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Abstract—This article presents the application of a segmen-
tation algorithm based on numerical solution of a partial
differential equation of the level set type with incorporated
a priori knowledge of the processed data. The semi-implicit
complementary-volume numerical scheme is used to derive the
algorithm. In particular, we focus on the segmentation of the
left heart ventricle from the cardiac MRI data. Using a suitable
modification of the level set equation together with an image
thresholding, the objects in the image such as the left ventricle
or the papillary muscles can be detected. The purpose of the
article is to indicate how the algorithm parameters are set up
and how the a priori knowledge helps to getting satisfactory
segmentation results.

Index Terms—image segmentation, partial differential equa-
tion, level set method, co-volume method, cardiac MRI

I. I NTRODUCTION

I N the early years of the magnetic resonance imaging
(MRI) in medicine, the heart was the most difficult

organ to investigate. Over the last two decades MRI has
evolved to become an important clinical imaging technique
for heart and great vessels. Nowadays, imaging is an essential
part of medical decision-making (see [1]). The presented
work is motivated by the need of medical practice for
automatic evaluation of the dynamical images of the heart
obtained by cardiac MRI. A typical example could be an
accurate measurement of the heart ventricle volume during
the heart contraction showing the contractive ability of the
myocardium. Within this framework, the main task is to
find the region inside the ventricle which corresponds to
the blood in the ventricle. We attempt to construct and tune
a segmentation algorithm based on the numerical solution
of a partial differential equation of the level set type. The
algorithm is controlled by the gradient and intensity of
MRI data in such a way that the edges of the objects
can be found. More particularly, the algorithm is given
by the numerical solution of the level set equation by the
semi-implicit complementary-volume numerical scheme. The
detailed description and mathematical analysis of this scheme
can be found in [2], [3], [4], [5]. The main purpose of this
article is to describe the segmentation algorithm, algorithm
parameters and their adjustment used for segmentation of the
left heart ventricle from the cardiac MRI images.

Manuscript received December 29, 2013; revised June 16, 2014. This
work was supported by the grant of the Ministry of Education of the
Czech Republic RVO – 68407700 and by the project ”Advanced Super-
computing Methods for Implementation of Mathematical Models” of the
Student Grant Agency of the Czech Technical University in Prague No.
SGS11/161/OHK4/3T/14.
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J. Tintěra is with the Institute of Clinical and Experimental Medicine,
Prague, Czech Republic.

This paper presents the latest results of used method
already published in [6]. Mainly, it introduces tailored pa-
rameters set-up to obtain best possible results on given set
of MRI image data. The robustness and applicability of
proposed segmentation algorithm is proven on wider set of
MRI data series. Last but not least, an unique comparison
study on fifteen different patients with rich variety of heart
myocardium viability is introduced.

The main task of image segmentation is a partitioning the
image plane into multiple segments (sets of pixels defining
meaningful areas). Over the last few decades a large amount
of segmentation algorithms have been proposed [7]. An
enormous impact in the segmentation community had the
Snakes approach introduced by Kass et al. in [8]. Aftewards,
this approach were thoroughly studied, e.g. in [9], [10], [11],
[12]. Among other approaches to the image segmentation we
describe a given segment in the image as a hyperplaneΓ,
e.g. as a curve in the case of2D images. There are two main
description ofΓ. First, the parametric approach can be used.
It means that the curve is parameterized with respect to the
curve parameter (see [13], [14]). Second,Γ is represented
implicitly as the level line of some embedding function. The
most popular method using implicit approach are the level set
methods [15], [16], [17]. Last but not least the region based
segmentation can be described using a statistical formulation
[18], [19], [20], [21].

In the field of medical image processing we could men-
tion approaches based on the diffusion driven segmentation.
Broadly using models include so called level set equation
which could be derived either from level set formulation
[5], [17], [22] or from the geodesic active contours model
[23], [24]. In (see [25], [26]) an algorithm using the phase-
field approach to the mean curvature flow is presented. The
segmentation model is given by the Allen-Cahn equation
[27]. In [28], [29] the Allen-Cahn equation is used to segment
the left heart ventricle volume and the wall of the left heart
ventricle. A different method is based on the graph cuts [30],
[31]. This method is based on the Ford-Fulkerson algorithm,
which computes the maximum flow in a directed graph
created from a given image. The latest result of this method
can be found in [32] and [33].

Currently, the three-dimensional [2] and the four-di-
mensional (space and time) [4], [34], [35], [36] methods
based on various other approaches became used in image
segmentation. Recently, a priori information carried by the
image data has been included into the segmentation models
(see [37], [38], [39], [40]).

II. D EGENERATE DIFFUSION IN IMAGE PROCESSING

The segmentation of the left heart ventricle volume is
the important part of the cardiac MRI data postprocessing.
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Examination of the heart ventricle consists of several hun-
dreds of MR images covering the entire left ventricle volume
and recording complete cardiac-cycle interval with a given
temporal resolution. As discussed in [28], the current level of
the MRI acquisition allows to get a relatively low number of
2D slices along the main heart axis through the cardiac cycle,
provided a reasonable quality of the images is maintained.
This is the reason why we consider segmentation of 2D slices
instead of fully 3D segmentation in this text.

In our case, the MRI images are segmented separately each
of other by means of the curveΓ(t) ⊂ Ω in R

2 propagating
in the normal direction with velocityV . The velocityV at
a curve pointx ∈ Γ(t) is given by its (mean) curvatureκΓ

and external forceF as follows

V = −κΓ + F . (1)

For the segmentation purposes, law (1) can be modified by
incorporating the influence of the processed signal (or its
gradient) into the curvature and the force terms. The motion
law (1) can be treated by the level set method. In this case,
Γ(t) is represented as a level set

Γ(t) = {x ∈ Ω |u(t, x) = 0} , (2)

whereu : [0, T ]× Ω → R.
The evolution equation implicitly describing the motion

of Γ(t) given by (2) with velocityV in the outward normal
direction is derived as follows.

Using the sign convention we can express the normal
vector, the normal velocity and the mean curvature as

~n =
∇u

|∇u| , V = − ∂tu

|∇u| , κΓ = ∇ ·~n = ∇ · ∇u

|∇u| . (3)

Substituting (3) to equation (1), we obtain the level set
equation in the form

∂tu = |∇u|∇ · ∇u

|∇u| − |∇u|F , (4)

where we denote∂tu := ∂u/∂t. This equation has been
extensively studied and applied (see [15], [16], [17]). This
experience suggests a regularization proposed by Evans and
Spruck (see [15]) which is useful both for theory and
numerical computation in the form:

∂tu = |∇u|ε∇ · ∇u

|∇u|ε
− |∇u|εF , (5)

where

|∇u|ε =
√

ε2 + |∇u|2 , ε > 0 . (6)

The known features of the level set equation based mainly
on the controlled motion of isolines of the solution naturally
led to its use in the image processing (see [5], [17], [22],
[23], [24]).

In particular, the detection of image object edges is a
one of tasks in image segmentation. Edges in the input
image I0 : Ω → {0, 1, 2 . . . , Imax} (represented by the
matrix nx1

× nx2
, whereΩ = (0, nx1

/max{nx1
, nx2

}) ×
(0, nx2

/max{nx1
, nx2

}) can be recognized by the magni-
tude of its spatial gradient. The level set equation operating
in Ω can be modified as follows

∂tu =|∇u|ε∇ ·
(

g
(∣
∣I0 ∗ ∇Gσ

∣
∣
) ∇u

|∇u|ε

)

− g
(∣
∣I0 ∗ ∇Gσ

∣
∣
)
|∇u|εF ,

(7)

whereg : R+
0 → R

+ is a non-increasing function for which
g(0) = 1 and g(s) → 0 for s → +∞. This function was
first used by P. Perona and J. Malik ([41] in 1987) to modify
the heat equation into a nonlinear diffusion equation which
maintains edges in an image. Consequently, the functiong is
called the Perona-Malik function. We putg(s) = 1/(1+λs2)
with λ ≥ 0. Gσ ∈ C∞(R2) is a smoothing kernel, e.g. the
Gauss function with zero mean and varianceσ2

Gσ(x) =
1√
2πσ2

e−
|x|2

2σ2 , (8)

which is used to pre-smoothing (denoising) of image gradi-
ents by convolution

(I0 ∗ ∇Gσ)(x) =

∫

R2

Ī0(x − y)∇Gσ(y) dy , (9)

where Ī0 is the extension ofI0 to R
2 by, e.g., mirroring,

periodic prolongation or zero padding. Let us note that
equation (7) can be rewritten into the advection-diffusion
form

∂tu = g0|∇u|ε∇ ·
( ∇u

|∇u|ε

)

︸ ︷︷ ︸

(D)

+∇g0 · ∇u
︸ ︷︷ ︸

(A)

− g0|∇u|εF
︸ ︷︷ ︸

(F )

.

(10)
For convenience, the abbreviationg0 = g(

∣
∣I0 ∗ ∇Gσ

∣
∣)

is used.(D) in (10) denotes the diffusion term,(A) the
advection term and(F ) the external force term. The term
g0 is called the edge detector which is approximately equal
to zero close to image edges. Consequently, the evolution of
the segmentation function slows down in the neighbourhood
of image edges. On the contrary, in parts of the image
with constant intensity the edge detector equals one. The
advection term attracts the segmentation function to the
image edges. We propose an advection parameterA to
change the magnitude of the advection term and to obtain
the modified level set equation, namely

∂tu = g0|∇u|ε∇·
( ∇u

|∇u|ε

)

+A∇g0·∇u−g0|∇u|εF . (11)

A. Initial-boundary value problem

As a parabolic partial differential equation, (11) requires
initial and boundary conditions. For this purpose, we define
the signed distance function (SDF).

Let Γin be the interior ofΓ(t) andΓout be the exterior of
Γ(t). ConsequentlyΓ = ∂Γin = ∂Γout, Γin ∪ Γ ∪ Γout = Ω
at any time. Then the signed distance function (dΓ) is given
by

dΓ(t, x) =







dist(x,Γ(t)) x ∈ Γout ,
0 x ∈ Γ(t) ,

− dist(x,Γ(t)) x ∈ Γin ,
(12)

wheredist(x,Γ(t)) = min{|x− y| | y ∈ Γ(t)} .
The initial curveΓ0 as the initial guess has to be placed

inside the segmentation object – the left heart ventricle. To
expand the initial curve, velocity (1) has to be positive.
Positive value ofV implies that the external force satisfies the
following inequalityF > κΓ. The signed distance function
(SDF) can be used as the initial condition for (11). At the
beginning of the segmentation process for a given patient,
i.e. for the first image, we have to place the initial curveΓ0

into the left heart ventricle manually, e.g., as a circle. By
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means of image segmentation, the initial curveΓ0 is called
the initial segmentation curve.

For a givenΓ0 we construct SDFdΓ0
and set the initial

condition asuini = dΓ0
refered to as the initial segmentation

function. The definition (12) implies that the segmentation
curveΓ(t) is the zero level set of the segmentation function
u(t, x) for any t ∈ [0, T ].

The segmentation functionu evolves from the initial
segmentation function (Figure 1a) according to (11). This
evolution distorts the original shape ofuini into u(t, x) which
fails to have the unit gradient slopes (Figure 1b). At the
beginning of next image segmentation it is convenient to
use the result of the previous image segmentationΓ(t) =
{x ∈ R

2 |u(t, x) = 0} and its signed distance functiondΓt

as a new initial condition, i.e. as a new initial segmentation
function. In this paper we use following notation:

• u(t, x) is the segmentation function
• u(0, x) is the initial segmentation function (SDF shape)
• Γ(t) is the segmentation curve (u(t,Γ(t)) = 0)
• Γ(0) is the initial segmentation curve (u(0,Γ(0)) = 0)

This is performed by means of the fast sweeping method
introduced in [42]. This method is used to compute the
viscosity solution of the following problem

|∇u(x)| = 1 x ∈ Ω ,
u(x) = 0 x ∈ Γ ⊂ Ω .

An example of a restored signed distance function is shown
in Figure 1c.

Finally, using the zero Neumann boundary condition we
define the following initial-boundary value problem

∂tu(t, x) = g0|∇u|ε∇ ·
( ∇u

|∇u|ε

)

+A∇g0 · ∇u − g0|∇u|εF in (0, T )× Ω ,

∂u

∂n
(t, x) = 0 on (0, T )× ∂Ω ,

u(0, x) = dΓ0
(x) in Ω .

Numerical algorithm solving this problem is the key part of
the segmentation algorithm.

B. Related approaches

The motion of the segmentation level curves by (11) has
several alternatives.

For example, the segmentation curve can be described
directly, i.e. parametrically. Using a smooth time-dependent
vector function

~X : I × S → R
2 ,

whereS = (0, 1) is a fixed interval for curve parameter and
I = 〈0, T 〉 is the time interval, the segmentation curveΓ(t)
is given as

Γ(t) = { ~X(t, v) | v ∈ S} . (13)

According to [43], the normal vector, the normal velocity
and the curvature are expressed as follows

~n =
∂v ~X

⊥

|∂v ~X|
, V = ∂t ~X · ~n , κΓ = −~n · ∂vv ~X

|∂v ~X |2
. (14)

Substitution into (1) yields the evolution law for~X = ~X(t, v)
in the vectorial form of

∂t ~X =
∂vv ~X

|∂v ~X|2
+ F

∂v ~X

|∂v ~X|
. (15)

A modification containing the Perona-Malik functiong0

∂t ~X = g0
∂vv ~X

|∂v ~X |2
−∇g0 + g0F

∂v ~X

|∂v ~X |
(16)

endowed with the initial conditions

~X|t=0 = ~X0 (17)

and with the periodic boundary conditions can serve in the
segmentation of the image data as shown in [43].

Another variant is based on the phase-field approach to
the mean curvature flow (see e.g. [26]). The functionp(t, x)
evolves according to the following initial-boundary-value
problem for the modified Allen-Cahn equation (see [27]):

ξ
∂p

∂t
(t, x) = ξ∇ ·

(
g0∇p

)

+ g0
(
1

ξ
f0(p) + ξF |∇p|

)

in (0, T )× Ω ,

∂p

∂n
(t, x) = 0 on (0, T )× ∂Ω ,

p(0, x) = pini in Ω .

The functionp(t, x) has its values in〈0, 1〉 which is guar-
anteed by the particular form of the polynomial functionf0
having the values of0 and1 as roots. The segmentation curve
at time t is given by the level set

Γ(t) = {x ∈ Ω | p(t, x) = 1

2
} .

The thickness of the transition layer between the values of
p = 0 and p = 1 is given by the small parameter0 <
ξ << 1. The profile ofp acrossΓ(t) remains stable for all
t. Whenξ → 0+ andg(x) = 1 the segmentation curveΓ(t)
evolves according to the mean-curvature evolution law (1).
The application in MRI data segmentation can be found in
[29].

All of these approaches related to the image segmentation
should be generalized in the following manner. In variational
point of view, one computes segmentation of a given image
I0 by evolving a curve (hypersurface)Γ in the direction of
negative energy gradient with respect to the appropriate par-
tial differential equations. The well-known approach called
Snakes introduced by Kass in [8] evolves a curve (13) by
locally minimizing the functional

E(Γ) = −
∫
∣
∣∇I0(Γ)

∣
∣
2
dv+λ1

∫

|Γv|2 dv+λ2

∫

|Γvv|2 dv ,
(18)

where Γv and Γvv denote the first and second derivative
with respect to the curve parameterv. The first term in
(18) is the external energy influencing the model by the
image information. The last two terms can be interpreted as
an internal energy of the curve. Usually the term weighted
by parameterλ2 is not particularly important and therefore
it is omitted in many related publications. In general, the
idea of introducing the functional (18) goes through many
image processing publications. The major difference between
them is that some start from an energy concept, while others
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(a) (b) (c)

Fig. 1: Example of segmentation function. Initial segmentation functionu0 (a), segmentation functionu for (t > 0) (b),
restored SDF (c). The graphs contain corresponding zero level line.

formulate directly their problem, e.g. in terms of level sets
as we did in Section II.

III. SEGMENTATION ALGORITHM

A numerical scheme with justified key features such as
stability and convergence can become a basis for a reliable
and efficient algorithm. For this purpose, a semi-implicit co-
volume space discretization is used. This approach is similar
to [2], [3], [5], [44]. We choose a uniform discrete time step
τ and approximate the time derivative in (11) by backward
difference. The linear terms of the equation are approximated
at the current time level while the nonlinear terms (i.e.|∇u|ε)
are treated at the previous time level. In this way we obtain
the following semi-implicit discretization

uk − uk−1

τ
=g0|∇uk−1|ε∇ ·

( ∇uk

|∇uk−1|ε

)

+A∇g0 · ∇uk − g0|∇uk−1|εF .

(19)

To simplify the construction of spatial discretization, we re-
write the previous equation using the following expression

g0∇ ·
( ∇uk

|∇uk−1|ε

)

= ∇ ·
(

g0
∇uk

|∇uk−1|ε

)

−∇g0 · ∇uk

|∇uk−1|ε
.

(20)

Next, we substitute (20) to (19). Dividing by|∇uk−1|ε, we
get new form of (19)

1

|∇uk−1|ε
uk − uk−1

τ
= ∇ ·

(

g0
∇uk

|∇uk−1|ε

)

+ (A− 1)
1

|∇uk−1|ε
∇g0 · ∇uk − g0F .

(21)

The co-volume method is used to construct a fully-discrete
system of equations. The digital image is recorded on a
structure of pixels with the rectangular shape. Each pixel
includes the values ofI0 influencing the segmentation model.
We relate the spatial approximations of the segmentation
functionu to the centers of image pixels. We evaluate the gra-
dient of the segmentation function at the previous time step
(|∇uk−1|ε) in (21). We put a triangulation inside the pixel
structure and use the piecewise linear approximation of the
segmentation function on this triangulation. This approach
provides constant values of gradient on each triangle. For a

given pixel structure we build a triangulation in such a way
that the centers of pixels are connected by new rectangular
mesh. Each new rectangle is divided into four triangles of
equal size. The pixel centers will be called the degree-of-
freedom (DF) nodes. Other nodes will be called the non-
degree-of-freedom (NDF) nodes. Let a functionu be given
by discrete values at DF nodes anduh be a piecewise linear
approximation ofu on the triangulation. The valueuh at
NDF nodes is given by the average value of the neighboring
DF nodal values.

For triangulationTh given by the previous construction,
we construct a co-volume (dual) mesh consisting of the cells
p associated with DF nodesp of Th only. Without any con-
fusion, we denote each co-volume and the corresponding DF
node by the same symbol. In order to derive the co-volume
spatial discretization the notation in Table I is introduced.

TABLE I: Co-volume notations.

Cp . . . set of all DF nodesq connected
to the nodep by an edge

σpq . . . edge connecting DF nodesp andq
hpq . . . length ofσpq

epq . . . common edge of co-volumesp andq
(∂p =

⋃
q∈Cp

epq)
Epq . . . set of triangles including the edgeσpq

cTpq . . . length of the portion ofepq that is
in T ∈ Th (cTpq = |eTpq ∩ T |)

Np . . . set of T ∈ Th including the vertexp
|∇uT | . . . value of |∇uh| on T ∈ Th

up . . . value ofuh(xp), wherexp is
the coordinate of the nodep on Th

upq . . . value ofuh(x pq

2
), wherex pq

2
= σpq ∩ epq

νp . . . outer normal of co-volumep
νpq . . . outer normal of co-volumep on epq

We integrate (21) over each co-volumep, p = 1, . . . ,M
(M denotes the number of all DF nodes). The approximation
of the left-hand side and the first term on the right-hand side
of (21) can be found in [5]. Hence we provide the result of
the approximation of these two terms without explanation.
The left-hand side of (21) is approximated by

∫

p

1

|∇uk−1|ε
uk − uk−1

τ
dx ≈ m(p)Mk−1

p

uk
p − uk−1

p

τ
,

(22)
wherem(p) is the measure of co-volumep in R

2 andMk−1
p
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is given by

Mk−1
p =

1

|∇uk−1
p |ε

, |∇uk−1
p |ε=

∑

T∈Np

m(T ∩ p)

m(p)
|∇uk−1

T |ε ,

whereT ∩ p is the intersection of triangleT and co-volume
p. In our case forT ∈ Np, it holdsm(T ∩ p)/m(p) = 1/8.
Denoting the spatial step of the co-volume mesh byh we
get m(p) = h2. The approximation of the first term on the
right-hand side of (21) is done using the divergence theorem
∫

p

∇·
(

g0
∇uk

|∇uk−1|ε

)

dx

≈
∑

q∈Cp




∑

T∈Epq

cTpq
g0T

|∇uk−1
T |ε




uk
q − uk

p

hpq

,

(23)

where g0T denotes approximation ofg0 on a triangleT ∈
Th. The advection term on the right-hand side of (21) is
approximated by the first-order upwind scheme. We use the
following approximation
∫

p

(A− 1)
1

|∇uk−1|ε
∇g0 · ∇uk dx

≈ (Ap − 1)Mk−1
p

∫

p

∇g0 · ∇uk dx .

Now we rewrite the scalar product of∇g0 and∇uk into the
form

∇g0 · ∇uk = ∇ ·
(
∇g0uk

)
−∆g0uk .

Then we get
∫

p

∇g0·∇uk dx =

∫

p

∇·
(
∇g0uk

)
dx−

∫

p

∆g0uk dx . (24)

The first term on the right hand side of (24) is approximated
as follows
∫

p

∇ ·
(
∇g0uk

)
dx =

∫

∂p

∂g0

∂νp
uk ds ≈

∑

q∈Cp

|epq|
∂g0

∂νpq
uk
pq .

(25)
For the second term on the right hand side of (24) the
divergence theorem implies
∫

p

∆g0uk dx ≈ uk
p

∫

p

∆g0 dx = uk
p

∫

∂p

∂g0

∂νp
ds

≈ uk
p

∑

q∈Cp

∫

epq

∂g0

∂νpq
ds ≈ uk

p

∑

q∈Cp

|epq|
∂g0

∂νpq
.

(26)

Then we can substitute (25) and (26) into (24) to get
∫

p

∇g0 · ∇uk dx ≈
∑

q∈Cp

|epq|
∂g0

∂νpq

(
uk
pq − uk

p

)
.

The approximation of the advection term is completed by the
evaluation ofuk

pq. As mentioned above, we use the first-order
upwind scheme

uk
pq :=

{

uk
p for ∂g0

∂νpq
> 0

uk
q for ∂g0

∂νpq
< 0

.

Finally the above expressions are put together to get spatial
approximation of the advection term
∫

p

(A− 1)
1

|∇uk−1|ε
∇g0 · ∇uk dx

≈ (Ap − 1)Mk−1
p

∑

q∈Cp

|epq|min

(
∂g0

∂νpq
, 0

)
(
uk
q − uk

p

)
.

(27)

The force term on the right-hand side of (24) is approximated
as follows ∫

p

g0F dx ≈ m(p)g0pFp , (28)

whereg0p denotes approximation ofg0 on the co-volumep.
Using the notation

ak−1
pq =

1

hpq

∑

T∈Epq

cTpq
g0T

|∇uk−1
T |ε

, gpq = |epq|min

(
∂g0

∂νpq
, 0

)

(29)
together with (22), (23), (27) and (28), the fully-discrete
semi-implicit co-volume scheme is obtained


m(p)Mk−1
p + τ

∑

q∈Cp

(
ak−1
pq + (Ap − 1)Mk−1

p gpq
)



 uk
p

−τ
∑

q∈Cp

(
ak−1
pq + (Ap − 1)Mk−1

p gpq
)
uk
q

= m(p)Mk−1
p uk−1

q −m(p)g0pFp .
(30)

12

3

4

5 6

7

8
(i, j)

(i − 1, j − 1)
(i − 1, j)

(i − 1, j + 1)

(i, j + 1)

(i + 1, j + 1)
(i + 1, j)

(i + 1, j − 1)

(i, j − 1)

Fig. 2: Co-volumep associated with a couple(i, j) and set
of 8 trianglesNi,j denoted by numbers 1 to 8.

For simplicity of the implementation we write the co-
volume scheme using the structured notation common in
finite difference methods. LetI0 be the input image whose
size is nx1

× nx2
wherenx1

represents number of pixels
in the horizontal direction andnx2

in the vertical direc-
tion. We associate the co-volumep and its corresponding
DF node with a couple(i, j), where i ∈ {1, . . . , nx2

},
j ∈ {1, . . . , nx1

}. Using this notation, the unknown value
uk
p is associated withuk

i,j andNp with Ni,j . As we can see
from the coefficient (29), we need to evaluate the absolute
value of the gradient on each triangle from the setNi,j (see
Figure 2) denoted byG n

i,j , n ∈ {1, . . . , 8} at each discrete
time stepk ∈ {1, . . . , s} and for everyi ∈ {2, . . . , nx2

− 1},
j ∈ {2, . . . , nx1

− 1} (except boundary pixels). For this
purpose, we use the following expression exploring the
discrete values ofuk−1, i.e. from the previous time step.
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For example,G1
i,j is in the form

∣
∣G1

i,j

∣
∣
2
=

(

uk−1
i,j+1 + uk−1

i+1,j+1 − uk−1
i,j − uk−1

i+1,j

2h

)2

+

(

uk−1
i+1,j − uk−1

i,j

h

)2

.

(31)

Other gradient discretizationG2
i,j , . . . , G

8
i,j can be found in

[5]. In the same way, but at the start-up of the algorithm
only, we compute valuesGσ,n

i,j , n ∈ 1, . . . , 8 replacinguk−1

by I0,σ := I0 ∗Gσ in the above expressions, e.g.

∣
∣
∣G

σ,1
i,j

∣
∣
∣

2

=

(

I0,σi,j+1 + I0,σi+1,j+1 − I0,σi,j − I0,σi+1,j

2h

)2

+

(

I0,σi+1,j − I0,σi,j

h

)2

.

The convolutionI0 ∗Gσ can be evaluated numerically as the
solution of the linear heat equation at the timet = σ2/2 with
initial condition given byI0. For eachi ∈ {2, . . . , nx2

− 1},
j ∈ {2, . . . , nx1

− 1} we calculate the north, west, south and
east coefficients

nij = τ 1
2

∑2
n=1

g(Gσ,n

i,j
)√

ε2+(G n
i,j

)2

+τh(Ai,j − 1)mi,j min
(

g(Gσ
i+1,j)−g(Gσ

i,j)

h
, 0
)

,

wij = τ 1
2

∑4
n=3

g(Gσ,n

i,j
)√

ε2+(G n
i,j

)2

+τh(Ai,j − 1)mi,j min
(

g(Gσ
i,j−1)−g(Gσ

i,j)

h
, 0
)

,

sij = τ 1
2

∑6
n=5

g(Gσ,n

i,j
)√

ε2+(G n
i,j

)2

+τh(Ai,j − 1)mi,j min
(

g(Gσ
i−1,j)−g(Gσ

i,j)

h
, 0
)

,

eij = τ 1
2

∑8
n=7

g(Gσ,n

i,j
)√

ε2+(G n
i,j

)2

+τh(Ai,j − 1)mi,j min
(

g(Gσ
i,j+1)−g(Gσ

i,j)

h
, 0
)

,

wheremi,j denotes the following expression

mi,j =
1

√

ε2 +
(

1
8

∑8
n=1 G

σ,n
i,j

)2
.

If we define the diagonal coefficients by

ci,j = ni,j + wi,j + si,j + ei,j +mi,jh
2

and the right hand sides at thek-th discrete time step by

rij = mi,jh
2uk−1

i,j − τh2Gσ
i,jFi,j ,

we get

ci,ju
k
i,j − ni,ju

k
i+1,j − wi,ju

k
i,j−1 − si,ju

k
i−1,j

− ei,ju
k
i,j+1 = ri,j .

(32)

Collecting these equations for inner DF nodes with the
Neumann boundary condition we get a linear system to
be solved. For this purpose the SOR (Successive Over-
Relaxation) iterative method is used.

IV. DATA PREPROCESSING

In the cardiac MR images obtained by means of the bright
blood technique (see [1], chapter 4), the blood in the ventricle
is lighter than the myocardium and the surrounding tissue. It
means that the blood in the ventricle has higher intensity than
surrounding cardiac muscle. Using this information we can
try to set a thresholdIin for picture elements surely inside the
ventricle and a thresholdIout for picture elements surely in
the myocardium and the surrounding tissue. These thresholds
are set automatically using the following algorithm.

At the beginning of each image segmentation, i.e. for
a given image and initial segmentation curve (ISC), we
determine several lines (slices) passing through the point
with minimum value of corresponding initial segmentation
function having a shape of SDF. The slice configuration can
be seen in Figure 3a. Then we plot the graphs of image
intensities along these lines. The graphs for slice1 and6 are
plotted in Figures 3b and 3d. In these graphs we find the
local minima satisfying the following conditions:

1) The minimum does not lie inside the ISC
2) The minimum lies close to the intersection of ISC and

the given slice (black points in Figure 3)
3) The minimum is less than the median (Imed) of image

intensities inside the ISC
4) The closest maximum (which is further from the ISC

is greater than0.7Imed and the difference between this
maximum and corresponding minimum is greater than
0.02Imax

These conditions are designed in accordance with the bright
blood data type, the heart anatomy, the position of initial
segmentation curve and experimental computations. Finally,
we set the thresholdIout as the maximal value from the
minima satisfying conditions given above (grey points in
Figure 3). The thresholdIin is set toImed.

(a) Slices for given initial seg-
menation curve.

(b) Image intensities along slice1.

(c) Image thresholding result. (d) Image intensities along slice6.

Fig. 3: Slices (indexed1–6) using for setting of thresholds
Iout, Iin. Gray points corresponds to the minima found by
described algorithm, black points corresponds to the inter-
sections of initial segmentation curve and given slices.
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V. PARAMETER SETTING

In this Section we explain how the computational parame-
ters for the segmentation of the left heart ventricle from MRI
images are set up. To apply the scheme derived from (19),
we have to specify the suitable values of the parameters in
equation (11), such as the parameterλ, the standard deviation
of Gauss functionσ, the force parameterF , the advection
parameterA, the regularization parameterε, the spatial step
h, the time stepτ and the stopping criterion (how many time
iterations are needed to get the desired result).

The parameters are set-up with an agreement of the model
requirements and are tuned by the practice and experience
with the model and used image data. The approach presented
here is applicable on wide set of image data. On the other
hand, applying this approach to different image data types
require additional tuning of the parameters. Consequently,
each parameter have to be tailored to given set of image
data types.

A. Parametersλ and σ

The parametersλ andσ are included in the edge detector
g0 defined in Section II. The parameterσ characterizes the
variance of Gaussian smoothing kernel which is responsible
for the presmoothing of the input images. Higher values of
σ cause stronger reduction of noise. On the other hand, this
type of presmoothing lowers the image gradient, i.e. blurs
the image.

The sensitivity of the edge detector depends on value of
the parameterλ. Very low values ofλ decrease the efficiency
of the edge detection. On the other hand, very high values
of λ can cause the detection of spurious edges (i.e. noise,
blood flow artifacts, etc.).

These two parameters are dependent each of other. Higher
values ofσ require higher values ofλ and vice versa. In our
algorithm, we setσ = 2h andλ = 0.1 .

(a) Heart base slice. (b) Heart apex slice.

Fig. 4: Comparison of two heart slices (apex and base) of
one patient.

B. ParametersF andA
Correct left ventricle segmentation requires a detailed

information on the image gradient. Some edges can be more
significant than others. Nevertheless, the magnitude of image
gradient is not a convenient measure of the image edge
importance. As we can see in Figure 4 the heart wall between
the left and right ventricle is much more visible in slices
corresponding to the heart base (Figure 4a) than in slices
belonging to the heart apex (Figure 4b). In other words,
the image intensities and the magnitude of image gradient
corresponding to the heart wall are significantly different.
To unify these heart wall inhomogeneities we propose an

image dependent setting of the force parameterF and of the
advection parameterA.

We propose the external force parameter in the form

F (I0) =







Fout I0 ≤ Iout ,

Fin

(
I0

−Iout
Iin−Iout

)

Iout < I0 < Iin ,

Fin I0 ≥ Iin ,

(33)

whereFout is the value of the force parameter for the picture
elements outside the left ventricle andFin is the value of
the force parameter for the picture elements surely inside
the left ventricle. For the picture elements surely outside the
ventricle, the evolution curve should shrink. The value of
Fout has to be negative. The valueFin has to be positive, as
discussed in Section II-A.

Similarly we propose the advection term, namely

A(I0) =







Aout I0 ≤ Iout ,

(Aout − 1)
(

1− I0
−Iout

Iin−Iout

)

+ 1 Iout < I0 < Iin ,

1 I0 ≥ Iin ,
(34)

where Aout > 1. This means that the edges with lower
intensity are more important than the edges with higher
intensity. We use the following setting of the parameters:
Fin = 50, Fout = −10, Aout = 2.

C. Parametersε, τ , h

The parameterε provides the regularization of the de-
nominator in (4). The convergence rate of the SOR method
depends on this parameter – a lower value ofε slows
down the convergence. The valueε = 0.001 is a suitable
compromise.

The spatial step is given ash = 1/(max{nx1
, nx2

} − 1),
the time stepτ is given asτ = h/5.

D. Stopping criterion

In this Section we deal with the problem of successful
termination of the segmentation process. There are several
possibilities to stop the process. The simplest criterion could
be to stop the process after the prescribedN iterations are
performed. This could be a good criterion for known input
data only (we know the stopping time before we start the
process). Better possibility is to use an automated stopping
criterion. Typically the computation is stopped as soon as the
following inequality holds (see [45]):

1

M

∑

i,j

∣
∣uk

i,j − uk−1
i,j

∣
∣ ≤ Cτh2 , (35)

where sum is over all grid points,M = nx1
nx2

andC is a
constant. As we can see from (35) this criterion is time and
memory consuming because we have to storeuk − 1. At the
same time (35) is too strict for our computation. It would be
enough to consider the changes in the segmentation curve
only (the zero level set ofu).

In our algorithm we use the following automated stopping
criterion

N0∑

i=1

∣
∣S(uk−i+1)− S(uk−i)

∣
∣ = 0 , (36)

whereS(uk) denotes the number of pixels inside the seg-
mentation area, i.e. the number of grid points for which

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_06

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



uk
i,j ≤ 0. The criterion (36) claims that the process is

stopped afterk time iterations ifS(uk) = S(uk−1) = . . . =
S(uk−N0+1), i.e. the segmentation area (segmentation curve)
stops changing. In our experience good results are achieved
usingN0 = 3.

VI. SEGMENTATION RESULTS

Before discussing results of segmentation, we introduce
the notion of the ejection fraction. The ejection fraction (EF)
is the most widely used measurement of left ventricular sys-
tolic function providing important prognostic information of
patients. In other words, EF is the fraction of blood pumped
out from the ventricle and is used clinically to determine
myocardial contractility representing the performance of the
heart. EF is defined asEF = (EDV −ESV )/EDV , where
EDV denotes the end-diastolic volume, which corresponds to
maximal volume of the ventricle (end-diastolic phase) and
ESV stands for the end-systolic volume which corresponds
to minimal volume of the ventricle (end-systolic phase). In
general, normal range is between 55% and 70% (see [1],
Chap.6).

The algorithm was tested on hundreds of images belonging
to tens of patients1. Here, we present the result of segmen-
tation for 15 patients (denoted byPatient01 – Patient15). In
table II the estimation of EDV, ESV and EF are presented.
We compare results of our algorithm (LS) with the Allen-
Cahn approach and automatically (SA) and manually (SM)
processed data using SEGMENT software available on [46].
In Figures 7 – 8 the graphs of LV volume during the heart
period is shown. In each Figure we can see four graphs:
the black solid line corresponds to the result obtained by
our algorithm, the gray solid line denotes the Allen-Cahn
approach and remaining lines corresponds to the results
acquired by SEGMENT software – automatic segmentation
is denoted by black dashed line whereas gray dashed line
shows the manual segmentation.

The SEGMENT is a freely available software for cardio-
vascular image analysis. It can be used for the analysis of the
MR data. The software provides an automated segmentation
of the left ventricle as well as a manual and general object
segmentation. The segmentation algorithm is based on the
concept of deformable objects. The geometrical representa-
tion of an image object can be deformed under the internal
deformation energy and the external potential energy field.
The energy minimization is described by the Euler-Lagrange
equations (see [47]).

As an example of the segmentation results we selected
image data of two patients –Patient03andPatient13. The re-
sults of the segmentation can be seen in Figures 5 (Patient03)
and 6 (Patient13). The images are depicted in EDV and ESV
phase. The white line represents the segmented region. After
the segmentation is done we can plot the time evolution of
the ventricle volume for each patient. Corresponding graphs
of left ventricle volume during one cardiac cycle are depicted
in Figures 7 and 8.

As can be seen in Table II or in Figure 7, thePatient03
has low EF (19.81%), whereas thePatient13has higher EF
(63.68%) as shows Table II or Figure 8. Figures 5 and 6 show
sufficient segmentation result both forPatient03with low

1The data were provided by the Institute for Clinical and Experimental
Medicine in Prague.

contractility of myocardium and forPatient14with higher
contractility. In Figure 5 we can see that a border of a
segmented area lies precisely at the heart wall including a
“peninsula” (papillary muscle). The peninsula can be clearly
seen in the second image in Figures 5a and 5b.

VII. D ISCUSSION

Our algorithm uses adaptive choice of parametersF
(33) andA (34) which are crucial in obtaining satisfactory
segmentation results. The dependence of the algorithm on
the thresholdsIin and Iout could be limiting. Inoptimal set-
tings of these thresholds can cause inaccurate segmentation
results. Therefore it is important to apply a robust automatic
threshold selection. On the other hand, in the case of LV
segmentation the threshold selection described in Section IV
seems to be a good compromise between robustness and
simplicity. Indeed, the presented results in Section VI justify
applicability of the used threshold choice.

In the level set approach to the image segmentation
there are various choices of initial condition settings. The
initial segmentation function is set as the signed distance
function with the zero level set corresponding to the initial
segmentation curve. A benefit of this approach lies in an easy
manipulation with the segmentation curve. For shrinking or
expanding the segmentation curve we add or subtract some
positive constant. Figure 6 shows a certain inaccuracy in
segmentation of the peninsula. In the first image in 6a and 6b
we can see that the black small ”island” (papillary muscle)
inside the ventricle is incorporated into the segmented area
adding error to the ventricle volume estimation. It could
be caused by both low gradient on the ”island” and the
initial condition setting discussed in Section II-A. As the
initial curve is set as the result of the previous segmentation,
the ”island” could lie inside the domain defined by the
initial segmentation curve. Consequently, the ”island” is
already included inside the initial segmentation curve at the
start of segmentation process and remains there during the
segmentation process. This problem could be easily solved
by putting the initial curve outside the papillary muscle. We
can shrink the initial segmenation curve by adding a positive
constant to the initial segmentation function.

We have performed computational studies and comparison
measurements presented here both in graphical and numeri-
cal form. Comparison to other methods including the manual
segmentation is presented in Section VI. The manually
segmented data should be the most accurate method. On the
other hand, the segmented data by two different experts could
differ. Despite of that, we consider the comparison presented
here as appropriate.

VIII. C ONCLUSION

In the presented paper we discussed the adaptive segmen-
tation algorithm based on the level set equation in the context
of cardiac MRI data segmentation. The algorithm is based on
the numerical scheme using the semi-implicit discretization
in time and the co-volume method in space. We proposed
a new advection and force parameter depending on the real
cardiac MRI data2. Moreover, the results were compared both
to the other methods and to the manually segmented data.

2IKEM Praha, http://www.ikem.cz/www/en
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APPENDIX A
SEGMENTATION RESULTS– FIGURES AND TABLES

(a) Result of segmentation (end-diastole)

(b) Result of segmentation (end-systole)

Fig. 5: Patient03. Results for (a) EDV and (b) ESV using
h = 0.0039, λ = 1.0, Aout = 2, Fout = −10, Fin = 50.

(a) Result of segmentation (end-diastole)

(b) Result of segmentation (end-systole)

Fig. 6: Patient13. Results for (a) EDV and (b) ESV using
h = 0.0039, λ = 1.0, Aout = 2, Fout = −10, Fin = 50.
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Fig. 7: Plot of ventricle volume vs time forPatient03.
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TABLE II: Estimated EF, EDV and ESV forPatient01 – Patient15using level set algorithm (LS), Allen-Cahn approach
(AC), automatical tools in program Segment (SA) and manual segmentation in program Segment (SM).Bold (italic) font
shows the best (worst) fit with respect to the manual segmentation.

Patient 01 02 03 04 05 06 07 08
Value abs e[%] abs e[%] abs e[%] abs e[%] abs e[%] abs e[%] abs e[%] abs e[%]

EF [%]

LS 9.91 0.53 10.19 2.31 19.81 1.01 20.17 0.09 20.38 -2.12 22.80 1.05 24.15 0.16 24.66 0.20
AC 10.34 0.96 7.76 -0.12 18.54 -0.26 19.91 -0.17 21.90 -0.60 22.83 1.08 21.64 -2.35 25.22 0.76
SA 7.84 -1.54 7.24 -0.64 16.63 -2.17 20.07 -0.01 19.95 -2.55 21.32 -0.43 19.27 -4.72 22.36 -2.10
SM 9.38 – 7.88 – 18.80 – 20.08 – 22.50 – 21.75 – 23.99 – 24.46 –

EDV [ml]

LS 297.90 0.87 171.12 2.23 295.34 -2.19 230.08 2.75 202.09 -1.97 225.54 -0.79 183.72 0.11 83.19 1.19
AC 296.16 0.28 166.58 -0.48 286.57 -5.09 215.28 -3.86 186.31 -9.62 221.70 -2.48 183.97 0.25 81.75 -0.56
SA 293.03 -0.78 177.72 6.18 290.12 -3.91 225.39 0.66 201.84 -2.09 239.02 5.14 184.19 0.37 80.67 -1.87
SM 295.32 – 167.38 – 301.94 – 223.92 – 206.15 – 227.34 – 183.51 – 82.21 –

ESV [ml]

LS 268.39 0.29 153.68 -0.34 236.82 -3.40 183.67 2.63 160.91 0.72 174.12 -2.12 139.35 -0.10 62.68 0.93
AC 265.54 -0.78 153.64 -0.36 233.45 -4.78 172.41 -3.66 145.50 -8.93 171.08 -3.83 144.15 3.34 61.13 -1.56
SA 270.04 0.90 164.86 6.91 241.88 -1.34 180.15 0.66 161.58 1.14 188.07 5.72 148.70 6.60 62.63 0.85
SM 267.62 – 154.20 – 245.16 – 178.96 – 159.76 – 177.89 – 139.49 – 62.10 –

Patient 09 10 11 12 13 14 15
Value abs e[%] abs e[%] abs e[%] abs e[%] abs e[%] abs e[%] abs e[%]

EF [%]

LS 28.33 2.60 28.38 -0.36 42.69 -0.70 42.85 0.84 47.81 0.72 63.68 1.21 64.16 3.13
AC 28.27 2.54 28.48 -0.26 36.73 -6.66 40.32 -1.69 45.74 -1.35 55.04 -7.43 60.05 -0.98
SA 20.91 -4.82 27.30 -1.44 45.11 1.72 41.26 -0.75 47.85 0.76 62.86 0.39 60.66 -0.37
SM 25.73 – 28.74 – 43.39 – 42.01 – 47.09 – 62.47 – 61.03 –

EDV [ml]

LS 147.19 -1.51 127.66 -1.58 75.46 2.14 173.40 13.32 115.11 6.85 90.53 6.74 99.42 -4.52
AC 149.97 0.35 121.80 -6.10 72.84 -1.41 177.53 16.02 102.76 -4.61 87.75 3.47 94.28 -9.46
SA 150.44 0.67 129.11 -0.46 72.81 -1.45 154.07 0.69 112.43 4.36 88.63 4.50 109.69 5.34
SM 149.44 – 129.71 – 73.88 – 153.02 – 107.73 – 84.81 – 104.13 –

ESV [ml]

LS 105.49 -4.96 91.43 -1.08 43.24 3.37 99.10 11.69 60.08 5.40 32.88 3.30 35.63 -12.20
AC 107.57 -3.08 87.11 -5.76 46.08 10.16 105.95 19.41 55.76 -2.18 39.46 23.97 37.67 -7.17
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M. Kimura, and T. Nakaki, Eds., vol. 6. Faculty of Mathematics,
Kyushu University Fukuoka, 2006.
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