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Abstract—We simulate triple junction motion that is given
by the gradient flow of surface energy with arbitrary sur-
face tensions of the individual interfaces. The foundation of
the method is the diffusion-based BMO algorithm in vector-
valued formulation. We modify the original vector-valued BMO
method so that it can accommodate motions for any triple of
surface tensions leading to the possibility of a nonsymmetric
junction. The main idea of the modification is to adjust both
the reference vectors and the coefficients in the underlying
diffusion system. Moreover, we improve the method by using
vector-valued projection triangle and also address the volume-
preserving problem. Analysis and numerical results of this
generalized vector-valued BMO algorithm are presented.

Index Terms—triple junction motion, mean curvature flow,
surface tension, vector-valued thresholding

I. INTRODUCTION

THE problem of simulating the motion of interfaces with
triple junction according to some curvature-dependent

speed arises in many applications, e.g., grain growth [1],
image processing [2], multiphase flow [3]. Equal surface ten-
sions lead to symmetric triple junction, which is well-known
as the symmetric Herring condition (interfaces meeting at
120◦). On the other hand, arbitrary surface tensions lead to
nonsymmetric triple junctions.

To treat such motions, several methods have been devel-
oped. Bronsard et. al [11] uses the reaction-diffusion equation

ut = ε∆u− 1

ε
∇uW (u), (1)

to model triple junctions. Here, ε > 0 is a small parameter
and W is a well potential, a non-negative function which has
three minima for the three-phase case. This so-called phase-
field method represents the phase boundary as an interfacial
layer. In [11] the authors showed that the interfaces in the
solution of (1) move with a velocity proportional to the
curvature of the interface and in its sharp interface limit
(ε→ 0), one obtains the Young’s law at the junction. How-
ever, this method has difficulties in the numerical solution
when ε < ∆x, where ∆x is the spacing grid. The only
remedy is to take ∆x

ε � 1, which is impractical numer-
ically [4]. Moreover, it is also necessary to appropriately
determine parameters of the well-potential function which
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amounts to a complicated minimization problem. Garcke et
al. [12] performed numerical simulations for a multiphase
field model and showed that for suitably chosen parameters
(which they determined based on numerical experiments),
numerical results agree with the formal asymptotic expansion
of [13] and yield the correct motion.

On the other hand, Zhao et al. [17] developed a numerical
algorithm capturing the interfaces based on the level set
method of Osher et al. [18]. This method is able to deal
with topological singularities and nonsmooth data. Moreover,
it can be extended to the multiphase setting by introducing as
many level set functions as there are phases and imposing an
additional constraint on the constrained flow problem so that
the level sets do not overlap or create vacuums. However,
such a constraint has an unwanted influence on the motion
and the volume of phases is not sufficiently controlled by the
method.

Merriman, Bence and Osher [4] introduced the BMO
method, an implicit scheme for realizing interfacial motion
by mean curvature for symmetric junctions, which alternately
diffuses and sharpens characteristic function for each phase
region. For two-phase case, it has been shown that the
method converges to motion by mean curvature [5], [6], [7].
Ruuth [8] generalized the BMO method to nonsymmetric
triple junctions by replacing the thresholding step with a new
decision, i.e., by using a projection triangle. This generalized
method also allows for normal velocity equal to a positive
multiple of the curvature of the interface plus the difference
in bulk energies for prescribed junction angles. Svadlenka
et al. [3] reformulated the BMO algorithm in vector-valued
formulation for multiphase motion. This vector-valued for-
mulation is essential for implementing constraints and for
dealing with more general motions. However, it is restricted
to the symmetric case. Mohammad et al. [9], [10] improved
the symmetric multiphase BMO algorithm of [3] by intro-
ducing a signed distance vector-valued function.

In this work, we consider three evolving curves meeting at
a junction and having arbitrary surface tensions. We achieve
the simulation of such a triple junction by generalizing the
two main ingredients of the method in [3]: the reference vec-
tors (corresponding to the positions of wells in the phase-field
method) and the way of diffusing. Moreover, we improve the
scheme by including a modification of the projection step
in [8]. The developed method is applicable to constrained
motions.

The outline of the paper is as follows: in Section II, we
formulate the problem by deriving gradient flow of surface
energy and computing the stable junction angles for given
surface tensions. In Section III, we review the vector-valued
BMO method of [3]. We discuss the junction stability in
Section IV, where we derive the reference vectors of the
BMO method. In Section V, we investigate the interface
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velocity and find the suitable modification for the coeffi-
cients of underlying diffusion system. Section VI presents a
correction by projection triangle. Numerical method and its
implementation are explained in Section VII. Finally, Section
VIII shows several numerical tests.

II. EQUATIONS OF TRIPLE JUNCTION

In this section, we write the total surface energy of the
curves and compute its first variation to get the normal
velocity for each interface and the condition that has to be
satisfied at triple junction.

We consider three evolving curves γi(s), s ∈ [pi, qi], i =
1, 2, 3, which lie inside a fixed smooth region Ω of R2, meet
the outer boundary ∂Ω at a right angle and get together at
a triple junction xT = γi(qi), i = 1, 2, 3. Each curve has
different surface tension σi.

Fig. 1. Triple Junction

Then the surface energy of all curves is given by

L(γ) =
3∑
i=1

∫
γi

σi dl =
3∑
i=1

∫ qi

pi

σi |γ′i(s)|ds.

The gradient flow of surface energy [19] can be found from
its variation. Define the tangential vector ti, curvature κi and
outer normal ni of curve γi by

ti =
γ′i
|γ′i|

, κi = −
γ′ixγ

′′
iy − γ′iyγ′′ix
|γ′i|3

, ni =
1

|γ′i|
(γ′iy,−γ′ix).

Then for a smooth vector field ϕ vanishing near the boundary
∂Ω,

d

dε
L(γ + εϕ(γ))|ε=0 =

3∑
i=1

∫ qi

pi

σiti ·
d

ds
(ϕ(γi)) ds

=
3∑
i=1

(
−
∫
γi

(σiκini) ·ϕdl + σiti ·ϕ(xT )

)
.

From this result, the motion by gradient flow satisfies
1) The normal velocity of interface

vi = σiκi. (2)

2) Condition at triple junction
3∑
i=1

σiti = 0. (3)

The junction condition (3) is the balance of forces which
is well-known to be equivalent to the Young’s law

sin θ1

σ1
=

sin θ2

σ2
=

sin θ3

σ3
,

where θ1, θ2, θ3 are the angles at the junction (see Figure 1).

Fig. 2. Relating surface tensions to junction angles.

Noting the connection of the above formula to the triangle
in Figure 2 and using the law of cosines, we obtain the
junction angles as [14]:

cos(π − θ1) =
σ2

3 + σ2
2 − σ2

1

2σ2σ3
,

cos(π − θ2) =
σ2

1 + σ2
3 − σ2

2

2σ1σ3
, (4)

and θ1 + θ2 + θ3 = 2π.

Note that we can compute the stable angles with any given
triple of surface tensions, as long as the triple satisfies the
triangle inequality.

III. VECTOR-VALUED BMO

The basis of our method is the vector-valued BMO algo-
rithm [3]:

1) Define reference vectors pi of dimension two, each
corresponding to a phase Pi for i = 1, 2, 3.

2) Given a partition Pi, i = 1, 2, 3, set u0(x) = pi for
x ∈ Pi.

3) Repeat
• Solve the vector-valued heat equation with initial

condition u0:

ut(t, x) = ∆u(t, x) for (t, x) ∈ (0,∆t]× Ω,

∂u
∂n

(t, x) = 0 on (0,∆t]× ∂Ω.

• Update u0 by identifying the reference vector
which is closest to the solution u(∆t, x):

u0(x) = pj ,

where pj · u(∆t, x) = maxi=1,2,3 pi · u(∆t, x).
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This redistribution of reference vectors determines
the configuration of each phase after time ∆t.

The paper [3] deals only with symmetric junctions and
therefore, the above algorithm works with symmetric refer-
ence vectors and simple heat equation in the diffusion step,
as is formally proved there. However, for arbitrary junction
angles, this setting is not sufficient and has to be generalized.
We will do so in the following two sections.

IV. JUNCTION STABILITY

We consider three straight lines meeting at the origin with
the given stable angles as in Figure 3. The fact that this
configuration is stable will yield a condition on the selection
of reference vectors for the BMO algorithm.

Fig. 3. Configuration of a stable junction.

The triple junction does not move if u(t, 0, 0) = 0 for all
t > 0, where u is the solution of the heat equation. This
means

1

4πt

3∑
i=1

pi
∫
R2∩Pi

exp(−|x|
2

4t
) dx = 0.

Since by radial symmetry we can compute the integral of the
wedge Pi as ∫

Pi

e−|x|
2

dx =
θi
2
,

we get

θ1p1 + θ2p2 + θ3p3 = 0. (5)

The above relation is a one-dimension higher BMO ana-
logue of Young’s law (3) in the sense that the reference
vectors pi are distributed in the whole phase regions Pi and,
thus, the equilibrium condition is related to area integrals,
which results in weights equal to junction angles.

The vector equation (5) and the condition obtained in
the next section that the lengths of pi, i = 1, 2, 3, must be
equal, form a systems of equations for the components of pi.
Since the reference vectors are determined up to rotation and
scaling, we can choose one reference vector arbitrarily, e.g.,
we set p3 = (1, 0). This closes the system and its solution

can be written as

p1
1 = 1− 2π

θ1θ3
(π − θ2),

p2
1 = ± 2

θ1θ3

√
π(π − θ1)(π − θ2)(π − θ3),

p1
2 = 1− 2π

θ2θ3
(π − θ1),

p2
2 = ∓ 2

θ2θ3

√
π(π − θ1)(π − θ2)(π − θ3).

(6)

The possible choices for the sign of the second component
follow from the invariance of the reference vectors with
respect to flipping.

V. INTERFACE VELOCITY

Here we study the modification of the original BMO
algorithm yielding the correct interface velocities vi = σiκi.
The idea is to consider, instead of the heat equation, the
general diffusion system

u1
t + du2

t = a∆u1 + b∆u2,

du1
t + eu2

t = b∆u1 + c∆u2,(
u1

u2

)
(t = 0) =

(
u1

0

u2
0

)
,

(7)

and determine its coefficients a, b, c, d, e, so that we obtain
the desired interface velocities. We will show that this leads
to a system of nonlinear equations for a, b, c, d, e. Moreover,
we check that the change of the underlying diffusion system
does not influence the arguments of the previous section on
junction stability.

Note that we restrict our considerations to symmetric
coefficient matrices. This is due to the fact that in order
to incorporate phase-volume preservation, we use the varia-
tional structure of the system in an essential way (see Section
VII.B).

The system (7) can be rewritten in the form

ũt = A∆ũ,

where

ũ =

(
ũ1

ũ2

)
=

(
1 d
d e

)(
u1

u2

)
,

and

A =
1

e− d2

(
ae− bd b− ad
be− cd c− bd

)
.

We assume that A is positive definite and diagonalize it in
the following form

A = KΛK−1 with Λ =

(
λ1 0
0 λ2

)
.

The eigenvalues of A are given by

λ1,2 =
ae+ c− 2bd± r

2(e− d2)
,

where r =
√

(ae− c)2 + 4(ad− b)(cd− be).
Hence, we get the matrix K consisting of eigenvectors as

K =
1

2r

(
ae− c+ r 2(ad− b)
2(be− cd) ae− c+ r

)
.
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The original problem is transformed into
w1
t = λ1∆w1,

w2
t = λ2∆w2,(
w1

w2

)
(t = 0) =

(
w1

0

w2
0

)
= M

(
u1

0

u2
0

)
,

(8)

where
(
w1

w2

)
= M

(
u1

u2

)
, with M = K−1

(
1 d
d e

)
.

The solution to the transformed problem (8) in the whole
R2 is

wi(t, x) =
1

4πλit

∫
R2

wi0(ξ)e
− |x−ξ|

2

4λit dξ, i = 1, 2, (9)

where

wi0|Pj = ((Mu0)|Pj )i = (Mpj)
i, i = 1, 2, j = 1, 2, 3.

Fig. 4. Configuration of the interface.

Now, let us calculate the velocity of the interface for the
above diffusion system. We consider a point on the interface
γ = ∂Pij between phase Pi and Pj . We translate and rotate
the coordinate system so that the chosen point lies in the
origin and the outer normal at the point agrees with the
positive x2-direction. We define Q = [−1, 1]× [−1, 1]. Then
the normal velocity v of the interface is found from the
relation, expressing the condition on the interface position
along the x2-axis after time t, i.e.,

u(t, 0, vt) · (pi − pj) = 0. (10)

We can write the solution of the transformed problem (8) as

w(t, 0, vt) =

 1

4πλ1t

∫
R2 w

1
0(ξ)e−

|ξ−(0,vt)|2
4λ1t dξ

1

4πλ2t

∫
R2 w

2
0(ξ)e−

|ξ−(0,vt)|2
4λ2t dξ

 .

By the techniques in [5] and [15], we get

1

4πλ1t

∫
Q∩Pi

e−
|ξ−(0,vt)|2

4λ1t dξ =
1

2
+

√
t

2
√
πλ1

(λ1κ−v)+O(t
3
2 ),

(11)

where κ is the curvature of ∂Pij at the origin. Hence, we
have for l = 1, 2, and some C > 0,

wl(t, 0, vt) =
wl0|Pi
4πλlt

∫
Q∩Pi

e
− |ξ−(0,vt)|2

4λlt dξ

+
wl0|Pj
4πλlt

∫
Q∩Pj

e
− |ξ−(0,vt)|2

4λlt dξ +O(e−
C
t )

= wl0|Pi
(

1

2
+

√
t

2
√
πλl

(λlκ− v)

)
+ wl0|Pj

(
1

4πλlt

∫
R2

e
− |ξ−(0,vt)|2

4λlt dξ

)
− wl0|Pj

(
1

2
+

√
t

2
√
πλl

(λlκ− v)

)
+O(t

3
2 )

= wl0|Pi
(

1

2
+

√
t

2
√
πλl

(λlκ− v)

)
+ wl0|Pj

(
1

2
−
√
t

2
√
πλl

(λlκ− v)

)
+O(t

3
2 )

=
wl0|Pi + wl0|Pj

2

+
wl0|Pi − wl0|Pj

2

√
t√
πλl

(λlκ− v) +O(t
3
2 ).

We obtain from (10) the identity

M−1

[
M

pi + pj
2

+

√
t√
π
DM

pi − pj
2

]
· (pi − pj) = O(t

3
2 ),

where

D =


1√
λ1

(λ1κ− v) 0

0
1√
λ2

(λ2κ− v)

 .

Notice that if the first dot product on the left-hand side does
not vanish, then the order in time of the equation does not
match. This leads to the condition (pi + pj) · (pi − pj) = 0,
meaning that the lengths of reference vectors have to be equal
(see Section IV). Then we obtain

(pi − pj)
TM−1DM(pi − pj) = O(t),

which is, up to order O(t), equivalent to

µ1

(√
λ1κ−

1√
λ1

v

)
+ µ2

(√
λ2κ−

1√
λ2

v

)
= 0,

where

µ1 = m11m22(p1
ij)

2 −m12m21(p2
ij)

2

+ (m12m22 −m11m21)p1
ijp

2
ij ,

µ2 = −m12m21(p1
ij)

2 +m11m22(p2
ij)

2

− (m12m22 −m11m21)p1
ijp

2
ij ,

with pij = pi − pj and m11,m12,m21,m22 denote the
entries of the matrix M . Finally, we get the velocity of
interface γk (k 6= i, j) in the form

vk =
µ1

√
λ1 + µ2

√
λ2

µ2

√
λ1 + µ1

√
λ2

√
λ1λ2 κk.

Since there are only three types of interfaces, it is expected
that we need only three parameters in order to design the
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velocities. Hence, it is reasonable to try to set d = 0, e = 1,
so that our diffusion system becomes

ut = A∆u, (12)

with A =

(
a b
b c

)
. We could have done so from the

beginning of this section but, as we will see below, the
resulting nonlinear system for a, b, c is hard to analyze
theoretically, which led us to keep the parameters d and e
as a last resort in case the three-parameter system cannot be
solved. In this case, we get the interface velocities

vk =
µ1(a+ c+ r) + 2µ2

√
ac− b2

µ2(a+ c+ r) + 2µ1

√
ac− b2

√
ac− b2 κk, (13)

where r =
√

(a− c)2 + 4b2 and

µ1 = [(a− c+ r)(p1
i − p1

j ) + 2b(p2
i − p2

j )]
2,

µ2 = [2b(p1
i − p1

j )− (a− c+ r)(p2
i − p2

j )]
2.

From (13) and (2), we have a nonlinear system consisting
of three equations for the coefficients a, b and c, which is
solved numerically. First, we simplify it by setting

x =
α+

√
β2 + 1√

α2 − β2 − 1
,

y = β +
√
β2 + 1,

z = b
√
α2 − β2 − 1,

where α = (a + c)/(2b) and β = (a − c)/(2b). Then the
above system in terms of x, y, z becomes

(p1
ijy + p2

ij)
2x+ (p1

ij − p2
ijy)2

(p1
ij − p2

ijy)2x+ (p1
ijy + p2

ij)
2
z = σk

for (i, j, k) = (2, 3, 1), (1, 3, 2), (1, 2, 3). We take any two
equations from this system and solve for x, z analyti-
cally, which is possible, since the corresponding equation is
quadratic. Due to this fact we get two different solutions for
x, z. For each such pair of x, z we use a numerical method
(such as Newton’s method) to find the root y of the remaining
equation. There may exist several roots for y. For each such
combination of x, y, z we recover α, β and b by

α =
(x2 + 1)(y2 + 1)

2(x2 − 1)y
, β =

y2 − 1

2y
, b = ±x(y2 + 1)

(x2 − 1)y
.

The coefficients a and c are then obtained easily. The
number of cases doubles because of two possible signs for
b. All triples (a, b, c) obtained in the described way are then
checked if they solve the system and the appropriate triple
is selected.

Since the nonlinear system is very complicated, we were
not able to prove the unique existence of solution using
analytical methods such as fixed point theory. However, in
using the above method we can always find a solution, except
when b = 0, which occurs when two of the surface tensions
are equal. In that case, the system simplifies in such a way
that it can be solved fully analytically.
Remark. For the initial condition in Figure 3, at the triple
junction we have

wi(t, 0) =
1

4πλit

(∫
P1

+

∫
P2

+

∫
P3

)
wi0(ξ)e

− |ξ|
2

4λit dξ

=
1

π

(
θ1

2
wi0|P1

+
θ2

2
wi0|P2

+
θ3

2
wi0|P3

)
.

Therefore,

w(t, 0) =
1

2π
M (θ1p1 + θ2p2 + θ3p3) .

For junction stability, we require u(t, 0) = M−1w(t, 0) = 0.
This condition is equivalent to

θ1p1 + θ2p2 + θ3p3 = 0,

which is in agreement with (5).
This result shows that no matter how we change the

diffusion equation, the stability condition (5) will not be
affected. Hence, the selection of reference vectors can be
done independently of the diffusion equation.

VI. CORRECTION BY PROJECTION TRIANGLE

In the previous sections, we have derived an extension
of the vector-valued BMO algorithm to include the case of
nonsymmetric junctions and general interface velocities. We
have shown that, for a suitably selected diffusion system,
if an interface point is sufficiently far from the junction, the
interface velocity at that point will satisfy the desired formula
vi = σiκi, and that, for a suitably selected reference vectors,
the junction will be stationary for the initial configuration of
three straight lines meeting at the junction with stable contact
angles.

However, the above analysis does not address the close
vicinity of the triple junction. In fact, by formal calculations
it can be made clear (see Appendix A) that the correct
interface velocity is obtained only with an exponentially
decreasing error with respect to the distance of the considered
interface point to the junction. Indeed, numerical tests proved
that the stable configuration consisting of three straight lines
slightly curves in the neighborhood of the junction. This fact
produces errors in the angles of the moving junction.

Therefore, we include a correction step based on the notion
of a projection triangle given by Ruuth [8]. The idea is to first
investigate how the stable configuration of three straight lines
deforms, and use this information to project the phase regions
back into the correct position in each step of the BMO
algorithm. For details of the construction of the projection
triangle we refer to [8].

The original method in [8] uses the scalar setting, i.e., it
diffuses separately characteristic functions for each of the
three phase regions of the stable configuration (Figure 3)
which yields three values of diffused function at every point
in the domain. These three values are positive and sum up
to one, thus, taken as points in R3, lie inside a triangle on a
hyperplane of R3. The straight lines of the stable configura-
tion are mapped on the triangle as dividing curves. In order
to relate our vector-valued formulation to the construction in
[8], for (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 2, 1)} we introduce
the functions

fi(t, x) =
u(t, x) · (pj + pk)− 1− pj · pk

(pi − pj) · (pj + pk)
, (14)

Note that (14) is a generalization of the function wi(t, x) in
[3], Section 2.2.2, for general reference vectors (6). Since
u(0, x) = pi for x ∈ Pi, one can easily check that

fi(0, x) = χi(x), i = 1, 2, 3,

where χi is the characteristic function of phase region Pi.
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However, the advantage of our vector-valued approach
is that we do not have to perform separate diffusions and
subsequently identity the hyperplane x1 + x2 + x3 = 1. It is
sufficient to diffuse the vector-valued initial condition as in
Figure 3 and record the images of the straight lines. In this
way, we obtain a projection triangle that can be used directly
for the function u in the BMO algorithm.

We summarize the construction of the projection triangle
in the generalized vector-valued formulation. Given an angle
configuration θ1, θ2, θ3, we perform the following steps:

1) Define the lines (in polar coordinates)

`12 = {(r, 1

2
θ1) : r > 0},

`13 = {(r,−1

2
θ1) : r > 0},

`23 = {(r, 1

2
θ1 + θ2) : r > 0},

and regions P1, P2, P3, as in Figure 3.
2) Set u0(x) = pi for x ∈ Pi.
3) Apply the diffusion (7) to the initial condition u0 for

a time τ ≤ ∆t, where ∆t is the BMO time step.
4) Map the values of the solution of step 3 along each line

`ij onto the projection triangle to form the dividing
lines ˜̀

ij : ˜̀
ij = {u(τ, x) : x ∈ `ij}.

Fig. 5. Projection triangle T in vector-valued setting.

Notice that the values of the diffused function u fall inside
the triangle T formed by the vectors p1,p2,p3 (Figure 5).
Moreover, because of (5), the dividing lines ˜̀

12, ˜̀
13, ˜̀

23

will always meet at the origin which corresponds to the
circumcenter of T , and they approach the midpoints of
edges of T on their other ends. This is in contrast to
the projection triangles in [8], where the position of the
junction shifts and the shape of dividing lines is distorted,
especially for junction angles strongly deviating from the
Herring symmetric case. This fact helps significantly to make
the numerical computations stable, especially for the volume-
preserving problem.

Figure 6 shows the resulting projection triangles for the
150◦−90◦−120◦ junction and the 135◦−90◦−135◦ junction.
Since these two cases will be used in numerical tests, we
list the coresponding parameters in Table I. As it sometimes
happens in the numerical computations that the values of the
function u fall out of the projection triangle, we extend the
dividing curves by straight lines connecting the junction to
the midpoints of the edges.

(a) (b)

Fig. 6. Projection triangle for (a) 150◦ − 90◦ − 120◦ and (b) 135◦ −
90◦ − 135◦ triple junctions.

TABLE I
NUMERICAL PARAMETERS FOR CASE 1 AND CASE 2

parameters case 1 case 2

surface tensions
σ1

1
2

√
2

2
σ2 1 1
σ3

√
3
2

√
2

2

angles
θ1 150◦ 135◦

θ2 90◦ 90◦

θ3 120◦ 135◦

coefficients
a 0.881 0.954
b 0.262 0.127
c 0.656 0.639

reference vectors
p1 (-0.8,-0.6) (-0.777,-0.628)
p2 (0,1) (-0.333,-0.943)
p3 (1,0) (1,0)

Remark. There is a close relation between the BMO
algorithm and a splitting method for the phase-field equation
(1), which repeats the following steps:

1) Diffuse for a time ∆t

ut = ε∆u,

with initial condition u(0, x) = u0.
2) Solve

ut = −1

ε
W ′(u), (15)

with initial condition u(∆t, x).
One can see that (15) corresponds to the thresholding step in
BMO in the sense that the solution asymptotically separates
into three regions with values equal to the minima of W .
The dividing lines between these regions are the separatrices
for the well potential W . The well potential can be chosen
as in [12] but, as mentioned in the Introduction, it is not
easy to calibrate its parameters since they are not given by
an explicit formula.

VII. THE ALGORITHM

In this section, we summarize the above deliberations into
a generalized vector-valued BMO scheme. First we present
the basic version of the BMO algorithm and then comment
on the method of incorporating the volume constraint.

A. Generalized vector-valued BMO algorithm

The generalized vector-valued BMO for three-phases mo-
tion is as follows:

1) For given surface tensions, calculate junction angles θi
by (4).

2) Define reference vectors pi according to formula (6).
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3) Find the solution a, b, c of (13) and set A =

(
a b
b c

)
.

4) Construct projection triangle according to the algo-
rithm in Section VI.

5) For a given three phase initial configuration P1, P2, P3,
set

u0(x) = pi, x ∈ Pi.

6) Repeat until desired time
• Solve the diffusion system

ut = A∆u for (t, x) ∈ (0,∆t]× Ω, (16)
∂u
∂n

= 0 on (0,∆t]× Ω,

u(0, x) = u0(x) in Ω.

• Threshold according to the projection triangle de-
fined in step 4, i.e.,

u0(x) = pi if u(x) ∈ Ri, i = 1, 2, 3,

where Ri are the regions in Figure 5.
The modified diffusion system is solved by using
vector-type discrete Morse flow (DMF) [16], i.e., at
each step we solve (16) by discretizing time ∆t =
h × N and successively minimizing the following
functionals for n = 1, .., N over H1(Ω;R2):

Jn(u) =

∫
Ω

(a
2
|∇u1|2 + b∇u1 · ∇u2 +

c

2
|∇u2|2

)
dx

+

∫
Ω

(
|u− un−1|2

2h

)
dx. (17)

We approximate the functional (17) by using piecewise
linear finite elements. The minimizers are found by
steepest descent method.

B. BMO algorithm with volume-constraint

The minimization formulation of the vector-valued algo-
rithm allows the inclusion of volume constraints via penal-
ization. In particular, instead of the functional Jn in step 6,
we minimize

Fn(u) = Jn(u) +
1

ε

3∑
i=1

|Vi −meas(P u
i )|2.

Here ε > 0 is a small penalty parameter, Vi is the prescribed
volume of region Pi and the volumes corresponding to u are
obtained from the sets

P u
i = {x ∈ Ω; u(x) ∈ Ri}.

This means that we have to employ the projection triangle
each time we evaluate the functional Fn.

VIII. NUMERICAL RESULTS

We now present some numerical tests and examples of our
method. All numerical experiments in this section are con-
ducted on a [0, 1]× [0, 1] domain with time step ∆t = 0.005
and DMF partition N = 30. Moreover, the phase interior
angles at the triple junction are measured using the tangents
to the quadratic interpolation of the piecewise linear interface
in the neighborhood of the junction.

We begin by investigating the stability of the triple junction
in terms of the angle measure and location of the junction.

Next, we look at the behavior of the triple junction motion
for two cases (with and without axial symmetry). Finally, we
present an example which incorporates the volume constraint
and check the stability of the junction and preservation of the
phase volumes of its stationary solution.

A. Junction Stability Test

Consider an initial condition where phase P2 consists
of two disjoint square regions on opposite corners of the
domain; while the remaining regions above and below the
line y = x are taken as phase P1 and P3, respectively (refer
to Figure 7a). In this setting, the interface network remains
stationary for a 135◦−90◦−135◦ junction angle configuration.
We then, run our method under the case 2 setting (see
Table I) and check the stability of the triple junction when
the maximum dot product (without projection triangle) or
projection triangle is used for phase detection. Here, the
domain is triangulated into 12, 800 elements (∆x = 0.0125).

P1

P3

P2

P2

b

J2b

J1

Fig. 7. (a) Initial condition. (b) The stationary interface network around
junction J1 after time 100∆t using dot product and projection triangle for
phase detection.

The relative error of the stationary junction angle measures
are summarized in Table II. We see that when the maximum
dot product is used to locate the interface, the stationary
interior angle in phase P2 is of measure 90◦ ± 5.11, while
the other two junction angles are approximately 135◦±4.10;
thereby, yielding a relative error of at most 5.68%. On the
other hand, utilizing the projection triangle in the phase
detection scheme reduces the relative error to at most 0.88%
with stationary junction angles of measure 90◦ ± 0.78 and
135◦ ± 1.19.

TABLE II
RELATIVE ERROR IN JUNCTION ANGLE MEASURES

phase maximum dot product projection triangle
junction J1 junction J2 junction J1 junction J2

P1 −0.0083 −0.0081 0.0088 0.0077
P2 −0.0290 −0.0296 −0.0062 −0.0019
P3 0.0561 0.0568 −0.0039 −0.0087

In addition, both phase detection scheme shifted the junc-
tion to a distance of at most 0.0065 for the dot product
scheme and at most 0.0057 for the projection triangle. This
can be accounted for by the approximation error in the con-
struction of the projection triangle. Hence, our method stably
preserves the angle conditions, in this case 135◦−90◦−135◦.
This also confirms that using the projection triangle in the
phase detection scheme correctly detects the interface near
the junction, as opposed to using the maximum dot product.
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B. Triple Junction Motion

In this section, we start with an initial condition where a
T-shaped interface is rotated 90◦ counterclockwise where the
T-junction is at point (0.25, 0.5). We take phase P2 as the
region to the left of line x = 0.25, and the remaining top and
bottom regions as phases P1 and P3, respectively. We trian-
gulate the domain into 20, 000 elements with ∆x = 0.01,
and evolve the interface via our method using the projection
triangle to determine the different phase regions at each time
step. We then investigate the evolution of the triple junction
in both cases.

1) Junction without Axial Symmetry: (Case 1 in Table I)
Under the first case setup, we plot the evolution of the initial
T-junction and its underlying interface network at different
times in Figure 8.

Fig. 8. Evolution of the triple junction for case 1.

Fig. 9. Relative error of the junction angles at each time step.

Notice that for the first 10 time steps, the junction angles
rapidly adjusts to approximate the 150◦−90◦−120◦ angle
conditions. Thereafter, the triple junction maintains phase
interior angles of measure within 2.5% relative error (refer
to Figure 9). Note that this approximation error in the
stationary junction angles can be made smaller by increasing
the precision in the construction of the projection triangle.

2) Axially Symmetric Junction: (Case 2 in Table I) We
now look at the behavior of the junction motion when
subjected to the second case. Note that since the surface

tensions on the 1−2 and 2− 3 interfaces are equal, that is,
σ1 = σ3 = 1√

2
, we expect these interfaces to symmetrically

evolve with respect to the horizontal line y = 0.5. This is
in agreement with our numerical simulation shown in Figure
10.

Fig. 10. Evolution of the triple junction for case 2.

In the first 10 time steps, the triple junction rapidly
approaches the 135◦−90◦−135◦ angle conditions. After which,
the interface gradually starts to move horizontally to the
right. The transport velocity s of our numerical interface
solution approaches π

2
√

2
, which is the exact velocity of

the constantly transported solution of the sharp interface
problem, as shown in Figure 11.

Fig. 11. Transport velocities of the numerical interface solution at y =
0.45, 0.47, 0.49 vs the constantly transported solution (sharp interf. sol.).

Moreover, we note that the shape of such a constantly
transported profile in the axially symmetric case is deter-
mined by:

v(y) = −σ1

s log(cos( s
σ1
y)) + c,

where the constant c of horizontal shift may be chosen ap-
propriately [12]. Comparing this with the numerical interface
solution obtained via our method, we see that it is in a good
agreement with the exact shape of the profile (Figure 12).
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Fig. 12. The shape of the numerical interface at time t = 30∆t vs the
constantly transported solution.

C. Volume-preserving 150◦−90◦−120◦ Double Bubble

Consider a three-phase volume-preserving case where two
phases are identical squares with one common side of length
0.28. We take the outside region as phase P1, and the left
and right square regions as phase P2 and P3, respectively
(refer Figure 13).

We evolve this configuration via our method under case 1
setting in Table I. Moreover, we wish to preserve the volume
of each phase region employing a penalization technique with
parameter ε = 10−6. Here, the domain is triangulated into
12, 800 elements with ∆x = 0.0125. To locate the interface,
we use a projection scheme determined by the maximum dot
product. The numerical stationary interface solution is shown
in Figure 13.

Fig. 13. (a) Initial Condition. (b) The stationary numerical solution in case
1.

To check the stability of the triple junction, we measure
the junction angles at each time step and calculate the
corresponding errors. We observe that the interior phase
angles at the top and bottom triple junctions behave in the
same manner, hence, we only plot the relative error in the
measure of the top junction angle in Figure 14.

It is evident from the error plot that the triple junction
first rapidly approximates the angle conditions, which is
consistent with the previous results. Thereafter, the numerical
solution gradually reaches a stationary state whose junction
angles are of measure 150◦±1.50, 120◦±2.43, and 90◦±1.36
yielding a relative error of at most 2%. This is consistent
with the result in our stability test. Hence, one can achieve

Fig. 14. Relative error of the top junction angles at each time step.

a more precise result using the projection triangle to locate
the interface.

TABLE III
PHASE VOLUMES UNDER PENALTY PARAMETER ε = 10−6 .

phase prescribed vol stationary state vol absolute error
P1 0.8432 0.84321 1.0× 10−5

P2 0.0784 0.07840 3.0× 10−6

P3 0.0784 0.07839 8.0× 10−6

Moreover, it is clear from Table III that the phase vol-
umes are preserved. Hence, the stationary numerical solution
obtain using our method fairly approximates the volume-
preserving solution of case 1.

IX. CONCLUSION

We have developed a method for numerical realization of
triple junction motion with arbitrary surface tensions. Our
method is based on the vector-valued BMO algorithm, which
has been generalized and augmented by a correction step
using projection triangle. Several numerical tests, including
the volume-constrained motion, were performed.

APPENDIX A
FORMAL ANALYSIS OF NONSYMMETRIC TRIPLE

JUNCTION

We look at the formula for the solution of the system (7)
with initial condition as in Figure 3 in more detail. From this,
we will see that the interfaces close to the triple junction will
not remain straight but will curve slightly.

Recalling the solution of the transformed problem (9), the
solution of the original system is given by

u(t, x) = M−1w = M−1

(
w1

w2

)
, (18)

where w1, w2 are obtained from the formula

wi(t, x) =

 3∑
j=1

(Mpj)
i

∫
Pj

 1

4πλit
e
− |x−ξ|

2

4λit dξ, i = 1, 2.

Set

erfc(s) = 1− erf(s) =
2√
π

∫ ∞
s

e−σ
2

dσ,
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and
α(ϑ) = x1 cosϑ+ x2 sinϑ,

β(ϑ) = x1 sinϑ− x2 cosϑ.

To see the specific form of the respective terms, we compute
the integral

∫
P1

e−
|x−ξ|2

4λt dξ

=

∫ ∞
0

∫ θ1
2

− θ12
e−

(r−α(ϑ))2+β(ϑ)2

4λt rdϑdr

=

∫ θ1
2

− θ12
e−

β(ϑ)2

4λt

∫ ∞
− α(ϑ)√

4λt

(√
4λtz + α(ϑ)

)√
4λte−z

2

dzdϑ

=
√
πλt

∫ θ1
2

− θ12
α(ϑ)e−

β(ϑ)2

4λt erfc
(
− α(ϑ)√

4λt

)
dϑ

+ 2λt

∫ θ1
2

− θ12
e−

β(ϑ)2+α(ϑ)2

4λt dϑ.

Rearranging the terms, we get∫
P1

e−
|x−ξ|2

4λt dξ

= 2λt
√
π

∫ β(
θ1
2

)
√

4λt

β(
−θ1
2

)
√

4λt

e−z
2

erfc

(
±
√
|x|2
4λt
− z2

)
dz

+ 2λtθ1e
− |x|

2

4λt .

Expressing the point x in polar coordinates as x =
(s cosϕ, s sinϕ), we get

1

2λt

∫
P1

e−
|x−ξ|2

4λt dξ

=
√
π

∫ s sin(
θ1
2
−ϕ)

√
4λt

s sin(
−θ1
2
−ϕ)

√
4λt

e−z
2

erfc

(
±
√

s2

4λt
− z2

)
dz

+ θ1e
− s2

4λt , (19)

and similarly for the integrals over the regions P2 and P3.
From (19) we can conclude that:

1) If s√
t

is close to zero, (19) approaches θ1 since the
first term is negligible. Hence, from (18) we get the
value of the solution

u(t, x) ≈ θ1

2π
p1 +

θ2

2π
p2 +

θ3

2π
p3,

which is in agreement with (5).
2) If the point x is away from the triple junction and close

to some of the interfaces, for instance the interface
between phases P1 and P2, then the second term is
exponentially small. Moreover, ϕ ≈ θ1

2 , and so the
first integral will be close to π. Similarly, the integral
over the region P2 will be close to π and the integral
over P3 will be close to zero. Therefore, the solution
(18) at this point x will be

u(t, x) ≈ 1

2
(p1 + p2),

which means that the interface will remain stationary
as a straight line.

3) If the point x is in other position than the two cases
mentioned above, the values of the above integrals will
depend not only on x and t but also on the values of
λ1, λ2. As a consequence, the solution u will depend
also on the coefficients a, b, c, and the corresponding
interfaces may curve.

REFERENCES

[1] M. Elsey, S. Esodoglu, P. Smereka, “Diffusion generated motion for
grain growth in two and three dimensions,” in J. Comp. Physics, vol.
228, pp. 8015-8033, 2010.

[2] F. Catte, P. L. Lions, J. M. Morel, “Image selective smoothing and edge
detection by nonlinear diffusion,” in SIAM J. Num. Anal., vol. 29, pp.
182-183, 1992.

[3] K. Svadlenka, E. Ginder, S. Omata, “A variational method for multi-
phase volume-preserving interface motions,“ in Journal of Computa-
tional and Applied Mathematics, vol. 257, pp. 157-179, 2014.

[4] B. Merriman, J. Bence, S. Osher, “Motion of multiple junctions: a level
set approach,” in J. Comp. Physics, vol. 112, pp. 334-363, 1994.

[5] L. Evans, “Convergence of an algorithm for mean curvature motion,”
in Indiana Univ. Math. J., vol. 42, pp. 533-557, 1993.

[6] G. Barles, C. Georgelin, “A simple proof of convergence of an approx-
imation scheme for computing motions by mean curvature,” in SIAM
J. Numer. Anal., vol. 32, pp. 484-500, 1995.

[7] Y. Goto, K. Ishii, T. Ogawa, “Method of the distance function to the
Bence-Merriman-Osher algorithm for motion by mean curvature,” in
Comm. Pure Appl. Anal., vol. 4, pp. 311-339, 2005.

[8] S. J. Ruuth, “A diffusion-generated approach to multiphase motion,” in
J. Comp. Physics, vol. 145, pp. 166-192, 1998.

[9] R. Z. Mohammad, K. Svadlenka, “Multiphase Volume-preserving Inter-
face Motions via Localized Signed Distance Vector Scheme”, preprint.

[10] R. Z. Mohammad, “Multiphase mean curvature flow: signed distance
vector approach,” in Recent development in computational science:
selected papers from the ISCS, vol. 4, pp. 115-123, 2013.

[11] L. Bronsard, F. Reitich, “On three-phase boundary motion and the
singular limit of a vector-valued Ginzburg - Landau equation,” in Arch.
Ration. Mech. Anal., vol. 124, pp. 355-379, 1993.

[12] H. Garcke, B. Nestler, B. Stoth, “A multiphase field concept: numerical
simulations of moving phase boundaries and multiple junctions,” in
SIAM J. Appl. Math , vol. 60, pp. 295-315, 1999.

[13] H. Garcke, B. Nestler, B. Stoth, “On anisotropic order parameter
models for multi-phase systems and their sharp interface limits,” in
Physica D, vol. 115, pp. 87-108, 1998.

[14] X. Chen, J-S. Guo, “Self-similar solutions of a 2-D multiple-phase
curvature flow,” in J. Comp. Physics, D 229, pp. 22-34, 2007.

[15] K. Ishii, “Mathematical analysis to an approximation scheme for mean
curvature flow, in: S. Omata, K. Svadlenka (Eds.), ISCS 2011,” in Math-
ematical Sciences and Applications, vol. 34, GAKUTO International
Series, pp. 67-85, 2011.

[16] E. Rothe, “Zweidimensionale parabolische Randwertaufgaben als
Grenzfall eindimensionaler Randwertaufgaben,” in Math. Ann., vol. 102,
pp. 650-670, 1930.

[17] H. Zhao, T. Chan, B. Merriman, S. Osher, “A variational level set
approach to multiphase motion”, in J. Comp. Physics, vol. 127, pp.
179-195, 1996.

[18] S. Osher, J. A. Sethian, “Fronts propagating with curvature dependent
speed: Algorithms based on Hamilton-Jacobi formulations”, in J. Comp.
Physics, vol. 79, pp. 12-49, 1988.
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