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Some Inequalities for Generalizdd,-mixed
Affine Surface Areas

Tongyi Ma, Weidong Wang

Abstract—The concept of mixed affine surface was defined surface areaQ); (K, L), of K and L is defined by
by Lutwak in 1987. Recently, Wang and Leng introduced the

concept of L,-mixed affine surface areas. More recently,L,- O(K. L) = K 2 L ﬁdS 2
mixed affine surface areas have been further generalized by Ma i L) gn-1 FOE u) e f(Lyu) (). @)
to the entire class of so-calledth L,-mixed affine surface areas I - .

(also called (4,0)-type L,-mixed affine surface areas). In this From definitions (1) and (2), it is obvious th@t (K, K) =
article, we continue studying theith L,-mixed affine surface Q(K) andQo (K, L) = Q(K).

areas. Combining with this new notion, a result of Lutwak and A convex bodyK € K7 is said to have a.,-curvature
two results of Wang and Leng were extended. Furthermore, we fnction (see [16]).f,(K,") : Sn=1 R, if its L,-surface

establish a monotonic inequality related to theith L,-mixed : : :
affine surface areas. Finally, two open questions are raised. area megsurSP(K, ) is absolutely continuous with respect
to spherical Lebesgue measufeand

Index Terms—mixed affine surface area, L,-mixed affine
surface area,ith L,-mixed affine surface area. dS,(K, ) — 1,(K,")
ds PR
Let 7' and F} denote the set of all bodies i) andC?
respectively, and both of them have a positive continuous
E work in n-dimensional real vector spa¢¥'(n > curvature function.
2), equipped with the standard Euclidean structure. In 1996, Lutwak (see [16]) showed tig,-affine surface
Let K™ denote the set of convex bodies (compact, convexea as follows: Foik € F7, the L,-affine surface area,
subsets with non-empty interiors) in Euclidean spaRés ,(K), of K is given by
For the set of convex bodies containing origin in their

I. INTRODUCTION

interiors and the set of convex bodies with centroid in the O, (K) :/ fo( K, u) ™7 dS (u).
origin in £, we write K and K, respectively. Lets™~! snt
denote the unit sphere iR™, and letV (K) denotes the:- Further, Lutwak established the well-knowh,-affine
dimensional volume of a bodi. For the standard unit ball isoperimetric inequality as follows:
B in R", its volume is written byw,, = V(B). Theorem A. If K € 7} andp > 1, then
For K € K™, K is said to have a curvature function (see 2p .
[14])), f(K,:) : S" ! — R, if its surface area measure Op(K) < nwy PV (K) w0, (3)

S(K. ) is absolutely continuous with respect to sphericgliy, oquality if and only ifi is an ellipsoid which centered
Lebesgue measurg, and

at the origin.
dS(K,-) Regarding the more results @f,-affine surface area, we
d4s FK, ). may see in these articles [22], [27] and [30].

Recently, Wang and Leng introduced the notiongf
mixed affine surface area (see [30]): F&r L € FJ,p >
1,j € R, the L,-mixed affine surface ared), ;(K, L), of
K and L is defined by

) = [ JaTast) 1) Q5 (K, L)

During the past three decades, the investigations of the — /Sn*l oK, u) 3 fp (L, u) ™7 dS(u).
classical affine surface area have received great attention oL , _
from many articles (see papers [2], [3], [4], [5], 6], [8], [9], Sir%et L - B_'”l (:2' ?e”mi‘)’("”ée%ziﬁ(f( ’ﬁ) = ?m ((; )-
[10], [11], [13], [14], [24], [25], [27], [28], [31] or books o< /p(B:) =1 theL,-mixed affine surface area of <

FJ is that

[7], [26]).

The classical mixed affine surface area was given by / n—j

Q,(K) = K,u)»Frd .

Lutwak (see [12]). Foi<, L € F™, j € R, the mixed affine p.a (K) gn-1 Tp(Ku)irdS(u)

Let 7™ denote the set of all bodies iK™ that has a
positive continuous curvature function. Féf € F™, the
classical affine surface are@(K), of K is defined by

(4)
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with equality forp = 1 if and only if K and L are
homothetic; forn # p > 1 if and only if K and L are
dilates.

Theorem C. If K, L € F',p> 1,5 € R, then forj <0
or j >mn,

Qi (K, L)" 2 Qp(K)" I Qp(L); (6)
for0<j <n,
Qi (K, L)" < Qp(K)" I Qp (L), ()

with equality in every inequality fop = 1 if and only if K
and L are homothetic; fom # p > 1 if and only if K and
L are dilates. Forj = 0 or j = n, (6) (or (7) is identical.

affine surface areaﬂg(K,L), of K and L is defined by

(@)
Q, 5K, L)

. . (12)
= /S . fp,z(Kvu>mfp,z([’au)#ds(u>
Let L = B in (12), then we WriteQ](j;)j(K) = Q](Df)j(K,B).
Foru € S"71,S;(B,u) = S,h(B,u) = 1, it follows from
(8) and (9) thatf, ;(B,u) = 1. Together with (12) yields
(2) _
Q,5(K) 7/

Sn—1

The main aim of this article is to define the notions owhereﬂfgf) (K) is called(i, j)-type L,-mixed affine surface

ith L,-mixed affine surface areas afid j)-type L,-mixed

affine surface areas, and to extend the above inequalities to
the entire family of these new notions. Here, we first give 2,

the concepts of.,-mixed curvature function and,-mixed
curvature image of convex body.

For K € K}, p > 1, andi = 0,1,---,n — 1, body K
is said to have a ,-mixed curvature functionf, ;(X,-) :
Sn—1 - R, if its L,-mixed surface area measusg ;(K, )

(see [18], [19], [21], [22]) is absolutely continuous with

respect to spherical Lebesgue meastirand
dS,.i(K,-)

as :fpfi(Kv')'

(8)

If the ith mixed surface area measusg(K) is absolutely
continuous with respect to spherical Lebesgue meaSure

we have

fp,i(Ka u) - h(Ka u)l_pfi(Ka u)v ()]

for u e S" 1.
Let 7, and 7, denote the set of all bodies iG; and

J
area ofK € FJ,. If j =0, we write that

V(K) =
= /Si Foi (K, ) 75777 dS (u),

QLN (K)
(14)

whereQZ(,’)(K) is called (¢, 0)-type L,-mixed affine surface
area (or is calledth L,-mixed affine surface area).

In [20], Ma further gives the following an expansion
of the definition of the(s,0)-type L,-mixed affine sur-
face area: IfK € KJ,p > 1, then the(i,0)-type L,-
mixed affine surface areafzﬁf)(K), of K is defined by

ntp—i

n—i

n~ 7 Q0 (K)
_ (15)

= inf {nW,.i (K, QOW(Q)77 1 Q € S; }.
For i = 0, the definition is just the definition of,-affine

surface area by proposed by Lutwak in [16].
The main results of this article can be stated as follows:

I, respectively, and both of them have a positive continuo&grst, we establish the extended form of Theorem A, given

ith curvature functiory; (K, -) (see [15]).
For eachK € F},(i =0,1,---,n — 1) and realp > 1,

by Theorem 1.

Theorem 1. SupposeX € F/;(i = 0,1,---,n — 1) and

define star body\p;iK € §7, theith L,-mixed curvature p > 1, then

image of K, by (see [19], [20])

Wi(AyiK)

A iK, . n+p7i =
p(Ap, ) o

Ipi(K, ). (10)

In particular, takingi = 0 in (10), we immediately get
Lutwak’s definition of L,-curvature image\, K of convex

body K € F!' (see [16]).

Recently, Ma introduced the notion éth L,-mixed affine

surface area as follows (see [20], [23]): For> 1 and
i =01,
ng)(Kla e 7K7L—'L')a Of K17 e

o 7Kn7i)
= /”Hl[fp,i(Kl,U)---fI,?i(K,,L_i,u)]nﬁﬁdS(u).

let K1 = --- = n—i—j = K and anifjfl = ... =
cen— 1), we denoteﬂé’%(K, L) :=
QS)(K,---,K,L,---,L), with n — i — j copies ofK, and

j copies ofL.
If j is any real, we can define that: Féf, L € F',,i =

0,---,mn — Lp > 1,5 € R, the (i,j)-type L,-mixed

-,n — 1, the ith L,-mixed affine surface area

(11)

. _2p n—i_ - —p
QO(K) < nwi 7 Wi(K)m Wi(K) 77—, (16)

with equality in inequality fori = 0 if and only if K is an
ellipsoid which centered at the origin; fdr < i <n — 1 if
and only if Kis a ball which centered at the origin.

In particular, takingi = 0 in (16), we immediately obtain
L,-affine isoperimetric inequality (3) foK € F.

Next, the cycle inequality of thei, j)-type L,-mixed
affine surface areas and the Minkowski’s inequality of the

o . 'ith L,-mixed affine surface areas are given as follows:
 Kn—i € FJ; is defined by thagrem 2. Supposé, L € FJ;,p > 1,i=0,1,---,n—1,

j,k,meRandj < k < m, then
() m—ko(z k—j (@) m—j
QL (K, L)) (K, LM > Q) (K, L)™ 7,

@)
with equality in inequality fom —i # p=1and0 <i <
n—1ifand only if K and L are homothetic; fon—i # p > 1
and0 < i < n if and only if K and L are dilates.

Let i = 0 in (17) of Theorem 2, we immediately get
Theorem B.
Theorem 3. SupposeX, L € onp>1,1=0,1,-- ,n-1,
jeR. Forj<0orj>n-—i,then

OV (K, L™ > QD (E)" 0Ly (18)
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for 0 < j <n —1, then for all uw e S™1.
2, ;(K, L) < 9,7(K) @7 (L), (19) combinationk +, ¢ - L € K7 is defined by (see [15])
with equality in every inequality fon — ¢ # p = 1 and

0 <i<n-—1Iifand only if K and L are homothetic; for WME +pe-L,-)" = h(K,-)P +eh(L, )",

n—iz#p>land0<i<nifandonlyifk andL are \yhere < in <. L denotes the Firey scalar multiplication.

dilates. Forj = 0 or j =n — 1, (18) (or (19) is identical. ForK € K™ andi = 0,1,...,n—1, the quermassintegrals,
c Obviously, the casé = 0 of Theorem 3 is just Theorem Wi(K), of K are given by (see [1], [25])
' i i i 1
(1g)grther, we obtain the more general form of inequality Wi(K) = ﬁ/ h(E, u)dSi (K, u), (23)
. Snfl
ghle(.)r?mn fll) Sﬁgﬁ?ﬁ?ﬁ?jﬁf: . K€ Foili = where S, (K, -) is ith surface area measure &f on "1,
R ' - ' From (23), we easily see th&lty (K) = V(K).
QS) (K1, Ko, Ky )™ _ Associatgd with the Fi_re)L,,-combination, Lutwak de-
m fined L,-mixed quermassintegrals as follows: Far, L €
< H QO (K, Ky Koty Ka), (20) Kr,e > 0 and realp > 1, the L,-mixed quermassintegrals,
i=1 — Wyi(K,L) (i =0,1,...,n—1), of K and L are defined

. T . by (see [15])
with equality in inequality if and only it(y, Ko, -, K,,—;

(i=0,1,---,n—1) are all dilations of each other (with the n- Z'WW(K, L)

origin as the center of dilation). ”
Taklngm:n—z‘,Kl:K2:~~-:Kn,i,_j:Kand ) WZ(K-FI,EL)—WL(K) ( )

Kn,i,jJrl = =Np_y = L(O <j<n-— Z) In (20), we = 61_1>%1+ - :

immediately obtain inequality (19). .
Finally, we show that a monotonic result as follows: Further, Lutwak (see [15]) showed that, for edche K7,

Theorem 5. If K € K* andi = 0,1,---,n — 1, then for P >1landi=0,1,...,n— 1, there exists a positive Borel

1<p<gq ’ measureS, ; (K, -) (called theL,-mixed surface area mea-

4 tg—i . ndp_i sure of K) on S"~1, such thatZL,-mixed quermassintegrals
( Qfl’)(K) < Qg‘) (K) . 21) W,.:(K, L) has the following integral representation:
) )

W, (K, L) = - / BE (0)dS,(K,v)  (25)
Particularly, takingi = 0 in Theorem 5, we immediately " Jsn
get a result of literature [16]. for all L € KZ. It turns out that the measui®, ;(X,-) is
absolutely continuous with respect H(K, ), and has the
Il. PRELIMINARIES Radon-Nikodym derivative
If K € K", then its support functiomzx = h(K,-) : 4S,.:(K, )
R™ — (—o00,00), is defined by (see [1]) W =hP(K, ). (26)

h(K,z) = max{{z,y) : y € K}, w€R", If ¢ =0, thenS,o(K,-) is just theL,-surface area measure
where(z,y) denotes the standard inner productzofindy. S,(K,-) of K.
If K is a compact star-shaped (about the origin)Rih, From (23), (25) and (26), we know that
its radial function,px = p(K,-) : R" \ {0} — [0,00), IS

defined by (see [1], [25]) Wypi(K, K) = Wi(K). (27)
The Minkowski’s inequality forL,-mixed quermassinte-
p(K,z) =max{\>0: v € K}, € R"\{0}, gralsW, ; can be stated as follows: Fé¢,L € K, p > 1

. . . . andi =0,1,...,n— 1, then (see [15
whenpg is positive and continuoudy is called a star body ’ " ( [15])

(about the origin). W, (K, L)"™" > W(K)" " PW;(L)?, (28)
Let S7 denote the set of star bodies (about the origin) in. _ . . .
R™. Two star bodiesk and L are said to be dilates eachWith equality forp =1 and0 < i <n —1 if and only if K

other if px (u)/pr(u) is independent om € S"~1. and L are homothetic; fop > 1 if and only if K and L are
For K e ICZZ, the po'ar bodyK*’ of K is defined by(see dilates. FOI’p =landi=n-— 1, inequality (28) is identical.
[1], [25]) According to (27) and (28), we easily get that (see [15])
. n Lemma 2.1 SupposeK,L € K, p > 1 andi =
K'={zeR": (z,y) <lye K} 0,1,...,n—1. If foranyQ € K7,
Obviously, (K*)* = K. If ¢ € GL(n), then (¢K)* = 4 B 4
K If A >0, then(AK)* = A 1K™, Wpi(K, Q) = Wp4(L, Q),
If K € K, then the support and rgdial functions of theghen wherd <i <n—1andn—i#p=1, K and L are
polar bodyK™ of K are given respectively by homothetic; wher) <i<nandn—i#p>1, K = L.
1 1 The following formula of the dual quermassintegrals will
(u) = «(u) = 22
i (u) o () and  prc- (u) h () (22) e needed.

(Advance online publication: 14 November 2015)
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__For K € S} and any reali, the dual quermassintegrals.emma 3.3. Supposek € K, then

W;(K), of K are defined by (see [1], [25]) V(KW (K*) < w2, (32)
Wi(K) = 1 / P (u)dS (u). (29) Wwith equality if and only ifK" is an ellipsoid which centered
n Jgn-1 at the origin.
Obviously,WO(K) — V(K). Now we will complete the proof of Theorem 1. In fact,

we prove the following more general conclusion:
Theorem 3.1. SupposeK ¢ K7 and L ¢ F;, then for
I1l. PROOFS OFTHEOREMS p>1, '
In this section, we will prove Theorems 1-5. First, we need ~ _2e__ noi o~ P )
the following three Lemmas for the proof of Theorem 1.  "*“n Wo,i(L, K) =1 > Wi(K) 7= ,7 (L), (33)
Lemma 3.1. If p > 1,K € K3, L € F7;,,0 <i <n—1, with equality in inequality fori = 0 if and only if K and
then L are ellipsoids which centered at the origin, afd and L
DTt p—i i i T e are dilates; for0 < ¢ < n — 1 if and only if K and L are
Q) (L) 78 < "W (L, K) WK, (30) balls which centered at the origin, arld and L are dilates.
with equality if and only ifK* and A, ;L are dilates. Proof. Using inequalities (30), (31) and (32), we have
Proof. Let K € K} and L € F;, then from (12), (22), Qg) (L) P~ (K)P

0,1

(8), (25), (29) and Hglder’s inequality, we have

< n"PTIW(L, K) (W (KW (K))P
Q(i) (L)7L+p—i ) . 2ip (n—i)p
P ntpi < nMPTWL(L, K)Y  wy (V(K)V(KT))
_ [ / f,,J(L,u)#»dswﬂ < WL K)
a i According to the condition of equality for inequality (30),
= [/ (R(K,w)? fpi(L,u)) "7 (31) and (32), we know that equality holds foe= 0 if and
Sn—1

only if K andL are ellipsoids which centered at the origin,
and K and L are dilates; fol0 < i < n — 1 if and only if

» n+p—1t
(=) s )| . &
K and L are balls which centered at the origin, aRkdand

i if 1 n=i L are dilates.
< i L(ﬁ /,H h(K, u)pfw-(L,u)dS(u)) If K € F7;, taking L = K in inequality (33), this yields
1 5 p Theorem 1 by (27).
x (—/ p(K*,u)"—idS(u)) Proof of Theorem 2. Fori = 0, Theorem 2 is just
n Jgn—1 Theorem B in [29].
i 1 ne For1 < i < n — 1, together with(i, j)-type L,-mixed
_ n+p—i ) 5 D
= (E /Sn,l h(K, u)”dSm(L,u)> affine surface area (12) andbtder’s inequality, we have that
x<l / p(K*,u)"ZdS(u)) Q) (K, L)== Q) (K, L)
n Jgn—1 ~ v v TL:,;
= WP, (L, )W (K. = / Foi (K, u) 7 fo i(L, ) "*]””ds(“)}
L Jsn—1

Thus, it follows immediately that (30). According to the r o 2L
condition of equality in Hlder’s inequality, and combined X / fpi (B w) = Fr=7 fp, i(L, ) n+pidS(u)]
with the definition of L,-mixed curvature image, we know -/ S

that equality holds in (30) if and only if _ / (fp,i(K, w) GF=HG=5
h(K, )P fpi(L,w) e oy me
- = J(m—k p— m=j
(K, u)i—" « fm(L,u)m) *dS(u)
for anyu € S™~!, wherec is a constant, i.e., for any € iy
Sm=1, we have X [/ (fp7i(K, u) CFp= D m=3)
. s
p(Ap7iL,u)7L+l)—l _ cWi(ApJ-L) i) m=g - fnij,
P(K*, u)nerfi Wn ’ X fp,i(L; u) (nﬂ’ﬂ’)(m*j)) dS(u)
this shows thatA, ;L and K* are dilates. Therefore, the noizk P
equality holds in inequality (30) if and only i\, ;L and = /STH i (B u) w725 fp i (L u) wr=idS (u)
K* are dilates. 0@ (K,L)
Lemma 3.2. ([17])Supposek € K”,i € R and0 < i < n, P,k AT
then v _ Therefore, inequality (17) is obtained.
Wi(K> < wﬁV(K)%, (31) According to the conditions of equality in ditler’s in-

equalities, we know that the equality holds in inequality (19)
with equality for0 < < n if and only if K" is a ball which it and only if for anyu € S7!,
centered at the origin. If = 0, then(31) is a identical. i i
We also need the following well-known Blaschke-Safital pi (B w) w7 f (L, u) 7o

1—i—m m

inequality (see [14]): fpi(K, u) e Fpi(L,u) ™=

(Advance online publication: 14 November 2015)
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is a constant, i.e.f, ;(K,u)/fp:(L,u) is a constant for any
u € S"~1. Combining with (8), we get

dS,i(K,u) = c¢dS,;(L,u), foranyue S"~1

where ¢ is a constant. Using formula (25), then abowv

equality can be rewritten that
W,i(K,Q) =cW,,(L,Q), forall Qe 2.
Thus, ifn — i # p, then
Wy i(K, Q) = W, (c==7L,Q), forall Qe k.

If n—4i#p>1and0 <1i < n, from the above equation
and Lemma 2.1, we see that = c7—7 L, i.e., the equality

holds in inequality (17) if and only i and L are dilates.

If n—i#p=1and0 <i<n-—1, from the above equation
and Lemma 2.1,1we see thatandc==1=7 L are homothetic.

Therefore, let™=1=L = AK+2 (A > 0,2 € R"),i.e.,L =

aK +y (a> 0,y € R"), this shows that the equality holds

in inequality (17) if and only if X and L. are homothetic.
The proof of Theorem 2 is completed.
Proof of Theorem 3. Forj > n — 4, using (12), (13)
and Hblder’s inequality, we have
i LR ING itizn
Q) (K, L) 70 (k)7

n—i

[ a5 L as )]

x / fp,i(K;u)%dS(u)]
L Jgn-1
| (n—i)(n—i—j)
- / (fp,i(K,u> Fntr—
L Jgn-1 |
x pr(L’u>#)ﬁdS(u)] ’
(n—i)( J iti—n
n—i)(iti—n) \ 77— v
: [/ (fpﬂ(Kv“)W) ’ dS(u)]
S'n.fl
>

/ Fpui(Lyw) T S (1)
Sn—l
QW(L),

this gives inequality (18). According to the condition of
equality in Holder’s inequality, we see that equality holds in

inequality (18) if and only iff, ; (K, w)/ fpi(L,u) (p > 1) is
a constant for any € S™~!. Similar to the proof of Theorem
2, we see that the equality in (18) far— i # p = 1 and
0<i<n-—1ifandonlyif K and L are homothetic, for
n—i#p>1and0 < i< nifand only if K andL are
dilates.

Similar to the above proof, fof <0 or0 < j <n —1,
we can prove inequality (18) and (19), respectively.

For j =0 (or j = n—1), we easily see that (18) (or (19))

is identical. The proof of Theorem 3 is completed.

The following extension of Hider's inequality will be
required to prove Theorem 4.
Lemma 3.4. ([17DIf fo, f1,---, fm are (strictly) positive
continuous functions defined &"—! and oy, - - -, oy, are

/S"*l fO(u)fl (u) e fm(U)dS(u)

m

< II[ [, stor@ast]

fith equality if and only if there exist positive constants
AL,y Am SUCh thaty /7 (u) = -+ = A\ f2m (u) for all
u €SI,

Proof of Theorem 4. By the definition (11) ofith
L,-mixed affine surface area andsider’s inequality (34),
we have

(34)

@q
9

) anz)

1
m

oumnN
3o
=
3
+
=
I
S~—
_:;h
=
=
L
B
3
+
I
4
Q.
n
—
N
[

m

) Kn—i):|
———

m

H |:Q;(DL)(K35 o '7KjaK'rrL+la e
j=1

According to the condition of equality fordter’s inequal-
ity (34), we know that equality holds for inequality (20) if
and only if K1, K>, - - -, K,,_; are all dilations of each other
(with the origin as the center of dilation).

Takingm = n — i in inequality (20), it follows that

Corollary 3.1. SupposeKi, Ka, -+, K,—; € F2, (i =
0,1,---,m—1), then
Qg) (K17 KQ; Y KTL—’L')TL_i

< () QO (K,y), (35)
with equality in inequality if and only it(y, Ko, -, K,,—;
(i=0,1,---,n—1) are all dilations of each other (with the
origin as the center of dilation).

Proof of Theorem 5. The inequality of Theorem 5 follows
immediately from the definition (15) ath L,-affine surface
area once the following fact is established: Givgre S ,
there exists & € S, such that
Wi(Q)*
Wi (K*)a
n—i WL(Q)p

To show this, defing) € S” by

Woi(K,Q)"

(36)
<

Wi (K, Q%)

b 9—P

P = [Wi(K*)pfqu(Q)fp}mpép;{‘* .

From (37) we have

(37)

a—p
n—i

pothic " = Wi (K =W Q)75 pgPhic ™,

the integral representation &V, ; (K, Q*) shows that

Woi(K, Q") = W;(K*) = Wi(Q) "= W, (K, Q). (38)

positive constants the sum of whose reciprocals is unity, th€he definition ofQ, together with the Kider inequality with
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the formula of dual quermassintegrals, show that [7] K. Leichtwei3, Affine Geometry of Convex Bodiad/iley-VCH, Hei-
- delberg, 1998.
WL-(Q) [8] G. S. Leng, “Affine surface areas of curvature images for convex
— pog ~— » bodies,” Acta Mathematica Sinica, English Seriasl. 45, no. 4, pp.
= Wi(K*) @ Wy(Q) « 797-802, May. 2002.

1 (n—i)p (n—i)(a—p) [9] M. Ludwig and M. Reitzner, “A characterization of affine surface area,”
X | = / pQ(u) T pge (u) q dS(u) Advances in Mathematics, vol. 147, no. 1, pp. 138-172, Oct. 1999.
gn—1 [10] E. Lutwak, “On the Blaschke-Santainequality,” Annals of the New

1 b3 York Academy of Sciences, vol. 440, no. 1, pp. 106-112, May. 1985.
i P4 = -z —i K 11] E. Lutwak, “On some affine isoperimetric inequalitiegdurnal of
WK T W(Q) <— / N Z(u)dsuo) - P Rt
Sn-

IN

Differential Geometryvol. 23, no. 1, pp. 1-13, Jan. 1986.
[12] E. Lutwak, “Mixed affine surface areaJournal of Mathematical
. q Analysis and Applicationsvol. 125, no. 2, pp. 351-360, Aug. 1987.
X </ ”_"(u)dS(u)) [13] E. Lutwak, “Centroid bodies and dual mixed volumeBfbceedings
Sn—1 of the London Mathematicavol. 60, no. 2, pp. 365-391, Mar. 1990.
= 1. [14] E. Lutwak, “Extended affine surface aredtlvances in Mathematics,
vol. 85, no. 1, pp. 39-68, Jan. 1991.
Together with (38), this yields (21)_ [15] E. Lutwak, “The Brunn-Minkowski-Firey theory I: mixed volumes and
the minkowski problem,Journal of Differential Geometryol. 38, no.
1, pp. 131-150, Jul. 1993.
IV. OPENPROBLEM [16] E. Lutwak, “The Brunn-Minkowski-Firey theory II: Affine and geo-

. . . minimal surface areasAdvances in Mathematics, vol. 118, no. 2, pp.
In this section, we propose the following two open ques- 244-294, Mar. 1996.

tions: [17] E. Lutwak, “Dual mixed volumes,Pacific Journal of Mathematics,
i n (; _ vol. 58, no. 2, pp. 531-538, Jun. 1975.
Qu‘estlon 4.1. SupposeK, Le ‘.FCJ(Z =0,L,--, n—l),p = [18] L. J. Liu, W. V‘\)lgng and B. W. He, “Fourier transform atig,-mixed
1,7€ Rand0 < j < n. Does it follow that projection bodies,Bulletin of the Korean Mathematicavol. 47, no. 5,
(i) (i) v ra 5 pp. 1011-1023, Sept. 2010.
QPJ(K, L)Qp,j(K ,L*) < (nwp)* ? (39) [19] F. H. Lu and W. D. Wang, “Inequalities fof,,-mixed curvature
images,”Acta Mathematica Scientiavol. 30, no. 4, pp. 1044-102, Jul.
with equality for0 < j < n andp =1 if and only if K and 2010.

L are homothetic ellipsoids; fob < j < n andn # p > 1 [20] T. Y. Ma, “Some inequalities related 10, j)-type L-mixed affine
. . . . . . surface area and.,-mixed curvature image,Journal of Inequalities
if and only if K and L are dilate ellipsoids; forj = 0 (or and Applicationsvol. 2013, no. 1,pp. 1-16, Nov. 2013.

j=mn) if and only if K (or L) is an ellipsoid. [21] T. Y. Ma and C. Y. Liu, “The generalized Busemann-Petty problem

i A ; P for dual L,-mixed centroid bodies,Journal of Southwest University,
Obviously, the casé= 0 of Question 4.1 is just the result Natural Science Editianvol. 34, no. 4, pp. 105-112, Apr. 2012 (in

of Wang and Leng (see [30]). Chinese).

Question 4.2. Supposek € F.(i = 0,1,---,n— 1) and [22] T. Y. Maand C. Y. Liu, “The generalized Shephard problem fgr-
> 1. ; ’ mixed projection bodies and Minkowski-Funk transformddurnal of
p = 1. Does it follow that Shandong University, Natural Science Editimol. 47, no. 10, pp. 21-

(i) %N n—p—i 30, Oct. 2012 (in Chinese).
Q) (K) < nwp ™ Wi(K)we=7 7 (40) [23] T. Y. Ma, “The generalizedL,-Winternitz problem,” Journal of
Mathematica Inequalitiesvol. 9, no. 2, pp. 597-614, Jun. 2015.
or 2p v [24] M. Meyer and E. Werner, “On thg-affine surface areaAdvances in
(4) nrp—i 1/ L o Mathematics vol. 152, no. 2, pp. 288-313, Jun. 2000.
Q) (K) < nwn Wi(K)me= (41) [25] C. M. Petty, “Geominimal surface areaGeometriae Dedicatavol. 3,

. Lo . . Y . . no. 1, pp. 77-97, May. 1974.
with equality in every inequality far = 0 if and only if K is [26] R. SchneiderConvex Bodies: The Brunn-Minkowski Theo8econd

an ellipsoid which centered at the origin; for< i <n —1 edition, Cambridge: Cambridge University, Press, 2014.
if and only if Kis a ball which centered at the origin. [27] C. Schiitt, “On the affine surface are®foceedings of the American

. , . . , Mathematical Societyvol. 118, no. 4, pp. 1213-1218, Aug. 1993.
Obviously, the casé = 0 of Question 4.2 is just Lutwak’s [»g) ¢ Schiitt and E. Werner, “Surface bodies gneffine surface area,”
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