
the blood in the ventricle. We attempt to construct and tunehich could be derived either from level set formulation
a segmentation algorithm based on the numerical solutifsj, [17], [22] or from the geodesic active contours model
of a partial differential equation of the level set type. Th§23], [24]. In (see [25], [26]) an algorithm using the phase-
algorithm is controlled by the gradient and intensity ofield approach to the mean curvature flow is presented. The
MRI data in such a way that the edges of the objecsggmentation model is given by the Allen-Cahn equation
can be found. More particularly, the algorithm is givefi27]. In [28], [29] the Allen-Cahn equation is used to segment
by the numerical solution of the level set equation by thihe left heart ventricle volume and the wall of the left heart
semi-implicit complementary-volume numerical scheme. Thentricle. A different method is based on the graph cuts [30],
detailed description and mathematical analysis of this scheB8&]. This method is based on the Ford-Fulkerson algorithm,
can be found in [2], [3], [4], [5]. The main purpose of thisvhich computes the maximum flow in a directed graph
article is to describe the segmentation algorithm, algorithoneated from a given image. The latest result of this method
parameters and their adjustment used for segmentation of ta@ be found in [32] and [33].
left heart ventricle from the cardiac MRI images. Currently, the three-dimensional [2] and the four-di-
mensional (space and time) [4], [34], [35], [36] methods
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Examination of the heart ventricle consists of several huwhereg : Rf — R* is a non-increasing function for which
dreds of MR images covering the entire left ventricle volumeg(0) = 1 and g(s) — 0 for s — +oo. This function was
and recording complete cardiac-cycle interval with a givefirst used by P. Perona and J. Malik ([41] in 1987) to modify
temporal resolution. As discussed in [28], the current level tfie heat equation into a nonlinear diffusion equation which
the MRI acquisition allows to get a relatively low number omaintains edges in an image. Consequently, the fungtien
2D slices along the main heart axis through the cardiac cyctalled the Perona-Malik function. We pgits) = 1/(1+\s?)
provided a reasonable quality of the images is maintainesith A\ > 0. G, € C*(R?) is a smoothing kernel, e.g. the
This is the reason why we consider segmentation of 2D slicEauss function with zero mean and varianée

instead of fully 3D segmentation in this text. G () 1 =2 @®
: olx) = e 202
In our case, the MRI images are segmented separately each fomo?

of other by means of the curnd&(t) C € in R? propagating
in the normal direction with velocity”. The velocityV" at
a curve pointr € I'(¢) is given by its (mean) curvaturer

and external forcé" as follows (I°+ VG,)(z) = /

V=—kr+F. (1)

which is used to pre-smoothing (denoising) of image gradi-
ents by convolution

. Pz —y)VGo(y)dy,  (9)

For the segmentation purposes, law (1) can be modified
incorporating the influence of the processed signal (or i
gradient) into the curvature and the force terms. The moti
law (1) can be treated by the level set method. In this case,

Eriodic prolongation or zero padding. Let us note that

E/herel0 is the extension off® to R? by, e.g., mirroring,
%uation (7) can be rewritten into the advection-diffusion

I'(t) is represented as a level set dyu = ¢°|Vul.V - ( Vu ) +Vg" - Vu— ¢ Vul.F .
|VU|€ —_— Y=
I'(t) ={z € Q|u(t,x) =0}, (2) RS (A) (F)
wherew : [0,T] x Q — R. (10)

The evolution equation implicitly describing the motion For convenience, the abbreviatig = g(\]0 * VG(,|)
of T'(¢) given by (2) with velocityV in the outward normal is used. (D) in (10) denotes the diffusion tern{A) the
direction is derived as follows. advection term andF’) the external force term. The term
Using the sign convention we can express the normgl is called the edge detector which is approximately equal
vector, the normal velocity and the mean curvature as  to zero close to image edges. Consequently, the evolution of
. Vu O . 2 the.segmentation function slows down in the neighbogrhood
n= m, = —W, kp =V -1 = V-m- (3) of image edges. On the contrary, in parts of the image
with constant intensity the edge detector equals one. The

Substituting (3) to equation (1), we obtain the level sefy ection term attracts the segmentation function to the
equation in the form image edges. We propose an advection paramgteto

B Vu change the magnitude of the advection term and to obtain
O = |Vul V- Vu| Vul ) the modified level set equation, namely
where we denot&,u := Ju/0t. This equation has been 0 Vu 0 0
extensively studied and applied (see [15], [16], [17]). This?" = 9 VuleV: Vul. +AVY - Vu—g'|VulF. (11)

experience suggests a regularization proposed by Evans and
Spruck (see [15]) which is useful both for theory ang\. |nitial-boundary value problem

numerical computation in the form: As a parabolic partial differential equation, (11) requires

_ ~Vu initial and boundary conditions. For this purpose, we define

Opu = |Vul-V |Vl VulF, ®) the signed distance function (SDF).

where Let I';, be the interior off'(¢) andT',, be the exterior of
_ /.9 2 T'(t). Consequenth® = 0Ty, = Ol oty [in UT U T ous = Q

Vule = y/e* +1Vul, e>0. ©) at( a>1ny time. Then the signed distance functidp)(is given
The known features of the level set equation based mairy
on the controlled motion of isolines of the solution naturally dist(x,I'(t)) 2 € Tout ,
led to its use in the image processing (see [5], [17], [22], dr(t,z) = 0 x e (t), (12)
[23], [24]). —dist(x, () = €Ty,

In particular, the detection of image object edges is Bheredist
one of tasks in image segmentation. Edges in the input,l_he init
image I° : Q — {0,1,2...,Ina} (represented by the
rrg)atrlx Mgy X Mgy, WhefeQan (O;NM/;?;XéngutTrl]m}%x niexpand the initial curve, velocity (1) has to be positive.
( ’n“/.max{n”i“n“}). can be recognized by the magnly e value o implies that the external force satisfies the
_tude of its spatlal_ gradlent. The level set equation Operat'?&lowing inequality /' > xp. The signed distance function
In €2 can be modified as follows (SDF) can be used as the initial condition for (11). At the

(#,T(t) = min{|z —y[ [y € T(?)} .
ial curvel'y as the initial guess has to be placed
inside the segmentation object — the left heart ventricle. To

Bpu =|Vul.V - <g (\IO " VGU|) Vu > beginning of the segmentation process for a given patient,
|Vule (7) i.e. for the first image, we have to place the initial cufue
— g ([1°* VGs|) [Vul.F, into the left heart ventricle manually, e.g., as a circle. By
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means of image segmentation, the initial culyeis called ~Substitution into (1) yields the evolution law fof = )?(t, v)

the initial segmentation curve. in the vectorial form of
For a givenI'y we construct SDR, and set the initial 74 e
.. o . ¥ aU’UX 8’UX
condition asuini = dr, refered to as the initial segmentation 0 X = =5 = (15)
10, X | 10, X |

function. The definition (12) implies that the segmentation
curvel'(t) is the zero level set of the segmentation functioA modification containing the Perona-Malik functigf
u(t,z) for anyt € [0,T].

The segmentation functiom evolves from the initial 0X = OM -V 0+90F8”—)_(, (16)
segmentation function (Figure la) according to (11). This |0, X2 |0, X
evolution distorts the original shape @f; into u(t, =) which  endowed with the initial conditions
fails to have the unit gradient slopes (Figure 1b). At the - -
beginning of next image segmentation it is convenient to Xle=0 = Xo (17)
use the result of the previous image segmentalio) = and with the periodic boundary conditions can serve in the

{z € R?|u(t, ) = 0} and its signed distance functialr, segmentation of the image data as shown in [43].
as a new initial condition, i.e. as a new initial segmentation onother variant is based on the phase-field approach to
function. In this paper we use following notation: the mean curvature flow (see e.g. [26]). The functi¢h z)
o u(t,x) is the segmentation function evolves according to the following initial-boundary-value
o u(0,z) is the initial segmentation function (SDF shapeproblem for the modified Allen-Cahn equation (see [27]):
« I'(t) is the segmentation curve({,I'(¢)) = 0) op 0
« T(0) is the initial segmentation curvei(0,I(0)) =0) &5, (t:2) =&V - (4"Vp)

This is performed by means of the fast sweeping method 1 .
introduced in [42]. This method is used to compute the +9° (Efo(p) +§F|Vp|> in (0,T) x 2,
viscosity solution of the following problem op
—(t,x) = on (0,7) x 092,
[Vu(z) =1 x €, on _
u(@) =0 zel CQ. p(0,%) = pin in 2.

An example of a restored signed distance function is shov-\ll-rh]e functionp(t, z) has its values in(0, 1) which is guar-

i anteed by the particular form of the polynomial functifin
in Figure 1c. : .
. . . having the values df and1 as roots. The segmentation curve
Finally, using the zero Neumann boundary condition

WE, .. A
define the following initial-boundary value problem & et is given by the level set .
Vu ) I(t) = {z € Qp(t,2) = 5}

|Vul. The thickness of the transition layer between the values of
+ AVg? - Vu — ¢°|Vu|.F in (0,7)xQ, p=0andp = 1 is given by the small parametér <

Ou(t,x) = g°|Vul.V - (

ou ¢ << 1. The profile ofp acrossI'(t) remains stable for all
o, (H2) =0 on (0,7) x 08, ¢ when¢ — 0, andg(z) = 1 the segmentation curvé()
u(0,2) = dr, () in Q. evolves according to the mean-curvature evolution law (1).

The application in MRI data segmentation can be found in
Numerical algorithm solving this problem is the key part of29].
the segmentation algorithm. All of these approaches related to the image segmentation
should be generalized in the following manner. In variational
point of view, one computes segmentation of a given image
I° by evolving a curve (hypersurfacg)in the direction of
The motion of the segmentation level curves by (11) h&ggative energy gradient with respect to the appropriate par-
several alternatives. tial differential equations. The well-known approach called
For example, the segmentation curve can be describegakes introduced by Kass in [8] evolves a curve (13) by
directly, i.e. parametrically. Using a smooth time-dependel@cally minimizing the functional
vector function

B. Related approaches

E(I) = —/W[O(F)|2dv+)\1 T, > dv+ g [ [Toul* do,

(18)
whereS = (0,1) is a fixed interval for curve parameter andvhereI', and I',,, denote the first and second derivative
I =(0,T) is the time interval, the segmentation cuive) with respect to the curve parameter The first term in
is given as (18) is the external energy influencing the model by the

I(t) = {X(t,v)|veS}. (13) image information. The last two terms can be interpreted as
an internal energy of the curve. Usually the term weighted
According to [43], the normal vector, the normal velocitypy parameter\, is not particularly important and therefore

X:IxS5—R?,

and the curvature are expressed as follows it is omitted in many related publications. In general, the
. ~ idea of introducing the functional (18) goes through many
i DX+ V=0,X i, kp=—ii O X (14) image processing publications. The major difference between
10,X]|’ ’ 10,X|2 them is that some start from an energy concept, while others
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@ (b) ©

Fig. 1: Example of segmentation function. Initial segmentation functigrfa), segmentation function for (¢ > 0) (b),
restored SDF (c). The graphs contain corresponding zero level line.

formulate directly their problem, e.g. in terms of level setgiven pixel structure we build a triangulation in such a way

as we did in Section Il that the centers of pixels are connected by new rectangular
mesh. Each new rectangle is divided into four triangles of
1. SEGMENTATION ALGORITHM equal size. The pixel centers will be called the degree-of-

A numerical scheme with justified key features such greedom (DF) nodes. Other nodes will be called the non-
J y gree-of-freedom (NDF) nodes. Let a functierbe given

stability and convergence can become a basis for a relia Iee . . 2
- ; . S y discrete values at DF nodes amgl be a piecewise linear
and efficient algorithm. For this purpose, a semi-implicit co-

volume space discretization is used. This approach is simi prOX|mat|(_)n qfu on the triangulation. The value_h at .

0 [2], [3], [5], [44]. We choose a uniform discrete time ste F nodes is given by the average value of the neighboring
P R T : T F nodal values.

7 and approximate the time derivative in (11) by backwar i lati ) by th i _

difference. The linear terms of the equation are approximated ©" tiangulation7, given by the previous construction,

at the current time level while the nonlinear terms (i¥eu|.) we construct a co-volume (dual) mesh consisting of the cells

are treated at the previous time level. In this way we Obtafna_ssomatedd with DF Eodqsolf T Onhé' \;]Vnhout any c((j)_n- DE
the following semi-implicit discretization usion, we denote each co-volume and the corresponding

node by the same symbol. In order to derive the co-volume

uf — k! _ O, k-1 Vu* spatial discretization the notation in Table | is introduced.
=g VeV [Vur—1]. (19)
+ AVgY - Vuk — g0 Vb TABLE [: Co-volume notations.
To simplify the construction of spatial discretization, we re- Cp ... setof all DF nodes; connected
write the previous equation using the following expression to the nodep by an edge
opq ... edge connecting DF nodgsand g
k k hpq ... length ofopg
gOV . L =V QOL epq ... common edge of co-volumgsandgq
|Vuk=1| |Vuk—1] Op=U,cc. €pq)
: : (20) b asCy e
Vuk Epq .. setof triangles including the edgs,,
— Vgo Tyl cl, ... length of the portion ot that is
vk N, intT feTTh Eﬁgq' :I |qu r1thT|) t
. . ... seto Incluain e verte
Next, we substitute (20) to (19). Dividing bW 1., we |Vqu| U Value Oflew’a onT egTh »
get new form of (19) up ... value ofuy(zp), wherexy, is
. 1 X the coordinate of the node on 7,
1 u® —ut" o Vu Upg .. value ofup(zpe), Wherezps = opg N epg
|Vuk*1|€ . =V (g |Vuk71|€ vp ... outer normal of (:o—volum@2
(21) Vpg ... outer normal of co-volume on e,
€
The co-volume method is used to construct a fully-discrete We integrate (21) over each co-volumpep = 1,..., M

system of equations. The digital image is recorded on(&/ denotes the number of all DF nodes). The approximation
structure of pixels with the rectangular shape. Each pixef the left-hand side and the first term on the right-hand side
includes the values d® influencing the segmentation modelof (21) can be found in [5]. Hence we provide the result of
We relate the spatial approximations of the segmentatitre approximation of these two terms without explanation.
functionu to the centers of image pixels. We evaluate the grdhe left-hand side of (21) is approximated by

dient of the segmentation function at the previous time step

(|VuF=1|.) in (21). We put a triangulation inside the pixel 1 uf — k1 d ~ m )M’“*lug —up~!
structure and use the piecewise linear approximation of the o [Vub=1] T ~= mip) My T ’
segmentation function on this triangulation. This approach (22)

provides constant values of gradient on each triangle. Fow@erem(p) is the measure of co-volumein R? andMg*1
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is given by Finally the above expressions are put together to get spatial
1 m(T A p) approximation of the advection term
Mk71: |vukfl| _ Z |Vuk—1|
P k—1 ) D € T € 1 i
[Vup™ e TEN, m(p) /p(.A — 1)7|Vuk_1|gvgo - Vut dz
whereT Np is the intersection of triangl& and co-volume 1 . 9q° . .
p. In our case fofl' € N,,, it holdsm(T N p)/m(p) = 1/8. ~ (A, —1)M, Z |epg| min (—8 70) (Uq - Up) .
Denoting the spatial step of the co-volume meshhbye 1€Cyp
getm(p) = h2. The approximation of the first term on the (27)
right-hand side of (21) is done using the divergence theorefjg force term on the right-hand side of (24) is approximated
: o Vuk as follows
V. — | dz
/p (g |Vuk—1|8> /gOF dz =~ m(p)gyF,y . (28)
g9 uk —uk ’
~ Z e qh L. whereg, denotes approximation gf’ on the co-volume.
q€Cp \TEEp, [Vur e Pq Using the notation
23
(23) k-1 1 T 9t . g
0 imati 0 i Opg = 7 CpgTo FT Ypa = |€pg| min | o=,

where g;. denotes approximation of° on a triangleT” € ¢ hpa 155 P wubt). Ovpq
Tr. The advection term on the right-hand side of (21) is e (29)
approlximated by_ the.first-order upwind scheme. We use th&yether with (22), (23), (27) and (28), the fully-discrete
following approximation semi-implicit co-volume scheme is obtained

1 .
/(Afl)VTVQO'Wkdx k-1 k-1 k—1 k
p |Vuk=1| m(p) M, ™" +7 Z (ap; + (Ap — 1) M~ gpq) Uy,

~ (A, — 1)M§_1/Vg0 Vb da . 9€Cy
P —T Z (a;fq_l + (A, — 1)M§_1gpq) uf;
Now we rewrite the scalar product & ¢° and Vu* into the 9€Cyp
form = m(p)M§71u§71 — m(p)gpFy -
V¢ Vi =v. (Vgouk) — Agu® . (30)
_ (i+1,7)
Then we get (O N § N ;,Tf\ 7777777777777 :,-3 (i+1,7+1)
/VgO-VuIC dx = /V.(Vgouk) dm—/AgOuk da. (24) 2 L
p p P ' ,’13 \\ E /,,’ N
The first term on the right hand side of (24) is approximated (i — 1) Wl D lbd) | A 6,7+ 1)
as follows RS A
‘ " dg° 9g°
V- (Vgou® dxz/ L ukds ~ lepq| == ur, - ! RN
_ _ (25) (z‘—1,j—1)"'*""m"*i;i"l'*;j *********** i1, 11)
For the second term on the right hand side of (24) the v
divergence theorem implies Fig. 2: Co-volumep associated with a coupléi, j) and set

of 8 trianglesV; ; denoted by numbers 1 to 8.

0,k k 0 k dg"
Agiu®dr = uy, | Agdr = uy, 8—d8
P P ap 9Vp For simplicity of the implementation we write the co-

dg° dg° volume scheme using the structured notation common in
~ ok ok
~Up Z v ds ~ u, Z |epql 9

dv,,  finite difference methods. Let’ be the input image whose
(26) size iSn,, x n., wheren,, represents number of pixels
in the horizontal direction and,, in the vertical direc-
Then we can substitute (25) and (26) into (24) to get tion. We associate the co-volumeand its corresponding
940 DF node with a couple(i,j), wherei € {1,...,n,,},
V' Vibdr~ Y e |22 (uk, — k) . j € {1,...,n,,}. Using this notation, the unknown value
pq 81/ Pq P ko . sk .
P 4€C, Pq u, is associated with; ; and AV, with \V; ;. As we can see

- ) _ from the coefficient (29), we need to evaluate the absolute
The approximation of the advection term is completed by thg, e of the gradient on each triangle from the A&t; (see

q€C, Jera TP 4€C,

evalgation ofu’;q. As mentioned above, we use the first-ordqfigure 2) denoted by, n € {1,...,8} at each discrete
upwind scheme time stepk € {1,...,s} and for everyi € {2,...,n,, — 1},
W for 29 < je{2,...,ny — 1} (except_ boundary pixels). For this
Uﬁq { i %Vpoq ) purpose, we use the f_ollowmg expression ex_plorlng the
ug  for augpq <0 discrete values of.*~!, i.e. from the previous time step.
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For exampIeG}j is in the form IV. DATA PREPROCESSING

1 b1 b1 b1 N 2 In the cardiac MR images obtained by means of the bright
\Gl .|2 _ (“i,jﬂ T Uit~ Yy~ “i+1,j> blood technique (see [1], chapter 4), the blood in the ventricle
i 2h is lighter than the myocardium and the surrounding tissue. It
k1 1\ 2 (31)  means that the blood in the ventricle has higher intensity than
+ <M> ) surrounding cardiac muscle. Using this information we can
h try to set a threshold,, for picture elements surely inside the
) ) o _ventricle and a threshold,; for picture elements surely in
Other gradient discretizatio ;, ..., &7 ; can be found in e myocardium and the surrounding tissue. These thresholds
[5]. In the same way, but at the start-up of the algo?thrgre set automatically using the following algorithm.
only, we compute value&7 ", n € 1,..., 8 replacingu’™ At the beginning of each image segmentation, i.e. for
by 17 := I" x G in the above expressions, e.g. a given image and initial segmentation curve (ISC), we
. 190 4 O _ 00 00 \?2 determine several lines (slices) passing through the point
e |

G+l | iyl g it1,g with minimum value of corresponding initial segmentation
2h function having a shape of SDF. The slice configuration can
(IQ,U B I.O’.">2 be seen in Figure 3a. Then we plot the graphs of image

Zitlg Ty intensities along these lines. The graphs for sli@d6 are
h plotted in Figures 3b and 3d. In these graphs we find the

. . local minima satisfying the following conditions:
The convolution/® x G, can be evaluated numerically as the . fying o g
1) The minimum does not lie inside the ISC

solution of the linear heat equation at the time o2 /2 with 2 The mini i | he i , ¢ q
initial condition given byI. For eachi € {2,...,n,, — 1}, ) The minimum fies close to the intersection o ISC an
the given slice (black points in Figure 3)

j€{2,...,n,, —1} we calculate the north, west, south and e ) X )
east coefficients 3) The minimum is less than the mediak.{y) of image
intensities inside the ISC

—riy2 _AG) 4) The closest maxi hich is further from the ISC
nyg =153 ) The closest maximum (which is further from the
VeEEHGT) 1 6(GTs )-0(GT ) is greater tha.7/neq and the difference between this
+7h(Ai; — 1)m; ; min (— e ,0) ; maximum and corresponding minimum is greater than
0.02Imax
G I . . , :
wi; =T% Zi:g % These conditions are designed in accordance with the bright
©,J

blood data type, the heart anatomy, the position of initial
segmentation curve and experimental computations. Finally,
; G we _set the_thr_esholdout_ as the_ maximal value fron_1 the_
8ij = 7‘% Yomes \/TTJV minima satisfying cond|t|qns given above (grey points in
Y G ) —g(GT ) Figure 3). The thresholdy, is set t0/yeg.
+7h(A; ; — 1)m; j min (%, 0) , l‘

+7h(A; ; — 1)m; j min (—g(Gg’j’li_g(Gg’j) , 0) ,

18 9(G7}")
€ij =Ty Zn:? 24(G," )2
i)

+7h(A;i; — 1)m; ; min (—g(G?'j“Zl_g(G?'j) , 0) ,

intensity

wherem; ; denotes the following expression

1

50 100 150 200 250
position

18 ) } ) L . " .
\/52 + (g anl G;j”) (a) Slices for given initial seg- (b) Image intensities along slice
menation curve.

mij =

If we define the diagonal coefficients by

Cij = Mg + Wij + sij + eij +myh? ,
and the right hand sides at tlketh discrete time step by - r
rij = mi,thUf,;-l — Th2szF'i_’j , . ':..

!

50 100 150 200 250
position

we get

i,—1

k
Si,jUi—1,5 X ) - .
& (32) (c) Image thresholding result. (d) Image intensities along slidg
— iU 41 = Tiyg

Ci Ul — i jutyy ; — wiu
. . . _ Fig. 3: Slices (indexed—6) using for setting of thresholds

CO”eCUng these equa“onlsl for inner DF .nOdeS with thﬁ)uta Iin- Gray points Corresponds to the minima found by

Neumann boundary condition we get a linear system {@scribed algorithm, black points corresponds to the inter-

be solved. For this purpose the SOR (Successive Ovggctions of initial segmentation curve and given slices.
Relaxation) iterative method is used.
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V. PARAMETER SETTING image dependent setting of the force paramétand of the

In this Section we explain how the computational param@dVvection parameted. _
ters for the segmentation of the left heart ventricle from MRI e propose the external force parameter in the form
images are set up. To apply the scheme derived from (19), Fout I° < Iow,

we have to specify the suitable values of the parameters in 0 (10_1 ) 0

. o F(I°) =< F out Tow < I° < Iin, 33
equation (11), such as the parametethe standard deviation (") M\ Zin—Tou %“t n (33)
of Gauss functiorr, the force parameteF’, the advection Fin 17> In,

parameterd, the regularization parametey the spatial step whereF,, is the value of the force parameter for the picture

h, the time step- and the stopping criterion (how many timeelements outside the left ventricle ardth is the value of

iterations are needed to get the desired result). the force parameter for the picture elements surely inside
The parameters are set-up with an agreement of the mottaJ left ventricle. For the picture elements surely outside the

requirements and are tuned by the practice and experienegtricle, the evolution curve should shrink. The value of

with the model and used image data. The approach presenigg has to be negative. The valug, has to be positive, as

here is applicable on wide set of image data. On the othdiscussed in Section II-A.

hand, applying this approach to different image data typesSimilarly we propose the advection term, namely

require additional tuning of the parameters. Consequently,

0<
each parameter have to be tailored to given set of image AO”‘IUJ s 10‘:)"
data types. A7) = ¢ (Aoue—1) (1 - ﬁ) +1 Touw < I” < In,
1 19> I,
A. Parameters\ and o (34)

The parametera ando are included in the edge detectorvhere Aoy > 1. This means that the edges with lower
¢° defined in Section Il. The parametercharacterizes the intensity are more important than the edges with higher
variance of Gaussian smoothing kernel which is responsitiéensity. We use the following setting of the parameters:
for the presmoothing of the input images. Higher values dfin = 50, Four = —10, Aout = 2.

o cause stronger reduction of noise. On the other hand, this
type of presmoothing lowers the image gradient, i.e. bluG. Parameters, 7, h

the image. The parametee provides the regularization of the de-

The sensitivity of the edge detector depends on value Qfminator in (4). The convergence rate of the SOR method
the parametek. Very low values of\ decrease the eﬁ'c'encydepends on this parameter — a lower value coBlows

of the edge detection. On the other hand, very high valug§yn the convergence. The valde= 0.001 is a suitable
of A can cause the detection of spurious edges (i.e. nOiESmpromise.

blood flow artifacts, etc.). _ The spatial step is given ds= 1/(max{n,,,n.,} — 1),
These two parameters are dependent each of other. Highg! time stepr is given asr = h/5.
values ofo require higher values of and vice versa. In our

algorithm, we setr = 2h and A =0.1. . I
D. Stopping criterion

In this Section we deal with the problem of successful
termination of the segmentation process. There are several
possibilities to stop the process. The simplest criterion could
be to stop the process after the prescribédterations are
performed. This could be a good criterion for known input
data only (we know the stopping time before we start the
process). Better possibility is to use an automated stopping
criterion. Typically the computation is stopped as soon as the
following inequality holds (see [45]):

(a) Heart base slice. (b) Heart apex slice. 1
Fig. 4. Comparison of two heart slices (apex and base) of i Z |Ufj - U§;1| < CTh?, (35)
one patient. i,j

where sum is over all grid pointsy/ = n,,n,, andC'is a

B. Parameterst” and A constant. As we can see from (35) this criterion is time and
Correct left ventricle segmentation requires a detaileflemory consuming because we have to sidre 1. At the

information on the image gradient. Some edges can be mgegne time (35) is too strict for our computation. It would be

significant than others. Nevertheless, the magnitude of Imag@fough to consider the changes in the segmentation curve

gradient is not a convenient measure of the image edggly (the zero level set of).

importance. As we can see in Figure 4 the heart wall betweenn our algorithm we use the following automated stopping

the left and right ventricle is much more visible in slicegriterion

corresponding to the heart base (Figure 4a) than in slices No kit i

belonging to the heart apex (Figure 4b). In other words, Z ‘S(“ ) = S(u Z)’ =0, (36)

the image intensities and the magnitude of image gradient =1

corresponding to the heart wall are significantly differenwhere S(u*) denotes the number of pixels inside the seg-

To unify these heart wall inhomogeneities we propose amentation area, i.e. the number of grid points for which

(Advance online publication: 10 July 2015)



TAENG International Journal of Applied Mathematics, 45:3, [IJAM 45 3 06

u’?j < 0. The criterion (36) claims that the process isontractility of myocardium and foPatientl4with higher

1,

stopped aftek time iterations ifS(u*) = S(u*~!) = ... = contractility. In Figure 5 we can see that a border of a

S(uk—No+1) 'j.e. the segmentation area (segmentation curna&gmented area lies precisely at the heart wall including a
stops changing. In our experience good results are achievpeninsula” (papillary muscle). The peninsula can be clearly

using Ny = 3. seen in the second image in Figures 5a and 5b.

VI. SEGMENTATION RESULTS
VIl. DISCUSSION

Before discussing results of segmentation, we introduce . . .
Our algorithm uses adaptive choice of parametérs

the notion of the ejection fraction. The ejection fraction (EF 3 dA (34) which ol in obtaini iof
is the most widely used measurement of left ventricular sys-= ) an (34) which are crucial in obtaining satisfactory

tolic function providing important prognostic information of>egmentation results. The dependence of the algorithm on

patients. In other words, EF is the fraction of blood pumpéae thresholddlin and Lo, could be I|m.|t|ng. Inoptimal set- .
out from the ventricle and is used clinically to determin ngs of these thre_shol_ds can cause inaccurate segmentation
myocardial contractility representing the performance of ﬂ{gsults. Therefor_e itis important to apply a robust automatic
heart. EF is defined a€F = (EDV — ESV)/EDV, where threshold selection. On the other hand, in the case of LV
EDV denotes the end-diastolic volume. which cor’respondsﬁggmentaﬁon the threshold selection described in Section IV
maximal volume of the ventricle (end-diastolic phase) an'ﬁaem.s.to be a good compromise betvyeen rqbustngss_and
ESV stands for the end-systolic volume which corresponagnpl'c'w'_ Indeed, the presented result_s in Section V1 justify
to minimal volume of the ventricle (end-systolic phase). Iﬁpphcablhty of the used threshold choice.

general, normal range is between 55% and 70% (see [[:H,m the Ievgl set approach_ t.o. the image seg_mentatlon
Chap.6). ere are various choices of initial condition settings. The

The algorithm was tested on hundreds of images belongi.l#]ial segmentation function is set as the signed distance
unction with the zero level set corresponding to the initial

to tens of patients Here, we present the result of segme . ) . S
tation for 15 patients (denoted tRatient01 — Patientls In segmentation curve. A benefit of this approach lies in an easy

table Il the estimation of EDV. ESV and EF are presentemanipu!aﬂon with the seg.mentation curve. For shrinking or
We compare results of our algorithm (LS) with the Allen-expf"l.ndlng the segmlentatlon curve we add .or_subtract some
Cahn approach and automatically (SA) and manually (SI\WPS't'Ve constant. Figure 6 shows a certain inaccuracy in

processed data using SEGMENT software available on [4 >gmentation of the peninsula. In t_he first imag_e in 6a and 6b
In Figures 7 — 8 the graphs of LV volume during the hea e can see that the black small "island” (papillary muscle)

period is shown. In each Figure we can see four grapH@Side the ventricle is incorporated into the segmented area

the black solid line corresponds to the result obtained t‘a?dmg er(;orbtobthﬁ ?/entrlcled.volume ES“T"’}“OZ;, It (;ourI]d
our algorithm, the gray solid line denotes the Allen-Cah Q_claused_t_y Ottt' owd_gra |en(; Qnst et' 'S i?A in trt1 €
approach and remaining lines corresponds to the resdng!a condition seting discussed In section 1-A. AS e
acquired by SEGMENT software — automatic segmentatig?ft'al curve is set as the result of the previous segmentation,

is denoted by black dashed line whereas gray dashed |FH8_ ‘island” COUI.d lie inside the domain defineﬂgl by fh_e
shows the manual segmentation. initial segmentation curve. Consequently, the "island” is

The SEGMENT is a freely available software for Cardio_already included inside the initial segmentation curve at the

vascular image analysis. It can be used for the analysis of glgrt of segmentation process and remains there during the

MR data. The software provides an automated segmentat mentation process. This problem could be easily solved
putting the initial curve outside the papillary muscle. We

of the left ventricle as well as a manual and general obje hrink the initial i by addi iti
segmentation. The segmentation algorithm is based on shrink ne inial segmenation curve by adding a positive

concept of deformable objects. The geometrical represen?gs\/Stahm to thef |n|t|aldsegmentte:_t|on IU?CS.On' d .
tion of an image object can be deformed under the internal ¢ have performed computational studies anc comparison

deformation energy and the external potential energy ﬁemeasurements presented here both in graphical and numeri-

The energy minimization is described by the EuIer-Lagran@SII formi (;_,‘.omp.arlson 0 ct)tzer. meSthogs m%tljdlgg the manulfll
equations (see [47]). egmentation is presented in Section VI. The manually

As an example of the segmentation results we selectd mented data should be the most accurate method. On the

image data of two patientsPatientO3andPatient13 The re- g_tﬁer P:Dand,_:he ?(:r?rrtlented dat% byttk\]/vo d'ﬁere’?t experts COtUIg
sults of the segmentation can be seen in Figurézabent03 iher. espite of that, we consider the comparison presente

and 6 Patient13. The images are depicted in EDV and ES\Pere as appropriate.
phase. The white line represents the segmented region. After
the segmentation is done we can plot the time evolution of

the ventricle volume for each patient. Corresponding graphs!n the presented paper we discussed the adaptive segmen-

of left ventricle volume during one cardiac cycle are depictd@tion algorithm based on the level set equation in the context
in Figures 7 and 8. of cardiac MRI data segmentation. The algorithm is based on

As can be seen in Table Il or in Figure 7, tRatient03 the numerical scheme using the semi-implicit discretization

has low EF (19.81%), whereas tRatientl3has higher EF in time and the co-volume method in space. We proposed
(63.68%) as shows Table Il or Figure 8. Figures 5 and 6 shéwnew advection and force parameter depending on the real
sufficient segmentation result both f@atient03with low cardiac MRI data Moreover, the results were compared both

to the other methods and to the manually segmented data.
1The data were provided by the Institute for Clinical and Experimental
Medicine in Prague. 2|KEM Praha, http://www.ikem.cz/www/en

VIII. CONCLUSION
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APPENDIXA
SEGMENTATION RESULTS— FIGURES AND TABLES

(2]

(31

(b) Result of segmentation (end-systole)

Fig. 5: Patient03 Results for (a) EDV and (b) ESV using
h =0.0039, A = 1.0, Aout = 2, Four = —10, Fin = 50. [4]

(5]
(6]

(7]

(8l
El

[20]

(b) Result of segmentation (end-systole) (11]

Fig. 6: Patient13 Results for (a) EDV and (b) ESV using

h = 0.0039, A = 1.0, Aowt = 2, Fout = —10, Fip = 50. [12]
230% " [—Level-set ‘ 1 [13]
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s - -=Segment-aut
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Fig. 7: Plot of ventricle volume vs time fdPatient03 o]
REFERENCES [20]

[1] J. Bogaert, S. Dymarkowski, A. Taylor, and V. Muthurangu,
Clinical Cardiac MRl ser. Medical radiology. Springer Berlin
Heidelberg, 2012. [Online]. Available: http://books.google.cz/books?
id=Cuz4ayP8rzkC [21]

120

—Level-set
——Allen-Cahn

- - -Segment-aut
- - -Segment-man

1100

100

90

Volume [ml]

80

70

60

0 200 400 600
Time [ms]

800 1000

Fig. 8: Plots of ventricle volume vs time fétatient13

S. Corsaro, K. Mikula, A. Sarti, and F. Sgallari, “Semi-implicit covol-
ume method in 3D image segmentatioSIAM Journal on Scientific
Computing vol. 28, no. 6, pp. 2248-2265, 2006.

A. Handlovicova and K. Mikula, “Stability and consistency of the
semi-implicit co-volume scheme for regularized mean curvature flow
equation in level set formulation,Applications of Mathematics,
vol. 53, no. 2, pp. 105-129, 2008.

K. Mikula, T. Preusser, and M. Rumpf, “Morphological image se-
quence processingComputing and Visualization in Scienocel. 6,

no. 4, pp. 197-209, 2004.

K. Mikula, A. Sarti, and F. Sgallari, “Co-volume level set method in
subjective surface based medical image segmentatiortiaimdbook

of Biomedical Image Analysis Springer, 2005, pp. 583-626.

R. Maca, M. Benes$, and J. Tintéra, “Application of degenerate dif-
fusion method in medical image processinggurnal of Math-for-
Industry, vol. 3, pp. 33-40, 2011.

D. Cremers, M. Rousson, and R. Deriche, “A review of statistical
approaches to level set segmentation: integrating color, texture, motion
and shape,international journal of computer visiorvol. 72, no. 2,

pp. 195-215, 2007.

M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” International journal of computer visigrvol. 1, no. 4, pp.
321-331, 1988.

V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,”
International journal of computer visigrvol. 22, no. 1, pp. 61-79,
1997.

T. F. Chan and L. A. Vese, “Active contours without edgdsjage
Processing, |IEEE Transactions owol. 10, no. 2, pp. 266-277, 2001.
T. Goldstein, X. Bresson, and S. Osher, “Geometric applications of
the split Bregman method: segmentation and surface reconstruction,”
Journal of Scientific Computingol. 45, no. 1-3, pp. 272-293, 2010.
J. Cheng, Y. Liu, R. Jia, and W. Guo, “A new active contour model
for medical image analysis-wavelet vector floMENG International
Journal of Applied Mathematicsrol. 36, pp. 33-37, 2007.

C. Bandle, A. Brillard, G. Dziuk, and A. Schmidt, “Course on
mean curvature flow,Manuscript 75p. 1994. [Online]. Available:
http://www.mathematik.uni-freiburg.de/IAM/homepages/alfred/

K. Deckelnick and G. Dziuk, “Mean curvature flow and related topics,”
Frontiers in Numerical Analysis: Durham 2008. 63, 2003.

L. C. Evans and J. Spruck, “Motion of level sets by mean curvature
i,” Journal of Differential Geometryol. 33, pp. 381-635, 1991.

S. Osher and R. Fedkiw.evel set methods and dynamic implicit
surfaces Springer Verlag, 2003, vol. 153.

J. A. SethianLevel set methods and fast marching methods: evolv-
ing interfaces in computational geometry, fluid mechanics, computer
vision, and materials science Cambridge university press, 1999,
vol. 3.

A. Delong, A. Osokin, H. N. Isack, and Y. Boykov, “Fast approxi-
mate energy minimization with label costsriternational Journal of
Computer Visionvol. 96, no. 1, pp. 1-27, 2012.

D. Mumford and J. Shah, “Optimal approximations by piecewise
smooth functions and associated variational proble@sinmunica-
tions on pure and applied mathematie®l. 42, no. 5, pp. 577-685,
1989.

N. Paragios and R. Deriche, “Geodesic active regions: A new frame-
work to deal with frame partition problems in computer vision,”
Journal of Visual Communication and Image Representatoh 13,

no. 1, pp. 249-268, 2002.

K. Deshmukh and G. Shinde, “Adaptive color image segmentation

(Advance online publication: 10 July 2015)



TAENG International Journal of Applied Mathematics, 45:3, [IJAM 45 3 06

TABLE II: Estimated EF, EDV and ESV foPatient01 — Patient15using level set algorithm (LS), Allen-Cahn approach
(AC), automatical tools in program Segment (SA) and manual segmentation in program SegmerBd@Mitalic) font
shows the best (worst) fit with respect to the manual segmentation.

Patient 01 02 03 04 05 06 07 08
Value abs  ¢%] abs %] abs %] abs %] abs %] abs %] abs %] abs  ¢%]
LS| 991 053] 1019 231 19.81 1.01] 20.17 0.09] 20.38 -2.12] 22.80 1.05| 24.15 0.16 | 24.66 0.20
EF [%] AC | 10.34 0.96| 7.76 -0.12| 18,54 -0.26| 19.91 -0.17| 21.90 -0.60| 22.83 1.08 | 21.64 -2.35|25.22 0.76
SA| 7.84 -154| 7.24 -0.64| 16.63 -2.17| 20.07 -0.01| 19.95 -2.55| 21.32 -0.43| 19.27 -4.72 |22.36 -2.10
SM| 9.38 - 7.88 — | 18.80 - | 20.08 - | 22.50 - | 21.75 - | 23.99 - |24.46 -
LS [297.90 0.87]171.12 2.23]295.34 -2.19|230.08 2.75]202.09 -1.97|225.54 -0.79]183.72 0.11 |[83.19 1.19
EDV [ml] AC | 296.16 0.28 | 166.58 -0.48| 286.57 -5.09 | 215.28 -3.86 | 186.31 -9.62| 221.70 -2.48 183.97 0.25|81.75 -0.56
SA | 293.03 -0.78 177.72 6.18 | 290.12 -3.91f 225.39 0.66 | 201.84 -2.09 239.02 5.14 | 184.19 0.37 | 80.67 -1.87
SM|29532 - |167.38 - |301.94 - |22392 - |206.15 - |227.34 - |183.51 - 8221 -
LS [ 268.39 0.29] 153.68 -0.34| 236.82 -3.40| 183.67 2.63| 160.91 0.72|174.12 -2.12|139.35 -0.10 | 62.68 0.93
ESV [ml] AC | 265.54 -0.78 153.64 -0.36 233.45 -4.78| 172.41 -3.66|145.50 -8.93| 171.08 -3.83| 144.15 3.34|61.13 -1.56
SA | 270.04 0.90| 164.86 6.91 | 241.88 -1.34| 180.15 0.66 | 161.58 1.14| 188.07 5.72 | 148.70 6.60 | 62.63 0.85
SM | 267.62 — |15420 - |24516 - |178.96 - |159.76 - |177.89 - |139.49 - |6210 -
Patient 09 10 11 12 13 14 15
Value abs  ¢%] abs %] abs %] abs %] abs %] abs %] abs %]
LS| 28.33 2.60] 28.38 -0.36] 42.69 -0.70| 42.85 0.84] 4781 0.72] 63.68 1.21| 64.16 3.13
EF [%] AC | 28.27 2.54| 28.48 -0.26| 36.73 -6.66| 40.32 -1.69| 45.74 -1.35| 55.04 -7.43| 60.05 -0.98
SA | 20.91 -4.82| 27.30 -1.44| 4511 1.72| 41.26 -0.75| 47.85 0.76| 62.86 0.39 | 60.66 -0.37
SM| 25.73 — | 28.74 — | 43.39 - | 42.01 — | 47.09 - | 62.47 - | 61.03 -
LS | 147.19 -151|127.66 -158 75.46 2.14[173.40 13.34 115.11 6.85| 90.53 6.74] 99.42 -4.52
EDV [mi] AC | 149.97 0.35|121.80 -6.10| 72.84 -1.41|177.53 16.02| 102.76 -4.61 87.75 3.47 | 94.28 -9.46
SA | 150.44 0.67| 129.11 -0.46| 72.81 -1.45| 154.07 0.69 | 112.43 4.36 | 88.63 4.50( 109.69 5.34
SM | 14944 - |129.71 - | 73.88 — |153.02 - |107.73 - | 8481 — | 104.13 —
LS [105.49 -4.96 91.43 -1.08| 43.24 337 99.10 11.69 60.08 540]| 32.88 3.30| 35.63 -12.20
ESV [ml] AC | 107.57 -3.08| 87.11 -5.76| 46.08 10.16| 105.95 19.41| 55.76 -2.18| 39.46 23.97| 37.67 -7.17
SA | 118.98 7.20| 93.86 1.55| 39.96 -4.47| 90.50 1.99 | 58.63 2.86| 32.91 3.39| 43.16 6.36
SM | 110.99 - | 92.43 - | 41.83 - | 88.73 - | 57.00 - | 31.83 — | 40.58 -

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

using fuzzy min-max clustering Engineering Lettersvol. 13, no. 2,
pp. 57-64, 2006.

K. Mikula, Numerical solution, analysis and application of geometri-
cal nonlinear diffusion equations Publishing House of the Slovak
University of Technology, Bratislava, 2006, no. 34.

F. Cao,Geometric curve evolution and image processingpringer
Verlag, 2003, vol. 1805.

G. Sapiro,Geometric partial differential equations and image analysis[37]
Cambridge university press, 2006.

M. Benes, “Mathematical analysis of phase-field equations with nu-
merically efficient coupling terms,interfaces and Free Boundarigs [38]
vol. 3, no. 2, pp. 201-212, 2001.

M. Benes, V. Chalupecky, and K. Mikula, “Geometrical image seg-
mentation by the Allen-Cahn equatiompplied Numerical Mathemat- [39]
ics, vol. 51, no. 2, pp. 187-205, 2004.

S. M. Allen and J. W. Cahn, “A microscopic theory for antiphase
boundary motion and its application to antiphase domain coarsening0]
Acta Metallurgica vol. 27, no. 6, pp. 1085-1095, 1979.

R. Chabiniok and J. Tintéra, “Cardiac MRI data segmentation using
the partial differential equation of Allen-Cahn type,” Rroceedings [41]
of the Czech-Japanese Seminar in Applied Mathematics, M. Benes,
M. Kimura, and T. Nakaki, Eds., vol. 6. Faculty of Mathematics,
Kyushu University Fukuoka, 2006. [42]
R. Chabiniok, R. Maca, M. BeneS§, and J. Tintéra, “Segmentation of
MRI data by means of nonlinear diffusiori¢ybernetika vol. 49, no. 2, [43]
pp. 301-318, 2013.

Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in visiorRattern
Analysis and Machine Intelligence, |IEEE Transactions woaol. 26,
no. 9, pp. 1124-1137, 2004.

Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for opti-
mal boundary & region segmentation of objects in ND images,”
in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEE&5]
International Conference grvol. 1. |EEE, 2001, pp. 105-112.

A. Delong and Y. Boykov, “Globally optimal segmentation of multi-
region objects,” inComputer Vision, 2009 IEEE 12th International [46]
Conference on IEEE, 2009, pp. 285-292.

F. R. Schmidt and Y. Boykov, “Hausdorff distance constraint for multi-
surface segmentation,” i@omputer Vision—-ECCV 2012 Springer,
2012, pp. 598-611. 7]
A. Besbes, N. Komodakis, B. Glocker, G. Tziritas, and N. Paragios,
“4D ventricular segmentation and wall motion estimation using ef-
ficient discrete optimization,” ifProceedings of the 3rd international
conference on Advances in visual computing-Volume Pagpringer-
Verlag, 2007, pp. 189-198.

[35]

[36]

[44]

M. Lynch, O. Ghita, and P. F. Whelan, “Segmentation of the left
ventricle of the heart in 3-D+ t MRI data using an optimized nonrigid
temporal model,"Medical Imaging, IEEE Transactions pwol. 27,

no. 2, pp. 195-203, 2008.

J. Montagnat and H. Delingette, “4D deformable models with temporal
constraints: application to 4D cardiac image segmentatibtetlical
Image Analysisvol. 9, no. 1, pp. 87-100, 2005.

M. G. Crandall, H. Ishii, and P.-L. Lions, “Users guide to viscosity
solutions of second order partial differential equatiorjlletin of the
American Mathematical Societyol. 27, no. 1, pp. 1-67, 1992.

M.-P. Jolly, “Automatic segmentation of the left ventricle in cardiac
MR and CT images,’International Journal of Computer Vision
vol. 70, no. 2, pp. 151-163, 2006.

N. Paragios, “Variational methods and partial differential equations
in cardiac image analysis,” iBiomedical Imaging: Nano to Macro,
2004. |IEEE International Symposium.onlEEE, 2004, pp. 17-20.

M. Rousson and N. Paragios, “Prior knowledge, level set representa-
tions & visual grouping,’International Journal of Computer Vision
vol. 76, no. 3, pp. 231-243, 2008.

P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” Pattern Analysis and Machine Intelligence,
IEEE Transactions gnvol. 12, no. 7, pp. 629-639, 1990.

H. Zhao, “A fast sweeping method for eikonal equationddthematics

of computationvol. 74, no. 250, pp. 603-627, 2005.

M. Bene$, M. Kimura, P. Paus, DSev€ovi¢, T. Tsujikawa, and
S. Yazaki, “Application of a curvature adjusted method in image
segmentation,’Bulletin of the Institute of Mathematics, Academia
Sinica (New Seriespp. 509-523, 2008.

A. Handlovitova, K. Mikula, and A. Sarti, “Numerical solution of
parabolic equations related to level set formulation of mean curvature
flow,” Computing and visualization in Scienosl. 1, no. 3, pp. 179—
182, 1998.

H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, “A variational level
set approach to multiphase motiodgurnal of computational physics
vol. 127, no. 1, pp. 179-195, 1996.

E. Heiberg, J. Sjogren, M. Ugander, M. Carlsson, H. Engblom,
and H. Arheden, “Design and validation of Segment-freely available
software for cardiovascular image analysiBMC medical imaging
vol. 10, no. 1, p. 1, 2010.

E. Heiberg, L. Wigstrom, M. Carlsson, A. Bolger, and M. Karlsson,
“Time resolved three-dimensional automated segmentation of the left
ventricle,” in Computers in Cardiology, 2005 IEEE, 2005, pp. 599—
602.

(Advance online publication: 10 July 2015)





