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Abstract—In this paper, minimizing makespan for single-
machine scheduling problem with human energy recovery func-
tion under nonlinear time-dependent deterioration is consid-
ered. Firstly, a human recovery function is proposed according
to the length of a rate-modifying activity (RMA) (i.e. the length
of the rest time). Meanwhile, it is the first paper to introduce the
recovery function into a scheduling problem. And the problem
is proved to be an NP-hard problem. Then, a special case of
the problem is proved to be solved in polynomial time.

Index Terms—scheduling, rate-modifying activity, time-
dependent deterioration, human recovery function, makespan,
NP-hard problem.

I. INTRODUCTION

IN this paper, minimizing makespan for single-machine
scheduling problem with human energy recovery function

under nonlinear time-dependent deterioration is considered.
In classical scheduling problems, a machine always works
efficiently and effectively. However, this does not fit in the
life, even in the case with using the human operators. For
example, in the process of loading and unloading cargos in
ramp service, the processing time of a job is affected by
human operators energy as this process is usually operated
by human. It is easy to find that the total processing time of
previous jobs and the deterioration rate of human operators
have direct effects upon the processing time of later jobs.
Hence, it should be more reasonable to describe the process-
ing time of a job as a given constant that follows a nonlinear
deterioration instead of linear one. More importance is that
the length of break time plays a key role in the process
of recovery. By affecting directly the extent of recovery it
affects the efficiency of the whole services finally. Therefore,
in this paper, the human energy recovery function is the
first proposed. The scheduling problem with human energy
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recovery function under a nonlinear time-dependent deteri-
oration is modeled as a single machine scheduling problem
with recovery processing, i.e., a group of human operators is
treated as a single machine, while airlines cargos are regarded
as jobs which need to be processed. Moreover, for the general
scheduling problems, the earlier the service is completed, the
more efficient it is. So, the decision maker would more likes
to seek minimal makespan as their goal.

Hence, in this paper, a single machine scheduling problem
with human energy recovery function under nonlinear time-
dependent deterioration is considered. A rational human
recovery function is the first proposed to be integrated into
deterioration jobs, RMA, and human operators fatigued to
minimize makespan. Obviously, this research provides a
reference for other practical scheduling problems particularly
involved labors, such as maintenance scheduling, cleaning
assignments and so on.

The remainders of this paper are organized as follows. Lit-
erature reviews are given in section 2. In section 3, the prob-
lem and the recovery function are presented and formulated.
In section 4, the problem of minimizing makespan for single-
machine scheduling with human energy recovery function
under nonlinear time-dependent deterioration is proved to be
an NP-hard. The special case is considered in section 5. And
the conclusions are given in the last section.

II. LITERATURE REVIEWS

Deterioration jobs scheduling problem is first introduced
independently by Gupta and Gupta[1] and by Browne and
Yechiali[2]. Since then, related models have been extensively
studied from variety of perspectives. For instance, Wang et
al.[3] present single-machine scheduling with deteriorating
jobs in which the jobs are subject to a series-parallel graph
constraint and prove that the problem of minimizing the
makespan and the total weighted completion time can be
solved in polynomial time. Toksari and Güner[4] focus
on analyzing parallel machine earliness/tardiness scheduling
problem with linear deterioration and simultaneous effects
of learning. Cheng and Sun[5] consider the problem where
the processing time of a job is a linear function of its
starting time and jobs can be rejected by paying penalties.
They show that the problems of minimizing the makespan,
the total weighted completion time and the maximum late-
ness/tardiness plus the total penalty of the rejected jobs
are NP-hard. Hence, they apply dynamic programming to
solve the related problem. Li et al.[6] present polynomial-
time algorithms to solve the problem that its objective is to
determine the optimal due dates and the processing sequence
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simultaneously to minimize costs for earliness, due date
assignment and weighted number of tardy jobs, in which the
actual processing time of a job is a linear increasing function
of its starting time. Ng et al.[7] also study the problem of
scheduling deteriorating jobs with release dates on a single
machine. These papers all focus on linear deterioration jobs.
A few of papers refer to the nonlinear deterioration jobs.
Cheng et al.[8] investigate the problem of common due-
window assignment and scheduling of deteriorating jobs and
a maintenance activity simultaneously on a single-machine,
in which the job actual processing times are assumed to
follow a linear time-dependent deteriorating model. And
they provide polynomial time solutions for the objective
of the problem to simultaneously minimize the earliness,
tardiness, due-window starting time and due-window size
costs. Kuo and Yang[9] introduce a time-dependent learning
effect to a single-machine scheduling problem based on the
notion that the more one practices, the better one learns.
In this regard, the processing times of the subsequent jobs
are smaller than their normal processing times because of
the learning effect. They define a time-dependent learning
effect as follows. Let pir be the actual processing time of
Ji(i = 1, 2, · · · , n) if it was scheduled in position r in
a sequence. p[r] is the normal processing time of a job
if scheduled in the rth position of a sequence. And pi is
the normal (sequence-independent) processing time of job
Ji. Then pir = (1 + p[1] + p[2] + · · · + p[r−1])

api =

(1 +
r−1∑
k=1

p[k])
api, where a ≤ 0 is a constant learning index.

According to a time-dependent learning effect introduced by
Kuo and Yang[9], Wang et al.[10] consider a single machine
scheduling problem with a nonlinear time-dependent deteri-
oration. They define the actual processing times as follows.

pir = (1+ p[1] + p[2] + · · ·+ p[r−1])
api = (1+

r−1∑
k=1

p[k])
api,

where a ≥ 0 is a constant deterioration index. pir is the
actual processing time of Ji(i = 1, 2, · · · , n) if it is scheduled
at position r in a sequence. p[r] is the normal processing time
of a job if scheduled in the rth position in a sequence. And pi
is the normal (sequence-independent) processing time of job
Ji. They show that the single-machine makespan problem
remains polynomially solvable under the proposed model.
Wu and Cheng[11] address that the actual processing time
of a job is a decreasing function of the sum of processing
times based learning or increasing function of the sum of
processing times based deteriorating effect to solve a two-
agent single-machine scheduling problem. Li and Fan[12]
address the nonresumable version of the scheduling problem
with proportionally deteriorating jobs subject to availability
constraints to minimize the total weighted completion time.
Wu and Huang [13] investigate an NP-hard problem of
single-machine scheduling problem with deteriorating jobs
and different due dates to minimize total tardiness, and
propose EDA to solve it. Wang et al.[14] consider single-
machine scheduling problem with deterioration jobs in which
the actual processing time of a job is a function of its
position in a sequence, its starting time, and its resource
allocation. Lee[15] provide the optimal schedules for the
problem of single-machine scheduling with past-sequence-
dependent setup times and general effects of deterioration
and learning. And, besides that, another scholars study other

scheduling problem with variety of processing time. For
example, Wang and Choi[16] considered makespan mini-
mization of a flexible flow shop scheduling problem with
stochastic processing times. Lee[17] studied the scheduling
problem with learning effect and setup time. Lai and Lee[18]
discussed the scheduling problems with learning effect and
forgetting effect.

Due to the characteristics of time-dependent deterioration
in the loading and unloading cargos process, having a rest
should be also considered. Moreover, having a rest implies
that it modifies a performance rate of the machine. In
this paper, it is also regarded as a rate-modifying activity
(RMA). Lee and Leon[19] first consider single machine
scheduling with a rate-modifying activity for a problem
commonly found in electronic assembly lines. They provided
polynomial and pseudo-polynomial algorithms for a number
of objective functions. Motivated by a RMA, Wang and
Wang[20] suggest single machine SLK due date assignment
scheduling problem with a rate-modifying activity. A R-
MA is introduced into a scheduling problem with job-
dependent learning effects by Ji and Cheng[21] and parallel
machine scheduling problem by Wang and Wei[22]. Rebai
et al.[23] consider maintenance tasks the same as RMA
assigned to multiple single machines . Lodree and Geiger[24]
integrate time-dependent processing time/RMA framework
into machine environments characterized by deteriorating
machine performance and rate-modifying maintenance ac-
tivities. They assume that the normal processing time of
each job is equal to 1, the task actual processing times are
represented as a variation of simple linear deterioration and a
single machine always fully restores after a break time. Zhao
and Tang[25] consider a single machine scheduling and due-
window assignment problem, where the normal processing
time is a fixed value and the actual processing time of a job is
a linear function of its starting time and the job-independent
deterioration rates are identical for all jobs. The objective is
to schedule the jobs, the due-widow and the rate-modifying
activity so as to minimize the sum of earliness, tardiness
and due-window starting time and due-window size costs.
Öztürkoǧlu et al.[26] determined an optimal sequence with
the optimal number and the positions of RMAs.

However, research on the detailed recovery processing has
not been studied until now. To the best of our knowledge,
this paper is the first study to propose a rational recovery
function integrated into deterioration jobs, RMA, and human
operators fatigued.

III. PROBLEM FORMULATION

The problem in this paper can be formally described as
follows: There are n independent jobs J = {J1, J2, · · · , Jn}
to be processed non-preemptively on a single machine.
Assume that all jobs are available at the same time, and
have the same processing time if they were processed at the
beginning of a sequence. Otherwise, in order to improve the
efficiency of the machine, a resting time is inserted into a
sequence. The problem is where and how long the resting
time should be. The detailed notations are as follows:
n: The number of independent jobs to be processed on a

single machine;
J = {J1, J2, · · · , Jn}: The set of jobs;
pi: The normal processing time for every job (pi > 0);
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Fig. 1. The position of a maintaining time

pir: The actual processing time of job Ji(Ji ∈ J) if it is
scheduled in position r (1 ≤ r ≤ n) in a given sequence;
p[r]: The normal processing time for job scheduled in

position r, when Ji is scheduled in position r, pi = p[r].
b: The deterioration rate (b > 0);
k: A resting time is inserted in the front of the kth job

processed in a sequence (such as Figure 1);
T : The duration of resting for a single machine to be fully

restored;
t: The duration of a resting time (0 ≤ t ≤ T );
Ci(k, t): The completion time of job Ji(1 ≤ i ≤ n)

associated with scheduling an RMA in the kth position of a
sequence, where 1 < k ≤ n, because it is never optimal to
schedule the RMA in the first sequence position k = 1 [24];
Cmax(k, t): The makespan associated a resting time in the

position k (1 < k ≤ n) of a sequence.
According to Wang et al.[10], if the resting time was not

considered, the actual processing time of job Jir could be
described as a nonlinear function as follows:

pir = pi[1 + p[1] + . . .+ p[r−1]]
b , 0 < r ≤ n (1)

However, if the resting time was scheduled, the processing
times of jobs after resting will be affected by the duration
t of resting. Suppose that the machine will fully recover if
and only if t = T where T depends on the nature of the
problem. Then the recovery function can be defined.

Definition 3.1. The recovery function is defined as:

F (t) = t
T p[r][(1 + p[k] + p[k+1] + . . .+ p[r−1])

b−
(1 + p[1] + p[2] + . . .+ p[r−1])

b]
(2)

Where k ≤ r ≤ n.
Obviously, it is a linear function of recovery time t, that

is
(1) If t = 0, then F (t) = 0. It implies that the machine

has no chance for recovering capacity. Namely, there is no
rest time set;

(2) If t = T , then F (t) =
p[r][(1 + p[k] + p[k+1] + . . .+ p[r−1])

b −
(1 + p[1] + p[2] + . . .+ p[r−1])

b]. It indicates that the
capacity of a machine can recover entirely when the length
of a rest time T is scheduled in the sequence;

(3) If 0 < t < T , then F (t) =
t
T p[r][(1 + p[k] + p[k+1] + . . .+ p[r−1])

b −
(1 + p[1] + p[2] + . . .+ p[r−1])

b]. It describes the amount of
recovery that the machine captured when the length of a
rest time t (0 < t < T ) is scheduled in the sequence. It is
clear that F (T ) < F (t) < 0.

Hence, according to the recovery function, when 0 ≤ t ≤
T , the actual processing time of job pir can be described as
follows:

pir =

{
pi[1 + p[1] + . . .+ p[r−1]]

b 0 < r < k

pi[1 + p[1] + . . .+ p[r−1]]
b
+ F (t) k ≤ r ≤ n

(3)
Based on Equation (3), we have the following scenarios:

(1) When t = 0, pir = pi(1 + p[1] + p[2] + . . .+ p[r−1])
b.

It denotes that a resting time is not inserted in a sequence and
the actual processing times of jobs are increasing according
to the job sequence;

(2) When 0 < t < T , pir =
pi[1 + p[1] + p[2] + . . .+ p[r−1]]

b + F (t). It implies all
the jobs after the resting time will be processed more
efficiently;

(3) When t = T , pir =
pi[1 + p[k] + p[k+1] + . . .+ p[r−1]]

b. When the resting
duration is equal to T , then the machine is fully restored
and the processing time of the first job after rest is equal to
the normal processing time of it.

So the problem is how to assign jobs, how to schedule
t, how long t should be and where t should be located to
optimize the given objectives.

In the following sections, we consider the problem of
minimizing the makespan with recovery function on a single
machine under nonlinear time-dependent deterioration. We

denote it as 1 |pir, rm, rp |Cmax and 1

∣∣∣∣pir, rm ∣∣∣∣ n∑
i=1

Ci by

using the three-field notation scheme α |β |γ introduced by
Graham et al.[27], where represents the resting time or time
of maintenance that would modify a processing rate of a
machine, i.e. an RMA, and rp the recovery processing.

IV. THE PROBLEM OF 1 |pir, rm, rp |Cmax

In this section, the problem of 1 |pir, rm, rp |Cmax is
proved to be an NP-hard problem.

Theorem 4.1. The problem 1 |pir, rm |Cmax is an NP-
hard problem.

Proof. We transform the partition problem to our problem.
Partition problem
Instance. A finite set of positive integers xi ∈ X (i =

1, 2, . . . 2n) and A with
2n∑
i=1

xi = 2A, where A
2n < xi <

3A
2n

and A >
√
2.

Question. Can this set X be partitioned into two disjoint
subsets X1 and X2 such that the sum of each subset is equal
to (

∑
xi∈X1

xi =
∑

xi∈X2

xi = A)?

We construct the following instance of the scheduling
problem. These are 2n + 2 jobs. Among them there are 2n
partition jobs ai (i = 1, 2, . . . , 2n), and enforcer jobs ae1
and ae2 with the following parameters:

ai = H + xi, i = 1, 2, . . . , 2n, xi ∈ X

ae1 = ae2 = 3A
where H = A, the duration time of an RMA t = 1, and

the deterioration rate b = 2.
Calculating y = 2nH + 3A+ 6A(1 +A)2 +W , where

W=2
∑

xi,xj∈X∧i<j

(H + xi)(H + xj)+∑
xi,xj∈X∧i<j

(H + xi)
2
(H + xj)

We show that the partition problem has a solution if and
only if there exists a solution to construct the instance of
1 |pir, rm |Cmax with value Cmax ≤ y.

Only if (⇒)
Assume that a partition exists. Let X1 and X2 denote the

disjoint subsets, i.e.,
∑

xi∈X1

xi =
∑

xi∈X2

xi = A. There are

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_05

(Advance online publication: 14 November 2015)

 
______________________________________________________________________________________ 



l jobs in subset X1. Assign ae1 and ae2 as the last jobs in
subsets X1 and X2, respectively. In such a schedule, we have

Cmax = a[1] + a[2](1 + a[1])
2 + . . .+

a[l](1 + a[1] + . . .+ a[l−1])
2 +

ae1(1 +
l∑

i=1

ai)
2 + 1 + a[l+2] +

a[l+3](1 + a[l+2])
2 + . . .+

a[2n+1](1 + a[l+2] + . . .+ a[2n])
2 + ae2(1 +

2n+1∑
i=l+2

ai)
2

= 2nH + 2A+W + 1 + 6A(1 +A)2

< 2nH + 3A+W + 1 + 6A(1 +A)2

(4)
Hence, Cmax < 2nH + 3A+W + 1+ 6A(1 +A)2 = y for
i = 1, 2, . . . , 2n.

If (⇐)
Assume that the partition problem has no solution. Then,

we have

Cmax = a[1] + a[2](1 + a[1])
2 + . . .+

a[l](1 + a[1] + a[2] + . . .+ a[l−1])
2+

ae1(1 +
l∑

i=1

ai)
2 + 1 + a[l+2]+

a[l+3](1 + a[l+2])
2 + . . .+

a[2n+1](1 + a[l+2] + . . .+ a[2n])
2+

ae2(1 +
2n+1∑
i=l+2

ai)
2

= 2nH + 2A+W + 1 + 3A(1 +
∑

xi∈X1

xi)
2+

3A(1 +
∑

xi∈X2

xi)
2

(5)

Suppose that
∑

xi∈X1

xi = D (D ̸= A),
∑

xi∈X2

xi =

D′ (D′ ̸= A), then D + D′ = A and Equation (5) can
be expressed as follows:

Cmax = 2nH + 2A+W + 1+
3A(1 +D)2 + 3A(1 +D′)2

= y +A[(D2 +D′2)− 1] + A(D−D′)2

2 .

(6)

Since A >
√
2, D2 +D′2 > 1.

Therefore, Cmax = y+A[(D2−D′2)−1]+A(D−D′)2

2 > y.
Since the makespan is greater than the required value y,

our scheduling problem has no solution, which ends the
proof.

Therefore, the partition problem has a solution if and
only if there exist a solution to the construct instance of
1 |pir, rm |Cmax with value Cmax ≤ y.

According to the above Theorem 4.1, we obtain the
following corollary.

Corollary 4.1. The problem 1 |pir, rm, rp |Cmax is an
NP-hard problem.

Proof. When t = 0, the problem 1 |pir, rm, rp |Cmax

becomes 1 |pir, rm |Cmax . Clearly, 1 |pir, rm |Cmax is a
special instance of 1 |pir, rm, rp |Cmax . Since the problem
1 |pir, rm |Cmax is an NP-hard problem, the problem
1 |pir, rm, rp |Cmax is also an NP-hard problem.

The proof is end.

V. THE SPECIAL CASE OF 1 |pir, rm, rp, pi = p |Cmax

In this section, we derive the optimal policy for assigning
a suitable length of t (a resting time) in an appropriate
position k when all job identical normal processing time

and the objective of minimizing the makespan. In subsection
5.1, preliminary analysis is given. In subsection 5.2, the
polynomial algorithm is presented, followed by numerical
experiments in subsection 5.3.

A. Preliminary Analysis

In a sequence, while inserting an RMA at position k in a
sequence, the makespan can be expressed as follows:

Cmax(k, t) = p
k−2∑
s=0

(1 + sp)
b
+ t

T p
n−k∑
s=0

(1 + sp)
b
+

t+ (1− t
T )p

n−1∑
s=k−1

(1 + sp)
b

(7)

Here, p
k−2∑
s=0

(1 + sp)
b denotes the total processing times of

the front (k−1) jobs; t is a resting time; t
T p

n−k∑
s=0

(1 + sp)
b
+

(1− t
T )p

n−1∑
s=k−1

(1 + sp)
b describes the total processing times

of the rest (n− k+1) jobs. Clearly, the makespan is related
to a position k and a resting time t. The problem can
be accomplished by determining the value of k and t to
minimize Equation (7). To determine the value of k and t,
we propose the following propositions and theorems.

Proposition 5.1. For any k (1 < k ≤ n) and t
(0 < t ≤ T ), if Cmax(k, t) < Cmax(k + 1, t), then
Cmax(k, t) < Cmax(k + 1, t) < · · · < Cmax(n, t); if
Cmax(k, t) < Cmax(k − 1, t), then Cmax(k, t) < Cmax(k −
1, t) < · · · < Cmax(2, t).

Proof. For decided k and t, the makespan can be expressed
as follows:

Cmax(k, t) = p
k−2∑
s=0

(1 + sp)
b
+ t

T p
n−k∑
s=0

(1 + sp)
b
+

t+ (1− t
T )p

n−1∑
s=k−1

(1 + sp)
b

(8)

Cmax(k + 1, t) = p
k−1∑
s=0

(1 + sp)
b
+ t

T p
n−k−1∑
s=0

(1 + sp)
b
+

t+ (1− t
T )p

n−1∑
s=k

(1 + sp)
b

(9)

Cmax(k + 2, t) = p
k∑

s=0
(1 + sp)

b
+ t

T p
n−k−2∑
s=0

(1 + sp)
b
+

t+ (1− t
T )p

n−1∑
s=k+1

(1 + sp)
b

(10)
Using Equations (8), (9) and (10), we obtain:
Cmax(k, t) − Cmax(k + 1, t) = t

T p[(1 + (n− k)p)b −
(1 + (k − 1)p)b] and Cmax(k + 1, t) − Cmax(k + 2, t) =
t
T p[(1 + (n− k − 1)p)b − (1 + kp)b].

If Cmax(k, t) < Cmax(k + 1, t), we have
t

T
p(1 + (n− k)p)b <

t

T
p(1 + (k − 1)p)b.

Since T > 0, b > 0, p > 0 and t > 0, then
t
T p(1 + (n− k − 1)p)b < t

T p(1 + (n− k)p)b <
t
T p(1 + (k − 1)p)b < t

T p(1 + kp)b, i.e.,
t
T p(1 + (n− k − 1)p)b < t

T p(1 + kp)b and
Cmax(k + 1, t) < Cmax(k + 2, t).

Similarly, we can obtain Cmax(k, t) < Cmax(k + 1, t) <
· · · < Cmax(n, t).
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An analogous proof holds if Cmax(k, t) < Cmax(k−1, t),
then Cmax(k, t) < Cmax(k − 1, t) < · · · < Cmax(2, t).

This concludes the proof.
Proposition 5.2. If an RMA is scheduled, then T <

Min
1<k≤n

{p
n−1∑

s=k−1

[(1 + sp)
b − (1 + (s− (k − 1))p)b)]}.

Proof. Through the previous description, the RMA should
be assigned to position k in a sequence only if the resulting
makespan less than that of associating with not scheduling
the RMA, the makespan associated with not scheduling an
RMA is:

Cmax(k, t = 0) = p+ p(1 + p)b + p(1 + 2p)b+
· · ·+ p(1 + (n− 1)p)b

(11)

Therefore, the RMA is scheduled only if Cmax(k, t) <
Cmax(k, t = 0). Using Equations (7) and (11), Cmax(k, t) <
Cmax(k, t = 0) becomes

T < Min
1<k≤n

{p
n−1∑

s=k−1

[(1 + sp)
b − (1 + (s− (k − 1))p)b)]}.

Hence, the proposition is proved.
Theorem 5.1. For any t (0 < t ≤ T ) , the opti-

mal policy for scheduling an RMA of length t for all
jobs is as follows: If n is an even integer and T <

p
n−1∑
s=

n
2

[(1 + sp)
b − (1 + (s− n

2 )p)
b
], assign the RMA to se-

quence position k = n
2 + 1; If n is an odd integer and

T < p
n−1∑

s=
n+1
2

[(1 + sp)
b − (1 + (s− n+1

2 )p)
b
], assign the

RMA to sequence position k = n+1
2 or k = n+1

2 + 1.
Otherwise, do not schedule the RMA.

Proof. (For an even n) According to Equation (7),

Cmax(
n
2 + 1, t) = p

n
2−1∑
s=0

(1 + sp)
b
+ t+

t
T p

n
2−1∑
s=0

(1 + sp)
b
+

(1− t
T )p

n−1∑
s=

n
2

(1 + sp)
b

(12)

Cmax(
n
2 + 2, t) = p

n
2∑

s=0
(1 + sp)

b
+ t+

t
T p

n
2−2∑
s=0

(1 + sp)
b
+

(1− t
T )p

n−1∑
s=

n
2 +1

(1 + sp)
b

(13)

Cmax(
n
2 , t) = p

n
2−2∑
s=0

(1 + sp)
b
+ t+

t
T p

n
2∑

s=0
(1 + sp)

b
+

(1− t
T )p

n−1∑
s=

n
2−1

(1 + sp)
b

(14)

Since T > 0, b > 0, p > 0 and t > 0, then Cmax(
n
2 +

1, t)−Cmax(
n
2 +2, t) = t

T p[(1 + (n2 − 1)p)b−(1 + n
2 p)

b] <

0, i.e., Cmax(
n
2 + 1, t) < Cmax(

n
2 + 2, t); and Cmax(

n
2 +

1, t)−Cmax(
n
2 , t) =

t
T p[(1 + (n2 − 1)p)b − (1 + n

2 p)
b] < 0,

i.e., Cmax(
n
2 + 1, t) < Cmax(

n
2 , t).

By Proposition 5.1, we have

Cmax(
n
2 + 1, t) < Cmax(

n
2 + 2, t) <

Cmax(
n
2 + 3, t) < · · ·Cmax(n, t)

(15)

Cmax(
n
2 + 1, t) < Cmax(

n
2 , t) <

Cmax(
n
2 − 1, t) < · · · < Cmax(2, t)

(16)

Equations (15) and (16) imply that the minimum makespan
obtains when k = n

2 + 1.
Now the RMA should be assigned to position k in a

sequence only if the resulting makespan is less than the
makespan associated with not scheduling the RMA.

Therefore, the RMA is scheduled only if Cmax(k, t) <
Cmax(k, t = 0). Using Equations (11) and (12),
Cmax(k, t) < Cmax(k, t = 0) becomes

T < p

n−1∑
s=

n
2

[(1 + sp)
b − (1 + (s− n

2 )p)
b
].

The proof for odd is analogous. This proof ends.
Theorem 5.2. For any t (0 < t ≤ T <

p
n−1∑
s=

n
2

[(1 + sp)
b − (1 + (s− n

2 )p)
b
]) and k, the optimal pol-

icy for scheduling an RMA of length t for all jobs is as
follows: If n is an even integer, assign the RMA to position
k = n

2 + 1 in a sequence and the length t = T ; If n is
an odd integer, assign the RMA to position k = n+1

2 or
k = n+1

2 +1 in a sequence and the length t = T . Otherwise,
do not schedule the RMA.

Proof. (For an even n) According to Equation (7), the
makespan of scheduling an RMA in a sequence is:

Cmax(k, t) = p
k−2∑
s=0

(1 + sp)
b
+ t+

t
T p

n−k∑
s=0

(1 + sp)
b
+

t+ (1− t
T )p

n−1∑
s=k−1

(1 + sp)
b

= {1 + 1
T p

n−k∑
s=0

(1 + sp)
b−

1
T p

n−1∑
s=k−1

(1 + sp)
b}t+

p[
k−2∑
s=0

(1 + sp)
b
+

n−1∑
s=k−1

(1 + sp)
b
]

= {1− 1
T p

n−1∑
s=k−1

[(1 + sp)
b−

(1 + (s− (k − 1))p)b]}+

p
n−1∑
s=0

(1 + sp)
b

(17)

Based on Theorem 5.1, for 0 < t ≤ T

and T < p
n−1∑
s=

n
2

[(1 + sp)
b − (1 + (s− n

2 )p)
b
],

we have Cmax(
n
2 + 1, t) <

Cmax(k, t) , (k = 2, · · · , n. and k ̸= n
2 + 1 ) .

So Cmax(
n
2 + 1, t) is minimal. Thus, the makespan of
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scheduling the RMA in a sequence is represented as
follows:

Cmax(
n
2 + 1, t) = {1− 1

T p
n−1∑
s=

n
2

[(1 + sp)
b−

(1 + (s− n
2 )p)

b]}t+

p
n−1∑
s=

n
2

[(1 + sp)
b
+ (1 + (s− n

2 )p)
b
]

(18)

Let K = 1 − 1
T p

n−1∑
s=

n
2

[(1 + sp)
b − (1 + (s− n

2 )p)
b
] and

B = p
n−1∑
s=

n
2

[(1 + sp)
b
+ (1 + (s− n

2 )p)
b
], then Cmax(

n
2 +

1, t) = Kt+B.
Since b > 0, p > 0 and 0 < t ≤ T <

p
n−1∑
s=

n
2

[(1 + sp)
b − (1 + (s− n

2 )p)
b
], then K < 0.

Obviously, Cmax(
n
2+1, t) is decreasing function when 0 <

t ≤ T . Therefore, the minimum of Cmax(k, t) is Cmax(
n
2 +

1, T ).
The proof for odd n is analogous. This proof ends.

B. Algorithm

Based on above propositions and theo-
rems, we give the following algorithm. Let

U = p
n−1∑
s=

n
2

[(1 + sp)
b − (1 + (s− n

2 )p)
b
] and

V = p
n−1∑

s=
n+1
2

[(1 + sp)
b − (1 + (s− n+1

2 )p)
b
]. The

procedure of the algorithm for solving the problem
1 |pir, rm, rp, pi = p |Cmax is as follows:

Step 1. For an even integer n, computer whether T is less
than U or not (For an odd integer n , computer whether T
is less than V or not). If it is not, then do not schedule an
RMA. Otherwise, move to Step 2.

Step 2. Assign the RMA in position (n2 +1) and Computer
Cmax(

n
2 + 1, T ) (For an odd integer n, assign the RMA in

position (n+1
2 ) or (n+1

2 + 1) and computer Cmax(
n+1
2 , T )),

which is the minimal value of the makespan.
Because the time complexity of

p
n−1∑
s=

n
2

[(1 + sp)
b − (1 + (s− n

2 )p)
b
] is O(n2 ), clearly,

the time complexity of Algorithm 1 is O(n).

C. Numerical Experiments

Example. Through investigating a certain large airport
in China, an example is given here. There are 6 airplanes
(n = 6) which arrives at an airport at time 0. The normal
processing time for each airplane is 35min (p = 35), the dete-
rioration rate b and the fully recovery time T are respectively
designed as different values to solve the problem, i.e., b =
0.054, 0.056, 0.059, 0.100, and T = 10min, 20min, 30min.

All airplanes are available for ramp services at 0 and n
is an even integer equal to 6. According to Proposition 5.1,
Proposition 5.2 and Theorem 5.1, when T < U , an RMA
will be scheduled.

According to the algorithm in 5.2, we have the following
results of comparisons in Table 1, in which RMAC denotes
it is considered whether an RMA is scheduled or not, and
RMANC denotes no considering the RMA. Besides, the
value of k is obtained by the algorithm in 5.2 and it is the
position of scheduling an RMA. denotes that there is not
an RMA. Yes indicates that an RMA should be scheduled
for minimizing the makespan or the total completion time of
jobs. And No is just contrary to it.

TABLE I
THE RESULTS OF COMPARISONS

Makespan
RMAC RAMNC

T b T < U? k Cmax Cmax

10 0.054 Yes 4 253.06 258.55
0.056 Yes 4 254.42 260.58
0.059 Yes 4 256.49 263.68
0.100 Yes 4 287.37 310.59

20 0.054 No 258.55 258.55
0.056 No 260.58 260.58
0.059 No 263.68 263.68
0.100 Yes 4 297.37 310.59

30 0.054 No 258.55 258.55
0.056 No 260.58 260.58
0.059 No 263.68 263.68
0.100 Yes 4 307.37 310.59

Analyses.
From Table 1 we can find that:
(1) Scheduling an RMA in a sequence can decrease the

makespan. On the other hand, the makespan will increase
with the deteriorating rate b. This is because that the
processing time of jobs become increasing if the labors are
easily tired.

(2) The value of T has an effect on whether an RMA is
scheduled or not.

a) When T < U for the minimal makespan problem,
an RMA should be scheduled. Under these situations, for a
certain deteriorating rate b, he longer the fully recovery time
T of a group labors needs, the larger the objective value
is. However, compared with no RMA scheduled situation, it
will decrease.

b) When T > U for the minimal makespan problem, an
RMA should not be scheduled because scheduling with a
shorter RMA has weakly impact on the recovery of workers
and scheduling with a longer recovery time will make the
objective value exceeding the one under the situation without
an RMA.

c) While T = U for the minimal makespan problem, the
schedule assigned with an RMA is the same as that without
an RMA. In this case, scheduling an RMA is encouraged
considering the workers healthy.

VI. CONCLUSIONS

This paper firstly considers a single machine scheduling
problem with human energy recovery function under nonlin-
ear time-dependent deterioration. Firstly, a recovery function
is firstly proposed. And the problem is proved to be an
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NP-hard problem. Then, the special case of the problem
is considered and solved in polynomial time. It provides a
scheduling framework for other practical scheduling prob-
lems referring to labors including maintenance scheduling
and cleaning assignments. In the future, the research will be
extended to the problem with release dates and due dates,
which is the more general situation. In this situation, the
scheduling problems need to be solved by heuristic algorithm
or intelligent optimization algorithm such as random search
algorithm[28].

ACKNOWLEDGMENTS

The authors would like to thank the reviewer for their
insightful comments. addressing them has improved the
quality of the paper.

REFERENCES

[1] J. N. D. Gupta and S. K. Gupta, “Single facility scheduling with
nonlinear processing times,” Computers and Industrial Engineering,
vol. 14, no. 4, pp. 387–393, 1988.

[2] S. Browne and U. Yechiali, “Scheduling deteriorating jobs on a single
processor,” Operations Research, vol. 38, no. 3, pp. 495–498, 1990.

[3] J. B. Wang, C. T. Ng, and T. C. E. Cheng, “Single-machine scheduling
with deterioration jobs under a series-parallel graph constraint,” Com-
puters & Operations Research, vol. 35, no. 8, pp. 2684–2693, 2008.
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