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Abstract—We develop a framework for estimating the
quadratic variation of discontinuous semi-martingales with
intra-day high-low statistics. Restricting the realized range-
based variance smaller than a suitably defined threshold, we
propose an integrated volatility estimator and consider its
consistency and asymptotic normality under a set of weak
conditions. We find that the precision of our statistics is about
five times greater than that of realized variance purely restricted
by threshold. Simulation results illustrate the good finite sample
properties of our estimator.

Index Terms—central limit theorem, realized range-based
volatility, threshold, discontinuous semi-martingales, integrated
volatility.

I. INTRODUCTION

THE volatility of asset price plays a central role in both
the theoretical and empirical finance literature (see [1],

[2], [3], among others). It is one of the most important deter-
minants of market decision, such as derivatives pricing, risk
analysis, hedging, portfolio management. Lots of researchers
considered estimation of volatility in continuous diffusion
process ([4], [5], [6]). Christensen and Podolskij ([7]) used
the high-low technique to discuss range-based estimation of
integrated volatility, and showed its precision was five times
greater than that of the realized variance under a set of weak
conditions. To our knowledge, there are few works which are
done on range-based estimation for jump-diffusion models.

With the increasing perfection of the financial market and
rapid process of the computer technology, it is a more and
more easy thing to obtain high frequency financial data.
In practice, these high frequency data are often sparsely
sampled due to the presence of microstructure noise([8]).
Unfortunately, this sparse sampling method might neglect the
important intra-day information of the price movement, and
will lead to loss of information and efficiency. As stated in
([9]), the range-based estimation technique need not sample
sparsely and can use the whole high frequency data.

It is undeniably that high frequency returns are often
inevitably with the existence of jump ([10], [11], [12]). Let
X = (Xt)t≥0 be a logarithmic price process of a security.
This jump-diffusion semi-martingale satisfies the following
generic process
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Xt = X0 +

t∫
0

audu+

t∫
0

σudBu +

Nt∑
i=1

Ji, t ∈ ]0, 1] (1)

where a = (at)t≥0 (the drift) is locally bounded and
predictable, σ = (σt)t≥0 (the volatility) is càdlàg, and B =
(Bt)t≥0 is a standard Brownian motion. Also, N = (Nt)t≥0

is a Poisson process with constant intensity λ, jumping at
times denoted by (τi)i=1,2,··· ,N1 , and each Ji is the size of
jump occurred at τi. The random variables Ji are i.i.d. and
independent of N .

The inference for jump-diffusion models is increasingly
becoming one of foci of attention in financial mathematics,
statistics and econometrics research. In view of the central
role of integrated volatility IV (defined as

∫ 1

0
σ2
t dt) in

financial economics, a large body of works are done on its es-
timation for jump-diffusion models for the moment, such as
using nearest neighbor truncation ([10]), using blocked multi-
power variation ([13]), using power and bi-power variation
([14]), the recent literatures ([15], [16]), and among others.
In recent years, some researchers used threshold technique
to consider the inference of jump-diffusion models ([17],
[18], [19], [20]). Mancini ([21]) used threshold technique
to provide a consistent estimate of integrated volatility with

ÎVδ =

n∑
i=1

(∆iX)2I{(∆iX)2≤r(δ)}, (2)

where ∆iX is denoted by the increment (Xti −Xti−1
) and

r(δ) is a deterministic function of the lag δ between two
adjacent observations (Xti , Xti−1

), and prove the following
central limit result

ÎVδ − IV√
δ

d−−→ N
(
0, 2ÎQδ

)
, (3)

where

ÎQδ :=
1

3δ

n∑
i=1

(∆iX)4I{(∆iX)2≤r(δ)}
P−−→

1∫
0

σ4
t dt.

The estimator (2) reflected quite a few good finite sample
properties (robustness, consistency etc) when the sampling
frequency was not very high. However, we should note
that the definition of the estimator (2) is based on realized
method, so it may not be a good estimator when the sampling
frequency is high (due to microstructure noise ([5], [22])). In
this situation, people have to resample available data sparsely,
then information and efficiency will be lose inevitably.

As we have mentioned, the range-based method can reme-
dy the weakness. Can these two methods be combined then?
Motivated by the works of Christensen and Podolskij ([7])
and Mancini ([21]), given a discrete record of observations,

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_07

(Advance online publication: 14 November 2015)

 
______________________________________________________________________________________ 



we propose a realized range-based threshold estimator of
integrated volatility. Our statistic has both the advantages
existing in the range-based method and in the threshold
technique, such as the former’s estimation precision and the
latter’s efficiency of identifying jumps.

II. PRELIMINARIES

In high-frequency volatility estimation, the quadratic vari-
ation plays a dominant role ([7]). The quadratic variation of
the process (Xt)t≥0 can be denoted by

[X]t =

t∫
0

σ2
udu+

Nt∑
i=1

J2
i , (4)

which is the integrated volatility plus the sum of squared
jumps. The object of our interest is its continuous part
(the integrated volatility IV ). For the estimation of the
total quadratic variation (including the contribution from the
squared jumps), interested readers may reference [14] which
used the popular realized volatility measure.

In the discussions of the asymptotic normality, we’ll use
the following regularity conditions of the volatility processσ:
Assumption(T ). σ does not vanish (T1) and satisfies

σt = σ0 +

t∫
0

µ′
udu+

t∫
0

σ′
udBu +

t∫
0

ν′udB
′
u, (T2)

where µ′ = (µ′
t)t≥0 is locally bounded and predictable, σ′ =

(σ′
t)t≥0 and ν′ = (ν′t)t≥0 are càdlàg, and B′ = (B′

t)t≥0 is a
Brownian motion independent of B.

The work is founded in a high-frequency record of X with
n discretized observations which are supposed to be available
at time ti, i = 0, 1, · · · , n.

Define the intra-day range at sampling times ti−1 and ti
as

sXti,δi
= sup{Xt −Xs}

ti−1≤s,t≤ti

. (5)

In the same way, the range of a standard Brownian motion
over [ti−1, ti] may be defined as

sBti,δi
= sup{Bt −Bs}

ti−1≤s,t≤ti

. (6)

For a scaled Brownian motion, Xt = σBt, the rth moment
of its range can be denoted by [23]

E[srXti,δi
] = λrδ

r/2
i σr(r ≥ 1), (7)

where λr = E[srB1,1
].

when the process X (B) is observed discretely at equidis-
tant time points {t = t1, t2, · · · , tn} with δ = 1/n =
ti − ti−1(i = 1, 2, · · · , n) which is a time distance between
two consecutive observations, we abbreviate the range sX

ti,δi
to sXti

.

III. MAIN RESULTS

Theorem 1 Suppose that
∑Nt

i=1 Ji is a finite activity jump
process, where N is a non-explosive counting process and
the random variable Ji satisfy, ∀t ∈ [0, 1], P{∆Nt ̸=
0, JNt = 0} = 0. r(δ) is a deterministic function of the lag
between two adjacent observations (Xti , Xti−1 ), such that

lim
δ→0

r(δ) = 0 and lim
δ→0

(δ log 1
δ )
/
r(δ) = 0. Then for P-almost

all ω, ∃δ̄(ω) > 0 such that ∀δ ≤ δ̄(ω) we have

I{s2Xti
≤r(δ)}(ω) = I{∆iN=0}(ω)(∀i = 1, ..., n). (8)

Proof Without loss of generality, we suppose the drift
function a and the diffusion function σ are both bounded
and the partition is equidistant in the context ([7], [24]).
In order to prove the theorem, it is enough to prove that
both ∀i ∈ {1, ..., n}, I{s2Xti

≤r(δ)}(ω) ≥ I{∆iN=0}(ω) and
∀i ∈ {1, ..., n}, I{s2Xti

≤r(δ)}(ω) ≤ I{∆iN=0}(ω) hold.

(1) Let

J0,δ = {i ∈ {1, ..., n} : ∆iN = 0},

to prove that, for ∀i ∈ {1, ..., n} and small δ,

I{s2Xti
≤r(δ)}(ω) ≥ I{∆iN=0}(ω),

it is sufficient to show that, for ∀i ∈ {1, ..., n} and small δ,

sup
J0,δ

s2Xti
≤ r(δ).

Notice that, as δ → 0,

sup
J0,δ

s2Xti

r(δ)

= sup
J0,δ


sup

ti−1≤s,t≤ti

∣∣∣∣ t∫
s

audu+
t∫
s

σudBu

∣∣∣∣√
δ log 1

δ


2

·
δ log 1

δ

r(δ)

and

sup
J0,δ

sup
ti−1≤s,t≤ti

∣∣∣∣ t∫
s

audu+
t∫
s

σudBu

∣∣∣∣√
δ log 1

δ

≤ sup
J0,δ

sup
ti−1≤s,t≤ti

∣∣∣∣ t∫
s

audu

∣∣∣∣√
δ log 1

δ

+ sup
J0,δ

sup
ti−1≤s,t≤ti

∣∣∣∣ t∫
s

σudBu

∣∣∣∣√
δ log 1

δ

obviously,

sup
J0,δ

sup
ti−1≤s,t≤ti

∣∣∣∣ t∫
s

audu

∣∣∣∣√
δ log 1

δ

→ 0,

for the second term of the above inequality, using
Burkholder-Davis-Gundy inequality ([25]), we have
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sup
J0,δ

E


sup

ti−1≤s,t≤ti

∣∣∣∣ t∫
s

σudBu

∣∣∣∣√
2δ log 1

δ



≤ C · sup
J0,δ

E



√√√√√√
ti∫

ti−1

σ2
udu

2δ log 1
δ

 = o(1),

where C is a positive constant.
Obviously, for small δ,

sup
J0,δ

s2Xti

r(δ)
→ 0,

further,

sup
J0,δ

s2Xti
≤ r(δ).

(2) Let

J1,δ = {i ∈ {1, ..., n} : ∆iN ̸= 0},

to prove that, for ∀i ∈ {1, ..., n} and small δ,

I{s2Xti
≤r(δ)}(ω) ≤ I{∆iN=0}(ω),

it is sufficient to show that, for ∀i ∈ {1, ..., n} and small δ,

inf
i∈J1,δ

s2Xti
≥ r(δ).

We know form the proof of Theorem 1 in [21] that

lim
δ

inf
i∈J1,δ

(∆iX)2

r(δ)
= +∞,

so, for ∀i ∈ J1,δ ,

s2Xti

r(δ)
≥ (∆iX)2

r(δ)
→ +∞,

and then

I{s2Xti
≤r(δ)}(ω) ≤ I{∆iN=0}(ω).

These complete the proof of the theorem.
Define

R̂IV =
1

λ2

n∑
i=1

s2Xti
I{s2Xti

≤r(δ)}. (9)

Theorem 2 Under the assumptions in Theorem 1, we have,
as n → ∞,

P lim
δ→0

R̂IV = IV. (10)

Proof By the define of R̂IV ,

P lim
δ→0

1

λ2

n∑
i=1

s2Xti
I{s2Xti

≤r(δ)}

=
1

λ2
P lim

δ→0

n∑
i=1

s2Xti
I{∆iN=0}

=
1

λ2
P lim

δ→0

n∑
i=1

( sup
ti−1≤s,t≤ti

(

t∫
s

audu+

t∫
s

σudBu))
2

− 1

λ2
P lim

δ→0

n∑
i=1

( sup
ti−1≤s,t≤ti

(

t∫
s

audu+

t∫
s

σudBu))
2

· I{∆iN ̸=0}.

For the second item, as δ → 0,

1

λ2

n∑
i=1

( sup
ti−1≤s,t≤ti

(

t∫
s

audu+

t∫
s

σudBu))
2 · I{∆iN ̸=0}

≤ 1

λ2
NT sup

i

 sup
ti−1≤s,t≤ti

 t∫
s

audu+

t∫
s

σudBu

2

→ 0.

By Theorem 1 in [7], we have

1

λ2

n∑
i=1

( sup
ti−1≤s,t≤ti

(

t∫
s

audu+

t∫
s

σudBu))
2 → IV,

then the proof is complete.

Remark 1 For the case of unequally spaced observation-
s, the lag ∆ti := ti − ti−1, between the observations
{Xt0 , Xt1 , · · · , Xtn} is not constant, then defining δ :=
max

i
∆ti, Theorem 1 and Theorem 2 are still valid.

Theorem 3 Under the assumptions in Theorem 1, if a and
σ ̸= 0 are càdlàg process, as δ → 0, we have

R̂IV − IV√
δ

d−−→ MN

(
0,Λ

∫ 1

0

σ4
t dt

)
, (11)

where Λ =
λ4−λ2

2

λ2
2

≃ 0.4073.

Proof Using the result of Theorem 1, we know

R̂IV − IV√
δ

=

1
λ2

n∑
i=1

s2Xti
I{∆iN=0} − IV

√
δ

=

1
λ2

n∑
i=1

( sup
ti−1≤s,t≤ti

(
t∫
s

audu+
t∫
s

σudBu))
2 − IV

√
δ

−

1
λ2

n∑
i=1

( sup
ti−1≤s,t≤ti

(
t∫
s

audu+
t∫
s

σudBu))
2I{∆iN ̸=0}

√
δ

.
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By the proof of Theorem 1, we know

1
λ2

n∑
i=1

( sup
ti−1≤s,t≤ti

(
t∫
s

audu+
t∫
s

σudBu))
2 · I{∆iN ̸=0}

√
δ

≤

1
λ2
NT supi

(
sup

ti−1≤s,t≤ti

(
t∫
s

audu+
t∫
s

σudBu

))2

√
δ

≤ 2NT

λ2

√
δ
sup
i

 sup
ti−1≤s,t≤ti

t∫
s

audu

2

+
2NT

λ2

√
δ
sup
i

 sup
ti−1≤s,t≤ti

t∫
s

σudBu

2

= R1 +R2.

Obviously, R1 = o(1). For the latter term, we exploit
Burkholder-Davis-Gundy inequality:

E[R2] ≤
2CNT

λ2

√
δ
E[sup

i

ti∫
ti−1

σ2
udu] = o(1),

where C is a positive constant.
Using the result of Theorem 2 in [7], we know

1
λ2

n∑
i=1

( sup
ti−1≤s,t≤ti

(
t∫
s

audu+
t∫
s

σudBu))
2 − IV

√
δ

d−−→ MN

0,Λ

T∫
0

σ4
t dt

 ,

and the proof is complete.

Theorem 4 Under the assumptions in Theorem 3, we have

R̂IQ :=
1

λ4δ

n∑
i=1

s4Xt
I{s2Xt

≤r(δ)}
P−−→

1∫
0

σ4
t dt. (12)

Proof Using the result of Theorem 1, as δ → 0,

P lim
δ→0

1

λ4δ

n∑
i=1

s4Xt
I{s2Xt

≤r(δ)}

= P lim
δ→0

1

λ4δ

n∑
i=1

s4Xt
I{∆iN=0}

= P lim
δ→0

1

λ4δ

n∑
i=1

( sup
ti−1≤s,t≤ti

(

t∫
s

audu+

t∫
s

σudBu))
4

− P lim
δ→0

1

λ4δ

n∑
i=1

( sup
ti−1≤s,t≤ti

(

t∫
s

audu+

t∫
s

σudBu))
4

·I{∆iN ̸=0}

= R3 +R4.

The second term of the last equality above is dominated by

P lim
δ→0

N1

λ4δ
sup
i

 sup
ti−1≤s,t≤ti

 t∫
s

audu+

t∫
s

σudBu

4

= 0.

Using the result in [7], we have

R3 =

1∫
0

σ4
t dt.

Corollary Assume that the conditions of Theorem 3 hold,
then it holds that, as δ → 0,

R̂IV − IV√
δΛR̂IQ

d−−→ N (0, 1) , (13)

where Λ =
λ4−λ2

2

λ2
2

≃ 0.4073.

Proof It is a obvious result since Theorem 3 and Theorem
4 are valid.

Remark 2 The Λ scalar in front of R̂IQ in Eq. (13) is
roughly 0.4. In contrast, the number appearing in the CLT
for ÎVδ in Eq. (3) is 2.

In fact, continuous sampling is just an ideal consideration.
In practice, it is impossible to sample continuously and to
extract the true range, so the inference about IV will be
from a finite sample. In order to scale properly, the number
of high-frequency data used in forming the high-low should
be accounted for. We follow the approach in ([7]) by using
discretely sampled high-frequency data.

Just like the practice in ([7]), We now choose m observa-
tions in each segment of n intervals, then it brings about mn
returns. The observed range over the ith interval is defined
as

SXti
,m = max

0≤s,t≤m
{X(i−1)/n+t/mn −X(i−1)/n+s/mn},

(14)
where s and t are integers.
We also let

sB,m = max
0≤s,t≤m

{Bt/m −Bs/m}. (15)

And then we propose a new realized range-based estimator
with discretely sampled high-frequency data by setting

R̂IVm =
1

λ2,m

n∑
i=1

s2Xti
,mI{s2Xti

,m≤r(δ)}. (16)

where λr,m = E[srB,m], λr,m is the rth moment of the range
of a standard Brownian motion over an unit interval. It is
obvious that λr,m → λr as m → ∞.

Theorem 5 Under the assumptions of Theorem 1, we have,
as n → ∞,

P lim
δ→0

R̂IVm = IV, (17)

where the convergence is uniform in m. Additionally, if a
and σ ̸= 0 are càdlàg processes and m → c ∈ N ∪ {∞}, as
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δ → 0,
R̂IVm − IV√
δΛm

̂RIQm

d−−→ N (0, 1) , (18)

with Λm =
(
λ4,m − λ2

2,m

)
/λ2

2,m and

̂RIQm :=
1

λ4,mδ

n∑
i=1

s4Xti
,mI{s2Xti

,m≤r(δ)}. (19)

Remark 3 When m = 1, Theorem 5 provides a CLT for
ÎVδ ( derived in ([21]) ) since λ2,1 = 1 and λ4,1 = 3.

Remark 4 Our realized range-based threshold estimator
R̂IVm may be used in any high frequency data since m
can tend to infinite.

IV. NUMERICAL SIMULATION

In this section, we report simulation results documenting
the finite sample performance of the realized range-based
threshold estimator R̂IVm(m = 2,m = 5), and compare
accuracy of the estimator to ÎVδ (In fact, the estimator is a
special case of our realized range-based threshold estimator
R̂IVm with m = 1) in ([21]) obtained by using the pure
threshold method.

The process we will consider is a jump-diffusion model

Xt = σWt +

Nt∑
j=1

Zj(t ∈ [0, 1]), (20)

with Zj i.i.d. with law N(0, η2), where η = 0.6, σ = 0.3
and λ = 5, just as in ([21], [26]). We use an observation
length of T = 1 day, consisting of 5 hours of trading (i.e.,
18000 seconds). For the model, we generate N = 5000
sample paths. In each sample path, using the algorithms
described in ([27]), we take mn = 1500 (6000) equally
spaced observations with lag δ = 1/n, namely, we will
choose an observation every 12 (3) seconds.

From the equation (3) and (18), we know that the limit
distribution of normalized bias term

ÎVδ − IV√
2δÎQδ

(21)

and normalized bias term

R̂IVm − IV√
δΛm

̂RIQm

(22)

are both standard normal distribution. Next, we will use
figure and table to illustrate accuracy of the two normalized
bias terms.

In Figure 1 and 2, using the observations simulated for
the model (20) in 5000 sample paths (in Figure 1 each
sample path generates 1500 observations, while the number
of observations in Figure 2 is 6000), we plot the histogram
of the 5000 normalized bias terms for the threshold estimator
ÎVδ (remembering it is a special case of R̂IVm with m = 1)
as in (21) and for the range-based threshold estimator
R̂IVm(m = 2, 5) as in (22) respectively.

Figure1 and Table I illustrate that, in the three estimators,
the estimator R̂IV2 has highest accuracy when the number
of the observations is 1500. Similarly, from Figure 2 and

(a)

(b)

(c)

Fig. 1. Histograms of 5000 normalized bias terms with 1500 observations
in each sample path. From up to down: it is for the realized threshold
estimator ÎVδ , for the realized range-based threshold estimator R̂IV2 and
for the realized range-based threshold estimator R̂IV5.

TABLE I
STATISTICS OF THE NORMALIZED BIAS TERMS UNDER THE MODEL (20)
WITH 1500 OBSERVATIONS IN EACH SAMPLE PATH. m = 1 DENOTES THE

NORMALIZED BIAS TERM (21), m = 2 AND m = 5 DENOTE THE
NORMALIZED BIAS TERM (22) WITH CORRESPONDING m = 2 AND

m = 5 RESPECTIVELY. PCT IS THE PERCENTAGE OF THE 5000
REALIZATIONS FOR WHICH THE NORMALIZED BIAS IS IN ABSOLUTE
VALUE LARGER THAN 1.96 (ASYMPTOTICALLY SUCH A PERCENTAGE

HAS TO BE 0.05). MEAN AND SD ARE THE MEAN AND THE STANDARD
DEVIATION OF THE 5000 VALUES ASSUMED BY EACH NORMALIZED BIAS

TERM (ASYMPTOTICALLY SUCH MEAN AND SD HAVE TO BE 0 AND 1).

Pct Mean SD
m = 1 0.0724 -0.3588 1.0382
m = 2 0.0566 -0.0541 1.0294
m = 5 0.0822 -0.3733 1.1487
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(a)

(b)

(c)

Fig. 2. Histograms of 5000 normalized bias terms with 6000 observations
in each sample path. See Fig. 1 for explanation.

TABLE II
STATISTICS OF THE NORMALIZED BIAS TERMS UNDER THE MODEL (20)

WITH 6000 OBSERVATIONS IN EACH SAMPLE PATH. SEE TABLE I FOR
EXPLANATION.

Pct Mean SD
m = 1 0.0764 -0.4569 1.0267
m = 2 0.0664 -0.3563 1.0187
m = 5 0.0562 -0.0779 1.0171

Table II, we can obtain that the estimator R̂IV5 is the best
when 6000 observations are available in a trading day.

Remark 5 From the numerical simulation, we find that, for
the estimator R̂IVm, appropriate m value should be chosen
for different frequency financial data. Exploring the relation
between the choice of m value and the frequency of financial
data will be one of issues of our future research.

V. CONCLUSIONS

In this paper, we consider an integrated volatility estima-
tion procedure for jump-diffusion models. We are inspired by
the precision of the range-based technique and the efficiency
of the threshold method. Combining the advantages of the
two methods, we propose a realized range-based threshold
estimator for the volatility of jump-diffusion models. The
simulation results illustrate that our estimator is more accu-
rate than pure threshold estimator.
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