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Abstract—The concept of mixed affine surface was defined
by Lutwak in 1987. Recently, Wang and Leng introduced the
concept of Lp-mixed affine surface areas. More recently,Lp-
mixed affine surface areas have been further generalized by Ma
to the entire class of so-calledith Lp-mixed affine surface areas
(also called (i, 0)-type Lp-mixed affine surface areas). In this
article, we continue studying the ith Lp-mixed affine surface
areas. Combining with this new notion, a result of Lutwak and
two results of Wang and Leng were extended. Furthermore, we
establish a monotonic inequality related to theith Lp-mixed
affine surface areas. Finally, two open questions are raised.

Index Terms—mixed affine surface area,Lp-mixed affine
surface area,ith Lp-mixed affine surface area.

I. I NTRODUCTION

W E work in n-dimensional real vector spaceRn(n ≥
2), equipped with the standard Euclidean structure.

Let Kn denote the set of convex bodies (compact, convex
subsets with non-empty interiors) in Euclidean spacesRn.
For the set of convex bodies containing origin in their
interiors and the set of convex bodies with centroid in the
origin in Kn, we writeKn

o andKn
c , respectively. LetSn−1

denote the unit sphere inRn, and letV (K) denotes then-
dimensional volume of a bodyK. For the standard unit ball
B in Rn, its volume is written byωn = V (B).

For K ∈ Kn, K is said to have a curvature function (see
[14]), f(K, ·) : Sn−1 → R, if its surface area measure
S(K, ·) is absolutely continuous with respect to spherical
Lebesgue measureS, and

dS(K, ·)

dS
= f(K, ·).

Let Fn denote the set of all bodies inKn that has a
positive continuous curvature function. ForK ∈ Fn, the
classical affine surface area,Ω(K), of K is defined by

Ω(K) =

∫

Sn−1

f(K,u)
n

n+1dS(u). (1)

During the past three decades, the investigations of the
classical affine surface area have received great attention
from many articles (see papers [2], [3], [4], [5], [6], [8], [9],
[10], [11], [13], [14], [24], [25], [27], [28], [31] or books
[7], [26]).

The classical mixed affine surface area was given by
Lutwak (see [12]). ForK,L ∈ Fn, j ∈ R, the mixed affine
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surface area,Ωj(K,L), of K andL is defined by

Ωj(K,L) =

∫

Sn−1

f(K,u)
n−j

n+1 f(L, u)
j

n+1dS(u). (2)

From definitions (1) and (2), it is obvious thatΩj(K,K) =
Ω(K) andΩ0(K,L) = Ω(K).

A convex bodyK ∈ Kn
o is said to have aLp-curvature

function (see [16]),fp(K, ·) : Sn−1 → R, if its Lp-surface
area measureSp(K, ·) is absolutely continuous with respect
to spherical Lebesgue measureS, and

dSp(K, ·)

dS
= fp(K, ·).

Let Fn
o andFn

c denote the set of all bodies inKn
o andKn

c

respectively, and both of them have a positive continuous
curvature function.

In 1996, Lutwak (see [16]) showed theLp-affine surface
area as follows: ForK ∈ Fn

o , the Lp-affine surface area,
Ωp(K), of K is given by

Ωp(K) =

∫

Sn−1

fp(K,u)
n

n+pdS(u).

Further, Lutwak established the well-knownLp-affine
isoperimetric inequality as follows:
Theorem A. If K ∈ Fn

o and p ≥ 1, then

Ωp(K) ≤ nω
2p

n+p
n V (K)

n−p

n+p , (3)

with equality if and only ifK is an ellipsoid which centered
at the origin.

Regarding the more results ofLp-affine surface area, we
may see in these articles [22], [27] and [30].

Recently, Wang and Leng introduced the notion ofLp-
mixed affine surface area (see [30]): ForK,L ∈ Fn

o , p ≥
1, j ∈ R, the Lp-mixed affine surface area,Ωp,j(K,L), of
K andL is defined by

Ωp,j(K,L)

=

∫

Sn−1

fp(K,u)
n−j

n+p fp(L, u)
j

n+pdS(u).
(4)

Let L = B in (4), then writeΩp,j(K,B) = Ωp,j(K).
Sincefp(B, ·) = 1, theLp-mixed affine surface area ofK ∈
Fn

o is that

Ωp,j(K) =

∫

Sn−1

fp(K,u)
n−j

n+pdS(u).

Associated with (4), Wang and Leng proved the following
cycle inequality and Minkowski’s inequality forLp-mixed
affine surface area, respectively.
Theorem B. If K,L ∈ Fn

o , p ≥ 1, j, k,m ∈ R and j <
k < m, then

Ωp,j(K,L)m−kΩp,m(K,L)k−j ≥ Ωp,k(K,L)m−j , (5)
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with equality for p = 1 if and only if K and L are
homothetic; forn 6= p > 1 if and only if K and L are
dilates.
Theorem C. If K,L ∈ Fn

o , p ≥ 1, j ∈ R, then forj < 0
or j > n,

Ωp,j(K,L)n ≥ Ωp(K)n−jΩp(L)
j ; (6)

for 0 < j < n,

Ωp,j(K,L)n ≤ Ωp(K)n−jΩp(L)
j , (7)

with equality in every inequality forp = 1 if and only ifK
andL are homothetic; forn 6= p > 1 if and only if K and
L are dilates. Forj = 0 or j = n, (6) (or (7) is identical.

The main aim of this article is to define the notions of
ith Lp-mixed affine surface areas and(i, j)-type Lp-mixed
affine surface areas, and to extend the above inequalities to
the entire family of these new notions. Here, we first give
the concepts ofLp-mixed curvature function andLp-mixed
curvature image of convex body.

For K ∈ Kn
o , p ≥ 1, and i = 0, 1, · · · , n − 1, body K

is said to have aLp-mixed curvature function,fp,i(K, ·) :
Sn−1 → R, if its Lp-mixed surface area measureSp,i(K, ·)
(see [18], [19], [21], [22]) is absolutely continuous with
respect to spherical Lebesgue measureS, and

dSp,i(K, ·)

dS
= fp,i(K, ·). (8)

If the ith mixed surface area measureSi(K) is absolutely
continuous with respect to spherical Lebesgue measureS,
we have

fp,i(K,u) = h(K,u)1−pfi(K,u), (9)

for u ∈ Sn−1.
Let Fn

o,i andFn
c,i denote the set of all bodies inKn

o and
Kn

c , respectively, and both of them have a positive continuous
ith curvature functionfi(K, ·) (see [15]).

For eachK ∈ Fn
o,i(i = 0, 1, · · · , n − 1) and realp ≥ 1,

define star bodyΛp,iK ∈ Sn
o , the ith Lp-mixed curvature

image ofK, by (see [19], [20])

ρ(Λp,iK, ·)n+p−i =
W̃i(Λp,iK)

ωn

fp,i(K, ·). (10)

In particular, takingi = 0 in (10), we immediately get
Lutwak’s definition ofLp-curvature imageΛpK of convex
bodyK ∈ Fn

o (see [16]).
Recently, Ma introduced the notion ofith Lp-mixed affine

surface area as follows (see [20], [23]): Forp ≥ 1 and
i = 0, 1, · · · , n − 1, the ith Lp-mixed affine surface area,
Ω

(i)
p (K1, · · · , Kn−i), of K1, · · · , Kn−i ∈ Fn

o,i is defined by

Ω(i)
p (K1, · · · , Kn−i)

=

∫

Sn−1

[fp,i(K1, u) · · · fp,i(Kn−i, u)]
1

n+p−idS(u).

(11)

Let K1 = · · · = Kn−i−j = K and Kn−i−j+1 = · · · =

Kn−i = L (j = 0, · · · , n − i), we denoteΩ(i)
p,j(K,L) :=

Ω
(i)
p (K, · · · , K, L, · · · , L), with n − i − j copies ofK, and

j copies ofL.
If j is any real, we can define that: ForK,L ∈ Fn

o,i, i =
0, · · · , n − 1, p ≥ 1, j ∈ R, the (i, j)-type Lp-mixed

affine surface area,Ω(i)
p,j(K,L), of K andL is defined by

Ω
(i)
p,j(K,L)

=

∫

Sn−1

fp,i(K,u)
n−i−j

n+p−i fp,i(L, u)
j

n+p−i dS(u).

(12)

Let L = B in (12), then we writeΩ(i)
p,j(K) := Ω

(i)
p,j(K,B).

For u ∈ Sn−1, Si(B, u) = S, h(B, u) = 1, it follows from
(8) and (9) thatfp,i(B, u) = 1. Together with (12) yields

Ω
(i)
p,j(K) =

∫

Sn−1

fp,i(K,u)
n−i−j

n+p−idS(u), (13)

whereΩ(i)
p,j(K) is called(i, j)-typeLp-mixed affine surface

area ofK ∈ Fn
o,i. If j = 0, we write that

Ω(i)
p (K) = Ω

(i)
p,0(K)

=

∫

Sn−1

fp,i(K,u)
n−i

n+p−idS(u),
(14)

whereΩ(i)
p (K) is called(i, 0)-typeLp-mixed affine surface

area (or is calledith Lp-mixed affine surface area).
In [20], Ma further gives the following an expansion

of the definition of the(i, 0)-type Lp-mixed affine sur-
face area: IfK ∈ Kn

o , p ≥ 1, then the (i, 0)-type Lp-
mixed affine surface area,Ω(i)

p (K), of K is defined by

n−
p

n−iΩ(i)
p (K)

n+p−i

n−i

= inf
{
nWp,i(K,Q∗)W̃i(Q)

p

n−i : Q ∈ Sn
o

}
.

(15)

For i = 0, the definition is just the definition ofLp-affine
surface area by proposed by Lutwak in [16].

The main results of this article can be stated as follows:
First, we establish the extended form of Theorem A, given
by Theorem 1.
Theorem 1. SupposeK ∈ Fn

c,i(i = 0, 1, · · · , n − 1) and
p ≥ 1, then

Ω(i)
p (K) ≤ nω

2p
n+p−i
n Wi(K)

n−i
n+p−i W̃i(K)

−p

n+p−i , (16)

with equality in inequality fori = 0 if and only if K is an
ellipsoid which centered at the origin; for0 < i ≤ n − 1 if
and only ifK is a ball which centered at the origin.

In particular, takingi = 0 in (16), we immediately obtain
Lp-affine isoperimetric inequality (3) forK ∈ Fn

c .
Next, the cycle inequality of the(i, j)-type Lp-mixed

affine surface areas and the Minkowski’s inequality of the
ith Lp-mixed affine surface areas are given as follows:
Theorem 2. SupposeK,L ∈ Fn

o,i, p ≥ 1, i = 0, 1, · · · , n−1,
j, k,m ∈ R and j < k < m, then

Ω
(i)
p,j(K,L)m−kΩ(i)

p,m(K,L)k−j ≥ Ω
(i)
p,k(K,L)m−j, (17)

with equality in inequality forn − i 6= p = 1 and 0 ≤ i <
n−1 if and only ifK andL are homothetic; forn−i 6= p > 1
and 0 < i < n if and only ifK andL are dilates.

Let i = 0 in (17) of Theorem 2, we immediately get
Theorem B.
Theorem 3. SupposeK,L ∈ Fn

o,i, p ≥ 1, i = 0, 1, · · · , n−1,
j ∈ R. For j < 0 or j > n− i, then

Ω
(i)
p,j(K,L)n−i ≥ Ω(i)

p (K)n−i−jΩ(i)
p (L)j ; (18)
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for 0 < j < n− i, then

Ω
(i)
p,j(K,L)n−i ≤ Ω(i)

p (K)n−i−jΩ(i)
p (L)j , (19)

with equality in every inequality forn − i 6= p = 1 and
0 ≤ i < n − 1 if and only if K and L are homothetic; for
n − i 6= p > 1 and 0 ≤ i < n if and only if K and L are
dilates. Forj = 0 or j = n− i, (18) (or (19) is identical.

Obviously, the casei = 0 of Theorem 3 is just Theorem
C.

Further, we obtain the more general form of inequality
(19):
Theorem 4. SupposeK1, K2, · · · , Kn−i ∈ Fn

o,i(i =
0, 1, · · · , n− 1), then form ≤ n− i,

Ω(i)
p (K1, K2, · · · , Kn−i)

m

≤

m∏

j=1

Ω(i)
p (Kj , · · · , Kj︸ ︷︷ ︸

m

, Km+1, · · · , Kn−i),
(20)

with equality in inequality if and only ifK1, K2, · · · , Kn−i

(i = 0, 1, · · · , n−1) are all dilations of each other (with the
origin as the center of dilation).

Taking m = n − i,K1 = K2 = · · · = Kn−i−j = K and
Kn−i−j+1 = · · · = Kn−i = L(0 < j < n − i) in (20), we
immediately obtain inequality (19).

Finally, we show that a monotonic result as follows:
Theorem 5. If K ∈ Kn

o and i = 0, 1, · · · , n − 1, then for
1 ≤ p ≤ q,

(
Ω

(i)
q (K)

nW̃i(K∗)

)n+q−i

≤

(
Ω

(i)
p (K)

nW̃i(K∗)

)n+p−i

. (21)

Particularly, takingi = 0 in Theorem 5, we immediately
get a result of literature [16].

II. PRELIMINARIES

If K ∈ Kn, then its support function,hK = h(K, ·) :
Rn → (−∞,∞), is defined by (see [1])

h(K,x) = max{〈x, y〉 : y ∈ K}, x ∈ Rn,

where〈x, y〉 denotes the standard inner product ofx andy.
If K is a compact star-shaped (about the origin) inRn,

its radial function,ρK = ρ(K, ·) : Rn \ {0} → [0,∞), is
defined by (see [1], [25])

ρ(K,x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn\{0},

whenρK is positive and continuous,K is called a star body
(about the origin).

Let Sn
o denote the set of star bodies (about the origin) in

Rn. Two star bodiesK and L are said to be dilates each
other if ρK(u)/ρL(u) is independent onu ∈ Sn−1.

For K ∈ Kn
o , the polar body,K∗, of K is defined by(see

[1], [25])

K∗ = {x ∈ Rn : 〈x, y〉 ≤ 1, y ∈ K}.

Obviously, (K∗)∗ = K. If φ ∈ GL(n), then (φK)∗ =
φ−tK∗; If λ > 0, then (λK)∗ = λ−1K∗.

If K ∈ Kn
o , then the support and radial functions of the

polar bodyK∗ of K are given respectively by

hK∗(u) =
1

ρK(u)
and ρK∗(u) =

1

hK(u)
(22)

for all u ∈ Sn−1.
For K,L ∈ Kn

o , p ≥ 1 and ε > 0, the Firey Lp-
combinationK +p ε · L ∈ Kn

o is defined by (see [15])

h(K +p ε · L, ·)
p = h(K, ·)p + εh(L, ·)p,

where “·” in ε · L denotes the Firey scalar multiplication.
ForK ∈ Kn andi = 0, 1, . . . , n−1, the quermassintegrals,

Wi(K), of K are given by (see [1], [25])

Wi(K) =
1

n

∫

Sn−1

h(K,u)dSi(K,u), (23)

whereSi(K, ·) is ith surface area measure ofK on Sn−1.
From (23), we easily see thatW0(K) = V (K).

Associated with the FireyLp-combination, Lutwak de-
fined Lp-mixed quermassintegrals as follows: ForK,L ∈
Kn

o , ε > 0 and realp ≥ 1, theLp-mixed quermassintegrals,
Wp,i(K,L) (i = 0, 1, . . . , n − 1), of K andL are defined
by (see [15])

n− i

p
Wp,i(K,L)

= lim
ε→0+

Wi(K +p ε · L)−Wi(K)

ε
.

(24)

Further, Lutwak (see [15]) showed that, for eachK ∈ Kn
o ,

p ≥ 1 and i = 0, 1, . . . , n − 1, there exists a positive Borel
measureSp,i(K, ·) (called theLp-mixed surface area mea-
sure ofK) on Sn−1, such thatLp-mixed quermassintegrals
Wp,i(K,L) has the following integral representation:

Wp,i(K,L) =
1

n

∫

Sn−1

hp
L(v)dSp,i(K, v) (25)

for all L ∈ Kn
o . It turns out that the measureSp,i(K, ·) is

absolutely continuous with respect toSi(K, ·), and has the
Radon-Nikodym derivative

dSp,i(K, ·)

dSi(K, ·)
= h1−p(K, ·). (26)

If i = 0, thenSp,0(K, ·) is just theLp-surface area measure
Sp(K, ·) of K.

From (23), (25) and (26), we know that

Wp,i(K,K) = Wi(K). (27)

The Minkowski’s inequality forLp-mixed quermassinte-
gralsWp,i can be stated as follows: ForK,L ∈ Kn

o , p ≥ 1
and i = 0, 1, . . . , n− 1, then (see [15])

Wp,i(K,L)n−i ≥ Wi(K)n−i−pWi(L)
p, (28)

with equality forp = 1 and0 ≤ i < n− 1 if and only if K
andL are homothetic; forp > 1 if and only if K andL are
dilates. Forp = 1 andi = n− 1, inequality (28) is identical.

According to (27) and (28), we easily get that (see [15])
Lemma 2.1. SupposeK,L ∈ Kn

o , p ≥ 1 and i =
0, 1, . . . , n− 1. If for any Q ∈ Kn

o ,

Wp,i(K,Q) = Wp,i(L,Q),

then when0 ≤ i < n− 1 andn− i 6= p = 1, K andL are
homothetic; when0 ≤ i < n andn− i 6= p > 1, K = L.

The following formula of the dual quermassintegrals will
be needed.
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For K ∈ Sn
o and any reali, the dual quermassintegrals

W̃i(K), of K are defined by (see [1], [25])

W̃i(K) =
1

n

∫

Sn−1

ρn−i
K (u)dS(u). (29)

Obviously,W̃0(K) = V (K).

III. PROOFS OFTHEOREMS

In this section, we will prove Theorems 1-5. First, we need
the following three Lemmas for the proof of Theorem 1.
Lemma 3.1. If p ≥ 1, K ∈ Kn

o , L ∈ Fn
o,i, 0 ≤ i ≤ n − 1,

then

Ω(i)
p (L)n+p−i ≤ nn+p−iWp,i(L,K)n−iW̃i(K

∗)p, (30)

with equality if and only ifK∗ andΛp,iL are dilates.
Proof. Let K ∈ Kn

o andL ∈ Fn
o,i, then from (12), (22),

(8), (25), (29) and Ḧolder’s inequality, we have

Ω(i)
p (L)n+p−i

=

[ ∫

Sn−1

fp,i(L, u)
n−i

n+p−i dS(u)

]n+p−i

=

[ ∫

Sn−1

(
h(K,u)pfp,i(L, u)

) n−i

n+p−i

×
(
h(K,u)i−n

) p

n+p−idS(u)

]n+p−i

≤ nn+p−i

(
1

n

∫

Sn−1

h(K,u)pfp,i(L, u)dS(u)

)n−i

×

(
1

n

∫

Sn−1

ρ(K∗, u)n−idS(u)

)p

= nn+p−i

(
1

n

∫

Sn−1

h(K,u)pdSp,i(L, u)

)n−i

×

(
1

n

∫

Sn−1

ρ(K∗, u)n−idS(u)

)p

= nn+p−iWp,i(L,K)n−iW̃i(K
∗)p.

Thus, it follows immediately that (30). According to the
condition of equality in Ḧolder’s inequality, and combined
with the definition ofLp-mixed curvature image, we know
that equality holds in (30) if and only if

h(K,u)pfp,i(L, u)

h(K,u)i−n
= c

for any u ∈ Sn−1, wherec is a constant, i.e., for anyu ∈
Sn−1, we have

ρ(Λp,iL, u)
n+p−i

ρ(K∗, u)n+p−i
=

cW̃i(Λp,iL)

ωn

,

this shows thatΛp,iL and K∗ are dilates. Therefore, the
equality holds in inequality (30) if and only ifΛp,iL and
K∗ are dilates.
Lemma 3.2. ([17])SupposeK ∈ Kn

o , i ∈ R and 0 ≤ i < n,
then

W̃i(K) ≤ ω
i
n
n V (K)

n−i
n , (31)

with equality for0 < i < n if and only ifK is a ball which
centered at the origin. Ifi = 0, then(31) is a identical.

We also need the following well-known Blaschke-Santaló
inequality (see [14]):

Lemma 3.3. SupposeK ∈ Kn
c , then

V (K)V (K∗) ≤ ω2
n, (32)

with equality if and only ifK is an ellipsoid which centered
at the origin.

Now we will complete the proof of Theorem 1. In fact,
we prove the following more general conclusion:
Theorem 3.1. SupposeK ∈ Kn

c and L ∈ Fn
o,i, then for

p ≥ 1,

nω
2p

n+p−i
n Wp,i(L,K)

n−i

n+p−i ≥ W̃i(K)
p

n+p−iΩ(i)
p (L), (33)

with equality in inequality fori = 0 if and only if K and
L are ellipsoids which centered at the origin, andK andL
are dilates; for0 < i ≤ n − 1 if and only if K and L are
balls which centered at the origin, andK andL are dilates.

Proof. Using inequalities (30), (31) and (32), we have

Ω(i)
p (L)n+p−iW̃i(K)p

≤ nn+p−iWp,i(L,K)n−i(W̃i(K
∗)W̃i(K))p

≤ nn+p−iWp,i(L,K)n−iω
2ip
n

n

(
V (K)V (K∗)

) (n−i)p
n

≤ nn+p−iω2p
n Wp,i(L,K)n−i.

According to the condition of equality for inequality (30),
(31) and (32), we know that equality holds fori = 0 if and
only if K andL are ellipsoids which centered at the origin,
andK andL are dilates; for0 < i ≤ n − 1 if and only if
K andL are balls which centered at the origin, andK and
L are dilates.

If K ∈ Fn
c,i, takingL = K in inequality (33), this yields

Theorem 1 by (27).
Proof of Theorem 2. For i = 0, Theorem 2 is just

Theorem B in [29].
For 1 < i ≤ n − 1, together with(i, j)-type Lp-mixed

affine surface area (12) and Hölder’s inequality, we have that

Ω
(i)
p,j(K,L)

m−k
m−j Ω(i)

p,m(K,L)
k−j

m−j

=

[ ∫

Sn−1

fp,i(K,u)
n−i−j

n+p−i fp,i(L, u)
j

n+p−idS(u)

]m−k

m−j

×

[ ∫

Sn−1

fp,i(K,u)
n−i−m
n+p−i fp,i(L, u)

m
n+p−idS(u)

] k−j

m−j

=

[ ∫

Sn−1

(
fp,i(K,u)

(n−i−j)(m−k)
(n+p−i)(m−j)

× fp,i(L, u)
j(m−k)

(n+p−i)(m−j)

)m−j

m−k

dS(u)

]m−k

m−j

×

[ ∫

Sn−1

(
fp,i(K,u)

(n−i−m)(k−j)
(n+p−i)(m−j)

× fp,i(L, u)
m(k−j)

(n+p−i)(m−j)

)m−j

k−j

dS(u)

] k−j

m−j

≥

∫

Sn−1

fp,i(K,u)
n−i−k

n+p−i fp,i(L, u)
k

n+p−idS(u)

= Ω
(i)
p,k(K,L).

Therefore, inequality (17) is obtained.
According to the conditions of equality in Ḧolder’s in-

equalities, we know that the equality holds in inequality (19)
if and only if for anyu ∈ Sn−1,

fp,i(K,u)
n−i−j

n+p−i fp,i(L, u)
j

n+p−i

fp,i(K,u)
n−i−m
n+p−i fp,i(L, u)

m
n+p−i
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is a constant, i.e.,fp,i(K,u)/fp,i(L, u) is a constant for any
u ∈ Sn−1. Combining with (8), we get

dSp,i(K,u) = cdSp,i(L, u), for any u ∈ Sn−1,

where c is a constant. Using formula (25), then above
equality can be rewritten that

Wp,i(K,Q) = cWp,i(L,Q), for all Q ∈ Kn
o .

Thus, if n− i 6= p, then

Wp,i(K,Q) = Wp,i

(
c

1
n−i−pL,Q

)
, for all Q ∈ Kn

o .

If n − i 6= p > 1 and 0 ≤ i < n, from the above equation
and Lemma 2.1, we see thatK = c

1
n−i−pL, i.e., the equality

holds in inequality (17) if and only ifK andL are dilates.
If n− i 6= p = 1 and0 ≤ i < n−1, from the above equation
and Lemma 2.1, we see thatK andc

1
n−1−iL are homothetic.

Therefore, letc
1

n−1−iL = λK+x (λ > 0, x ∈ Rn), i.e.,L =
aK + y (a > 0, y ∈ Rn), this shows that the equality holds
in inequality (17) if and only ifK andL are homothetic.
The proof of Theorem 2 is completed.

Proof of Theorem 3. For j > n− i, using (12), (13)
and Ḧolder’s inequality, we have

Ω
(i)
p,j(K,L)

n−i
j Ω(i)

p (K)
i+j−n

j

=

[ ∫

Sn−1

fp,i(K,u)
n−i−j

n+p−i fp,i(L, u)
j

n+p−i dS(u)

]n−i
j

×

[ ∫

Sn−1

fp,i(K,u)
n−i

n+p−idS(u)

] i+j−n

j

=

[ ∫

Sn−1

(
fp,i(K,u)

(n−i)(n−i−j)
j(n+p−i)

× fp,i(L, u)
n−i

n+p−i

) j

n−i

dS(u)

]n−i
j

×

[ ∫

Sn−1

(
fp,i(K,u)

(n−i)(i+j−n)

j(n+p−i)

) j

i+j−n

dS(u)

] i+j−n

j

≥

∫

Sn−1

fp,i(L, u)
n−i

n+p−idS(u)

= Ω(i)
p (L),

this gives inequality (18). According to the condition of
equality in Ḧolder’s inequality, we see that equality holds in
inequality (18) if and only iffp,i(K,u)/fp,i(L, u) (p ≥ 1) is
a constant for anyu ∈ Sn−1. Similar to the proof of Theorem
2, we see that the equality in (18) forn − i 6= p = 1 and
0 ≤ i < n − 1 if and only if K andL are homothetic, for
n − i 6= p > 1 and 0 ≤ i < n if and only if K andL are
dilates.

Similar to the above proof, forj < 0 or 0 < j < n − i,
we can prove inequality (18) and (19), respectively.

For j = 0 (or j = n− i), we easily see that (18) (or (19))
is identical. The proof of Theorem 3 is completed.

The following extension of Ḧolder’s inequality will be
required to prove Theorem 4.
Lemma 3.4. ([17])If f0, f1, · · · , fm are (strictly) positive
continuous functions defined onSn−1 and α1, · · · , αm are
positive constants the sum of whose reciprocals is unity, then

∫

Sn−1

f0(u)f1(u) · · · fm(u)dS(u)

≤

m∏

i=1

[ ∫

Sn−1

f0(u)f
αi

i (u)dS(u)
] 1

αi
,

(34)

with equality if and only if there exist positive constants
λ1, · · · , λm such thatλ1f

α1
1 (u) = · · · = λmfαm

m (u) for all
u ∈ Sn−1.

Proof of Theorem 4. By the definition (11) ofith
Lp-mixed affine surface area and Hölder’s inequality (34),
we have

Ω(i)
p (K1, · · · , Kn−i)

=

∫

Sn−1

[fp,i(K1, u) · · · fp,i(Kn−i, u)]
1

n+p−idS(u)

≤

m∏

j=1

[ ∫

Sn−1

fp,i(Kj , u)
m

n+p−i

×
(
fp,i(Km+1, u) · · · fp,i(Kn−i, u)

) 1
n+p−i

dS(u)

] 1
m

=

m∏

j=1

[
Ω(i)

p (Kj , · · · , Kj︸ ︷︷ ︸
m

, Km+1, · · · , Kn−i)

] 1
m

.

According to the condition of equality for Ḧolder’s inequal-
ity (34), we know that equality holds for inequality (20) if
and only ifK1, K2, · · · , Kn−i are all dilations of each other
(with the origin as the center of dilation).

Takingm = n− i in inequality (20), it follows that
Corollary 3.1. SupposeK1, K2, · · · , Kn−i ∈ Fn

o,i (i =
0, 1, · · · , n− 1), then

Ω(i)
p (K1, K2, · · · , Kn−i)

n−i

≤ Ω(i)
p (K1) · · ·Ω

(i)
p (Kn−i),

(35)

with equality in inequality if and only ifK1, K2, · · · , Kn−i

(i = 0, 1, · · · , n−1) are all dilations of each other (with the
origin as the center of dilation).

Proof of Theorem 5. The inequality of Theorem 5 follows
immediately from the definition (15) ofith Lp-affine surface
area once the following fact is established: GivenQ ∈ Sn

o ,
there exists aQ ∈ Sn

o , such that

Wq,i(K,Q
∗

)n−i W̃i(Q)q

W̃i(K∗)q

≤ Wp,i(K,Q∗)n−i W̃i(Q)p

W̃i(K∗)p
.

(36)

To show this, defineQ ∈ Sn
o by

ρ
Q
=
[
W̃i(K

∗)p−qW̃i(Q)−p
] 1

q(n−i) ρ
p

q

Qρ
q−p

q

K∗ . (37)

From (37) we have

ρ−q

Q
h1−q
K = W̃i(K

∗)
q−p

n−i W̃i(Q)
p

n−i ρ−p
Q h1−p

K ,

the integral representation ofWp,i(K,Q∗) shows that

Wq,i(K,Q
∗

) = W̃i(K
∗)

q−p

n−i W̃i(Q)
p

n−iWp,i(K,Q∗). (38)

The definition ofQ, together with the Ḧolder inequality with
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the formula of dual quermassintegrals, show that

W̃i(Q)

= W̃i(K
∗)

p−q

q W̃i(Q)−
p

q

×

[
1

n

∫

Sn−1

ρQ(u)
(n−i)p

q ρK∗(u)
(n−i)(q−p)

q dS(u)

]

≤ W̃i(K
∗)

p−q

q W̃i(Q)−
p

q

(
1

n

∫

Sn−1

ρn−i
Q (u)dS(u)

) p

q

×

(∫

Sn−1

ρn−i
K∗ (u)dS(u)

) q−p

q

= 1.

Together with (38), this yields (21).

IV. OPEN PROBLEM

In this section, we propose the following two open ques-
tions:
Question 4.1. SupposeK,L ∈ Fn

c,i(i = 0, 1, · · · , n−1), p ≥
1, j ∈ R and 0 ≤ j ≤ n. Does it follow that

Ω
(i)
p,j(K,L)Ω

(i)
p,j(K

∗, L∗) ≤ (nωn)
2 ? (39)

with equality for0 < j < n andp = 1 if and only ifK and
L are homothetic ellipsoids; for0 < j < n and n 6= p > 1
if and only if K and L are dilate ellipsoids; forj = 0 (or
j = n) if and only ifK (or L) is an ellipsoid.

Obviously, the casei = 0 of Question 4.1 is just the result
of Wang and Leng (see [30]).
Question 4.2. SupposeK ∈ Fn

o,i(i = 0, 1, · · · , n − 1) and
p ≥ 1. Does it follow that

Ω(i)
p (K) ≤ nω

2p
n+p−i
n W̃i(K)

n−p−i

n+p−i ? (40)

or
Ω(i)

p (K) ≤ nω
2p

n+p−i
n Wi(K)

n−p−i

n+p−i ? (41)

with equality in every inequality fori = 0 if and only ifK is
an ellipsoid which centered at the origin; for0 < i ≤ n− 1
if and only ifK is a ball which centered at the origin.

Obviously, the casei = 0 of Question 4.2 is just Lutwak’s
result Theorem A (see [16]).
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