
A Fourth-order Singly Diagonally Implicit
Runge-Kutta Method for Solving One-dimensional

Burgers’ Equation
Dingwen Deng∗, and Tingting Pan

Abstract—In this paper, a fourth-order methods of lines
(MOL) based on Hopf-Cole transformation is derived for
solving one-dimensional (1D) Burgers’ equation by the com-
binations of singly diagonally implicit Runge-Kutta method (S-
DIRKM), compact finite difference method and Simpson’s rule.
By matrix analysis method, it is proved that it is unconditionally
stable. Numerical results show its efficiency.

Index Terms—Burgers’ equation; Hopf-Cole transformation;
Compact finite difference scheme; Runge-Kutta methods

I. INTRODUCTION

THIS study mainly focuses on high order numerical
approximation to 1D Burgers’ equation with nonhomo-

geneous boundary conditions as follows
∂u

∂t
+ u

∂u

∂x
= γ

∂2u

∂x2
, (x, t) ∈ [a, b]× [0, T],

u(a, t) = α(t), u(b, t) = β(t), t ∈ [0, T],
u(x, 0) = ϕ(x), a ≤ x ≤ b,

(1)

where a, b and γ are all constants and γ is the coefficient
of kinematic viscosity. Burger’s equation (1) (cf. [1]) was
extensively applied in many fields, such as turbulent fluid
motion, gas dynamics, traffic flow and shock waves in a
viscous medium.

Exact solution to Eq. (1) with a restricted of initial
and boundary conditions (IBCs) is obtained by using some
analysical method such as Hopf-Cole transformation, homo-
topy perturbation method, Adomian’s decomposition method
and differential transformation method. However, as for Eq.
(1) with arbitrary IBCs, there exist no generally analytical
methods. As a result, over the years, a great deal of attention
has been paid on the developments of numerical algorithms
for the solution of Burger’s equation. With regards to these
details, please refer to references [7]–[17].

Recently, compact finite difference methods (CFDMs) (cf.
[8]–[12], [18]–[21]) have been developed to solve Eq. (1) in
[8]–[12]. However, although these CFDMs have many merits
in terms of spatial accuracy and implementation, initial value
methods (IVMs) used in these algorithms have either low-
order accuracy or conditional stability.

Manuscript received March 22, 2015; revised June 7, 2015. This work
is partially supported by the National Natural Science Foundation of
China (Grant Nos. 11401294, 11326046, 11261040), Youth Natural Sci-
ence Foundation of Jiangxi Provincial Education Department (Grant No.
GJJ14545), Youth Natural Science Foundation of Jiangxi province (Grant
No. 20142BAB211003).

∗ Dingwen Deng, Corresponding Author, College of Mathematics and
Information Science, Nanchang Hangkong University, Nanchang 330063,
China (Email: dengdingwen2010@163.com).

Tingting Pan, Public Department, Jiangxi Nursing Vocational and Tech-
nical College, Nanchang 330052, China

In this paper, we continue to study the CFDM of Eq. (1).
Firstly, a fourth-order compact finite difference scheme at
inner and boundary nodes is derived, thus forming a stiff
IVPs. Secondly, a fourth-order A-stable singly diagonally
implicit Runge-Kutta method (SDIRKM) (c.f. [21], [22]) is
used to solve this IVPs. Finally, corresponding numerical
solution is obtained by solving tri-diagonal equations, which
are established by using Simpson’s rule to Hopf-Cole trans-
formation. Numerical results show our method is reasonable.

II. FOURTH-ORDER NUMERICAL METHODS

This section is devoted to the derivation of the new
numerical method.

A. Notations and auxiliary Lemma

For convenience, denote temporal increment by ∆t, and
suppose that there exist two positive integers K, k such
that ∆t = T/K, tk = k∆t, 0 ≤ k ≤ K. Moreover,
h = (b − a)/n represents grid spacing. The spatial grid
nodes xj = a+ jh, j = 0, 1, . . . , n form the following sets
Ω̄h = {xj |0 ≤ j ≤ n}. On Ω̄h, we define grid function space
Sh = {w|(w0, w1, . . . , wn−1, wn)

T } and introduce centered
difference operator δ2xwj = (wj+1 − 2wj + wj−1)/h

2. In
what follows, a lemma used later is firstly given.
Lemma 1 (cf. [18]) Letting w(x) ∈ C5[a, b], then we have
that

w
′
(x0) =

w(x1)− w(x0)

h
− 5h

12
w

′′
(x0)

− h

12
w

′′
(x1)−

h2

12
w(3)(x0) +O(h4),

w
′
(xn) =

w(xn)− w(xn−1)

h
+

5h

12
w

′′
(xn)

+
h

12
w

′′
(xn−1)−

h2

12
w(3)(xn) +O(h4).

B. Establishment of numerical algorithms

The application of the Hopf-Cole transformation

u(x, t) = −2γ
vx(x, t)

v(x, t)
, (2)

to Eq. (1) yields an equivalent initial boundary value problem
(IBVP) as follow

∂v

∂t
= γ

∂2v

∂x2
, (x, t) ∈ (a, b)× [0, T];

2γvx(a, t) + α(t)v(a, t) = 0,
2γvx(b, t) + β(t)v(b, t) = 0, t ∈ [0, T];

v(x, 0) = exp
{
−
∫ x

a

ϕ(s)

2γ
ds
}
, a ≤ x ≤ b.

(3)

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_11

(Advance online publication: 14 November 2015)

__

For convenience, denote the approximations to v(xj , t)
and v(xj , tk) by Vj(t) and V k

j , respectively. Whereas the
approximation to u(xj , tk) is represented by Uk

j . Clearly,
corresponding vectors Vk(t), Vk and Uk are all belong to
Sh.

For deriving a fourth-order semi-discrete scheme of Eq.
(3), we first develop fourth-order boundary schemes. Clearly,
it follows from Lemma 1 that

∂v(x0, t)

∂x
=

v(x1, t)− v(x0, t)

h
− 5h

12

∂2v(x0, t)

∂x2

− h

12

∂2v(x1, t)

∂x2
− h2

12

∂3v(x0, t)

∂x3

+O(h4),

(4)

∂v(xn, t)

∂x
=

v(xn, t)− v(xn−1, t)

h

+
5h

12

∂2v(xn, t)

∂x2
+

h

12

∂2v(xn−1, t)

∂x2

− h2

12

∂3v(xn, t)

∂x3
+O(h4),

(5)

at boundary nodes (x0, t) and (xn, t), respectively. By Eq.
(3), it is easy to find that

vxx(x0, t) =
1

γ
vt(x0, t); vxx(x1, t) =

1

γ
vt(x1, t);

vxxx(x0, t) =
1

γ
vtx(x0, t)

= − 1

2γ2

[
αt(t)v(x0, t) + α(t)vt(x0, t)

]
.

(6)

The substitution of above Eqs. (6) into Eq. (4) yields[5

12
− α(t)h

24γ

]
vt(x0, t) +

1

12
vt(x1, t)

=
[αt(t)h

24γ
+

α(t)

2h
− γ

h2

]
v(x0, t) +

γ

h2
v(x1, t).

(7)

Also, applying the same techniques as those used in the
derivation of (7), we have that[5

12
+

β(t)h

24γ

]
vt(xn, t) +

1

12
vt(xn−1, t)

=
γ

h2
v(xn−1, t) +

[
− βt(t)h

24γ

− β(t)

2h
− γ

h2

]
v(xn, t).

(8)

Then, using fourth-order compact finite difference scheme
to approximate second-order spatial derivative at interior
nodes, we obtain that

vt(xj , t) = γ
δ2x

1 + (h2δ2x)/12
v(xj , t) +O(h4),

j = 1, 2, . . . , n− 1;

(9)

which can be equivalently written as

(1 +
h2δ2x
12

)vt(xj , t) = γδ2xv(xj , t)

+O(h4), j = 1, 2, . . . , n− 1.

(10)

Therefore, the combination of (7), (8) with (10) yields
that a fourth-order semi-discretization scheme of IBVP (3)
as follow

dV(t)

dt
= L(V(t), t), 0 ≤ t ≤ T,

V(0) = V0,

(11)

in which L(V(t), t) = (A−1B)V(t), and A and B are both
tri-diagonal matrices of order n+ 1 as follows:

A =

5
12 − α(t)h

24γ
1
12

1
12

5
6

1
12

.
1
12

5
6

1
12

1
12

5
12 + β(t)h

24γ

(n+1)×(n+1)

,

B =

ξ1

γ
h2

γ
h2 − 2γ

h2
γ
h2

.
γ
h2 − 2γ

h2
γ
h2

γ
h2 ξ2

(n+1)×(n+1)

,

where ξ1 = αt(t)h
24γ + α(t)

2h − γ
h2 and ξ2 = − γ

h2 − β(t)
2h − βt(t)h

24γ .
Here, meshsize h should be satisfied the following condition:
max
t∈[0,T]

{α(t),−β(t)}h < 8γ, which makes matrix A strictly

diagonally dominant, and thus ensuring its invertibility.
The subsequent work is to solve the initial value problem

(IVP) (11) by using a A-stable initial value methods (IVM),
which has no restriction for temporal grids. From the point
of view of accuracy and time cost, a fourth-order A-stable
SDIRKM is introduced as follows

Y(1) = L
(
Vn + ρ∆tY(1), tn + ρ∆t

)
,

Y(2) = L
(
Vn + (

1

2
− ρ)∆tY(1) + ρ∆tY(2),

tn +
∆t

2

)
,

Y(3) = L
(
Vn + 2ρ∆tY(1) + (1− 4ρ)∆tY(2)

+ρ∆tY(3), tn + (1− ρ)∆t
)
,

Vk+1 = Vk + ϱ∆tY(1) + (1− 2ϱ)∆tY(2)

+ϱ∆tY(3),

(12)

where ρ = 1/2 + (
√
3/3) cos(π/18) and ϱ = [24(1/2 −

ρ)2]−1. Numerical results confirm that this SDIRKM is
effective.

In the end, we only need calculate U(k+1) from V(k+1).
By integrating (2) with respect to variable x on the interval
[xj−1, xj+1] for j = 1, 2, . . . , n− 1, we firstly find that∫ xj+1

xj−1

u(x, tk+1)dx = −2γ

∫ xj+1

xj−1

vx(x, tk+1)

v(x, tk+1)
dx

= −2γ ln
∣∣∣v(xj+1, tk+1)

v(xj−1, tk+1)

∣∣∣.
Secondly, the use of the Simpson’s rule for the integration
of above equation infers that

u(xj−1, tk+1) + 4u(xj , tk+1) + u(xj+1, tk+1)

= −6γ

h
ln
∣∣∣v(xj+1, tk+1)

v(xj−1, tk+1)

∣∣∣+O(h4).

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_11

(Advance online publication: 14 November 2015)

__

zoo
Sticky Note
Unmarked set by zoo

Finally, Omitting O(h4) and replacing v(xj , tk+1) with
V k+1
j in above equation yields that

4Uk+1
1 + Uk+1

2 = F k+1
1 − u(x0, tk+1),

Uk+1
j−1 + 4Uk+1

j + Uk+1
j+1 = F k+1

j ,

(j = 2, . . . , n− 2),

Uk+1
n−2 + 4Uk+1

n−1 = F k+1
n−1 − u(xn, tk+1),

(13)

in which u(x0, tk+1) = α(tk+1), u(xn, tk+1) = β(tk+1) and

F k+1
j = −6γ

h
ln
∣∣∣V k+1

j+1

V k+1
j−1

∣∣∣, j = 1, 2, . . . , n−1.

As coefficient matrix associated with algebraic equations (13)
is strictly diagonally dominant, this algebraic equations (13)
is uniquely solvable and solved using Thomas algorithm.

III. STABILITY ANALYSIS

This section is suggested to the stability analysis of
the new solver. firstly, By simple inference, the following
Corollary holds.
Corollary As α(t) = β(t) = 0, matrices A and B are
both tridiagonal and symmetric matrices. Also, they are both
nonsingular.

Let α(t) = β(t) = 0 and C = A−1B. Then, by some
computations, it is easy to find that the stable function of the
SDIRKM (12), which is applied to solve IVP (11), is defined
by V k+1 = R(∆tC)V k, where R(z) = Q(x)/P (z), Q(z) =
1+(1−3ρ)z+(1/2−3ρ+3ρ2)z2+[1/6−(3/2)ρ+3ρ2−ρ3]z3

and P (z) = (1− ρz)3.
Lemma 1 [21] As z ≤ 0, it holds that |R(z)| ≤ 1.
Lemma 2 Let α(t) = β(t) = 0. Then the eigenvalues of
matrix A−1B are all real and non-positive.
Proof. Let λ be an arbitrary eigenvalue of A−1B, and
x ∈ Rn+1 be corresponding eigenvector. Writing x =
(x1, x2, . . . , xn+1)

T , then we have that (A−1B)x = λx,
which further implies that λxTAx = xTBx. By simple

computation, we easily find that xTBx = − γ

h2

n∑
j=1

(xj−1 −

xj)
2 ≤ 0 and xTAx =

1

3
x2
1+

2

3

n−1∑
j=2

x2
j+

1

3
x2
n+

1

12

n−1∑
j=1

(xj+

xj+1)
2 ≥ 0, which imply that λ must be less than zero to

make λxTAx = xTBx hold.
Therefore, it follows from Lemma 1 and Lemma 2 that

the following Theorem 1 holds.
Theorem 1 New algorithm is unconditionally stable.

IV. NUMERICAL EXAMPLES

Here, for comparison, another two Total Variation Di-
minishing Runge-Kutta methods (TVDRKMs) (see [23]) is
introduced to replace fourth-order SDIRKM (2.11). The first
one is the following third-order TVDRKM :

Y(1) = Vk +∆tL
(
Vn, tn

)
,

Y(2) =
3

4
Vk +

1

4
Y(1) +

∆t

4
L
(
Y(1), tn +∆t

)
,

Vk+1 =
1

3
Vk +

2

3
Y(2)

+
2∆t

3
L
(
Y(2), tn +

∆t

2

)
.

(14)

The second one is fourth-order TVD RKM as follow

Y(1) = Vk +A1∆tL
(
Vn, tn

)
,

Y(2) = B1V
k +B2Y

(1) +B3∆tL
(
Y(1), tn +B4∆t

)
,

Y(3) = C1V
k + C2Y

(2) + C3∆tL
(
Y(2), tn + C4∆t

)
,

Y(4) = D1V
k +D2Y

(3) +D3∆tL
(
Y(3), tn +D4∆t

)
,

Vk+1 = E1V
k + E2Y

(2) + E3Y
(3) + E4∆tL

(
Y(3),

tn + E5∆t
)
+ E6Y

(4) + E7∆tL(Y(4), tn + E8∆t),

(15)
where A1 = 0.39175222700392, B1 =
0.44437049406734, B2 = 0.55562950593266, B3 =
0.36841059262959, B4 = 0.39175222700392, C1 =
0.62010185138540, C2 = 0.37989814861460, C3 =
0.25189177424738, C4 = 0.58607968896780, D1 =
0.17807995410773, D2 = 0.82192004589227, D3 =
0.54497475021237, D4 = 0.47454236302687, E1 =
0.00683325884039, E2 = 0.51723167208978, E3 =
0.12759831133288, E4 = 0.08460416338212, E5 =
0.47454236302687, E6 = 0.34833675773694, E7 =
0.22600748319395, E8 = 0.93501063100924.

In what follows, for the sake of clearness and convenience,
it is necessary to conclude our algorithms as follows. Assume
that Vk is known.

Algorithm 1: First solving Vk+1 using third-order TV-
DRKM (14), then we obtain Uk+1 by the use of the Thomas
algorithm to (13).

Algorithm 2: Vk+1 is solved using fourth-order TVDRK-
M (15). Then, we obtain Uk+1 by applying the Thomas
algorithm to (13).

Algorithm 3: Firstly compute Vk+1 by applying SDIRK-
M (12), then calculate Uk+1 by the application of the
Thomas algorithm to (13).

In this section, three IBVPs are carried out to tes-
tify the utility and adaptability of our algorithms. L2-
and L∞-norm errors at tN = N∆t between exact
and calculated solutions are defined as follows ∥eN∥ =[n−1∑

j=1

(UN
j − uN

j)2h
] 1

2

, ∥eN∥∞ = max
1≤j≤n−1

(UN
j −

uN
j), respectively. They and the total elapsed time (CPU)

in seconds delivered in each case are applied to mea-
sure the performance of the numerical algorithms. More-
over, convergence rates in L∞- and L2-norms are also
defined as follows: rate=[log2 ∥eN (2h)∥∞/∥eN (h)∥∞] and
rate2=[log2 ∥eN (2h)∥/∥eN (h)∥], respectively, as ∆t = h,
(see Table I).

Example 1 To test the accuracy and efficiency of our
algorithms, we consider Burgers’ equation (1) with initial
and boundary conditions [12]

u(x, 0) = 2γ
π sin(πx)

σ + cos(πx)
, x ∈ (0, 1);

u(0, t) = u(1, t) = 0, t ∈ (0, T];

where σ > 1 is a parameter. By Hopf-Cole transformation,
it is not difficult to find that

v(x, 0) =
σ + cos(πx)

σ + 1
.

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_11

(Advance online publication: 14 November 2015)

__

And the exact solution to this problem is given as follow

u(x, t) =
2γπe−π2γt sin(πx)

σ + e−π2γt cos(πx)
, 0 < x < 1.

For this problem, we take σ = 3 and γ = 0.1, and display
the numerical results in Table I-Table II. To accurately assess
the performance of Algorithm 1, for a fixed grid, we run
200 times, then take the average computational time as time
cost (CPU time) in Tables I. From Tables I, we can see that
Algorithm 3 has a convergence rate of O(h4) in L∞ and
L2-norms as ∆t = h, and costs reasonable computational
time.

Table II shows superiority of Algorithm 3 over Algorithm
1 and Algorithm 2 in terms of stability. For example, all
of solutions, which are obtained using Algorithm 1 with
∆t = 0.1h and h ≤ 1/80 and using Algorithm 2 with
∆t = 0.1h and h = 1/160, respectively, fail to converge,
while for arbitrary given h, solution provided by Algorithm
3 with ∆t = h is convergent.

Example 2 For comparison with other existing numerical
methods, numerical approximation to the following Burgers’
equation (1) with initial and boundary conditions [12]

u(x, 0) = sin(πx), x ∈ (0, 1);

u(0, t) = u(1, t) = 0, t ∈ (0, T].

is further considered. The exact solution to this problem is

u(x, t) = 2πγ

∞∑
n=1

cn exp(−n2π2γt)n sin(nπx)

c0 +
∞∑

n=1

cn exp(−n2π2γt) cos(nπx)

, (16)

where the coefficients are defined by

c0 =

∫ 1

0

exp(−1− cos(πx)

2πγ
)dx,

cn = 2

∫ 1

0

exp(−1− cos(πx)

2πγ
) cos(nπx)dx, (n = 1, 2, 3, . . .).

According to Hopf-Cole transformation, we can also find that

v(x, 0) = exp(−1− cos(πx)

2πγ
), x ∈ [0, 1].

For calculating errors of numerical solution, exact Fourier
series solution (16) should be accurately evaluated. Here, a
number N is taken such that cN ≤ 1.0e− 15.

In Table III, as compact difference method proposed
in [11] is second-order accurate in time and fourth-order
accurate in space, grid relation ∆t = h2 is taken to make
Xie’s method convergent with an order of O(h4). Also, grid
relation ∆t = 0.05h for Algorithm 2 is chosen to make sure
stability of the Algorithm. From this table, we can see that
with the same meshsize h, solutions obtained using Xie’s
method, Algorithm 2 and Algorithm 3, respectively, have the
almost same accuracy, however, the cost of Algorithm 3 is
the lowest.

Table IV shows that Algorithm 3 is the most robust in
comparison with other methods developed in [7], [11], [13].
Evolution graphs of numerical solution for several parameter
γ are depicted in Figure 1, from which we can observe the
asymptotic behavior of solution to this problem.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

xt

U

γ=0.1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

xt

U

γ=0.05

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

xt

U

γ=0.01

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

xt

U

γ=0.005

Fig. 1. Example 2 with different parameter γ (solved by Algorithm 3 with
∆t = h = 0.0125): Time evolution graphs of numerical solution at t = 1.

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_11

(Advance online publication: 14 November 2015)

__

TABLE I
COMPUTATIONAL RESULTS AT t = 1 FOR EXAMPLE 1, OBTAINED USING ALGORITHM 3 WITH ∆t = h.

h 1/4 1/8 1/16 1/32 1/64 1/128
∥eN∥∞ 3.2721e− 04 1.6457e− 05 9.88014e− 07 6.2644e− 08 3.9211e− 09 2.4559e− 10
rate ∗ 4.3134 4.0581 3.9792 3.9978 3.9970
∥eN∥ 1.6968e− 04 8.6036e− 06 5.1540e− 07 3.2084e− 08 2.0096e− 09 1.2591e− 10
rate2 ∗ 4.3017 4.0612 4.0058 3.9969 3.9964
CPU 7.50e− 05 1.60e− 04 2.35e− 04 5.50e− 04 2.19e− 03 1.31e− 02

TABLE II
COMPARISON OF NUMERICAL RESULTS FOR EXAMPLE 1 OBTAINED USING THREE ALGORITHMS

Algorithm 1 Algorithm 2 Algorithm 3
∆t = 0.1h ∆t = 0.1h ∆t = h

h ∥eN∥∞ ∥eN∥ ∥eN∥∞ ∥eN∥ ∥eN∥∞ ∥eN∥
1/5 1.1759e− 04 5.9583e− 05 1.1757e− 04 5.9576e− 05 1.2615e− 04 6.3046e− 05
1/10 6.0544e− 06 3.1434e− 06 6.0521e− 06 3.1426e− 06 6.7294e− 06 3.4454e− 06
1/20 3.6030e− 07 1.8834e− 07 3.6001e− 07 1.8823e− 07 4.0790e− 07 2.1049e− 07
1/40 2.2261e− 08 1.1654e− 08 2.2221e− 08 1.1639e− 08 2.5660e− 08 1.3149e− 08
1/80 NaN NaN 1.3836e− 09 7.2383e− 10 1.6070e− 09 8.2375e− 10
1/160 NaN NaN NaN NaN 1.0062e− 10 5.1584e− 11

TABLE III
COMPARISON OF NUMERICAL RESULTS AT t = 1 FOR EXAMPLE 2 WITH γ = 0.05.

h 1/20 1/40 1/80 1/160 1/320

HOCM [11] ∥eN∥∞ 2.5171e− 04 1.3765e− 05 8.6955e− 07 5.3973e− 08 3.3676e− 09
∆t = h2 ∥eN∥ 6.8583e− 05 3.9127e− 06 2.3927e− 07 1.4874e− 08 9.2840e− 10

CPU 9.35e− 04 5.08e− 03 3.10e− 02 0.50 16.89

Algorithm 2 ∥eN∥∞ 2.5219e− 04 1.3794e− 05 8.7175e− 07 5.4086e− 08 3.3504e− 09
∆t = 0.05h ∥eN∥ 6.8773e− 05 3.9254e− 06 2.4007e− 07 1.4916e− 08 9.2336e− 10

CPU 5.31e− 03 1.60e− 02 9.30e− 02 0.75 18.07

Algorithm 3 ∥eN∥∞ 2.6218e− 04 1.4836e− 05 9.4213e− 07 5.8831e− 08 3.6858e− 09
∆t = h ∥eN∥ 7.2655e− 05 4.2683e− 06 2.6529e− 07 1.6629e− 08 1.0423e− 09

CPU 3.15e− 04 8.60e− 04 3.75e− 03 2.40e− 02 0.187

TABLE IV
COMPARISON OF NUMERICAL RESULTS AT t = 1 FOR EXAMPLE 2 WITH γ = 0.05, ∆t = h = 0.01.

t 1 1.5 2 2.5 3

HOCM [11] ∥eN∥∞ 1.4097e− 05 6.5103e− 06 2.1697e− 06 7.5075e− 07 4.7140e− 07
∥eN∥ 7.2033e− 06 3.1703e− 06 1.2009e− 06 4.9196e− 07 2.8844e− 07
CPU 2.66e− 03 3.05e− 03 3.52e− 03 3.91e− 03 8.75e− 03

FDM [7] ∥eN∥∞ 7.2819e− 05 3.6426e− 05 1.7624e− 05 9.0853e− 06 4.8601e− 06
∥eN∥ 3.1252e− 05 2.0219e− 05 1.1393e− 05 6.2535e− 06 3.2578e− 06
CPU 9.40e− 04 1.41e− 03 1.72e− 03 2.26e− 03 2.65e− 03

FEM [13] ∥eN∥∞ 2.5646e− 04 7.4400e− 05 5.3496e− 05 4.3241e− 05 3.6328e− 05
∥eN∥ 1.2426e− 04 4.7442e− 05 3.6311e− 05 3.0815e− 05 2.5678e− 05
CPU 9.35e− 04 1.41e− 03 1.80e− 03 2.27e− 03 2.58e− 03

Algorithm 3 ∥eN∥∞ 3.8401e− 07 9.6245e− 08 3.0356e− 08 1.1462e− 08 4.8477e− 09
∥eN∥ 1.0874e− 07 3.0993e− 08 1.0945e− 08 4.5609e− 09 2.1156e− 09
CPU 6.64e− 03 8.99e− 03 1.13e− 02 1.38e− 02 1.62e− 02

Example 3 In this example, we solve IBVP (1) with
initial-boundary conditions u(x, 0) = {[α + µ + (µ −
α) exp[α(x − β)/γ]}/{1 + exp[α(x − β)/γ]}, u(0, t) = 1
and u(1, t) = 0.2, whose exact solution, i.e. traveling wave
is

u(x, t) =
α+ µ+ (µ− α) exp(η)

1 + exp(η)

where η = α(x − µt − β)/γ, α, β and µ are all constants.
Similar to above problems, it is easy to find that

v(x, 0) = exp[
(α− µ)(x− a)

2γ
]
1 + exp{[α(β − x)]/γ}
1 + exp{[α(β − a)]/γ}

.

As literature [11], we take parameters α = 0.4, µ = 0.6,
and β = 0.125. Numerical results are listed in Tables V–
VII and Figure 2. From these data, we can deduce that

Algorithm 3 outperforms Xie’ [11] and Liao’ [21] methods
and Algorithm 2 in aspects of the accuracy and time cost.
Also, Figure 2 shows that Algorithm 3 has a good capacity
of simulation for a smaller γ.

V. CONCLUSIONS

In this article, a fourth-order numerical algorithm has
been developed for solving 1D Burgers’ equation. From
numerical and theoretical results show that there is no grid
restriction for this new method. Also numerical results show
the superiority of our algorithm over Algorithm 1 (i.e. third-
order TVDRKM), Algorithm 2 (i.e. fourth-order TVDRKM)
and previous numerical methods devised in [7], [11]–[13] in
terms of accuracy and computational cost.

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_11

(Advance online publication: 14 November 2015)

__

TABLE V
COMPARISON BETWEEN EXACT AND NUMERICAL SOLUTIONS OF EXAMPLE 3 WITH γ = 0.005 AT t = 1, (h = 0.002).

∆t = 0.05h ∆t = 0.5h
x Algorithm 2 Algorithm 3 Xie [11] Liao [12] exact solution
0.7 0.90464646058042 0.90465142905401 0.88207964747440 0.90551049986242 0.90463766238230
0.72 0.67895413930985 0.67896550910158 0.64123294440869 0.68094989423482 0.67895012808995
0.74 0.38517923470717 0.38518765326492 0.36184587622641 0.38666396133177 0.38518017320078
0.8 0.20197796098899 0.20197807770597 0.20173594132308 0.20199860991807 0.20197809852531

∥eN∥∞ 1.1218e− 05 1.5699e− 05 3.7834e− 02 2.0790e− 03 ∗
∥eN∥ 7.4966e− 06 8.0346e− 06 9.0417e− 03 3.8013e− 04 ∗
CPU 37.125 3.828 0.328 0.329 ∗

TABLE VI
COMPARISON OF NUMERICAL RESULTS AT t = 1 FOR EXAMPLE 3 WITH γ = 0.0025, h = 0.002.

t 0.2 0.4 0.6 0.8 1.0

Xie [11] ∥eN∥∞ 3.1587e− 02 4.6043e− 02 1.1548e− 01 1.8655e− 01 2.5604e− 01
∆t = 0.5h ∥eN∥ 1.0622e− 02 1.5992e− 02 2.3254e− 02 3.1745e− 02 4.0611e− 02

CPU 0.266 0.344 0.453 0.531 0.625

Liao [12] ∥eN∥∞ 2.8439e− 03 6.0177e− 03 9.3536e− 03 1.2706e− 02 1.6062e− 02
∆t = 0.5h ∥eN∥ 3.6584e− 04 7.8105e− 04 1.2138e− 03 1.6477e− 03 2.0817e− 03

CPU 0.266 0.359 0.455 0.546 0.641

Algorithm 2 ∥eN∥∞ 4.0883e− 04 5.5939e− 04 5.5167e− 04 5.2987e− 04 5.0739e− 04
∆t = 0.1h ∥eN∥ 7.9345e− 05 1.0674e− 04 1.1683e− 04 1.2501e− 04 1.3269e− 04

CPU 19.172 38.125 57.016 76.047 94.891

Algorithm 3 ∥eN∥∞ 3.2135e− 04 3.8435e− 04 2.8963e− 04 1.8592e− 04 1.7705e− 04
∆t = 0.5h ∥eN∥ 7.2418e− 05 9.3995e− 05 1.0152e− 04 1.0930e− 04 1.1826e− 04

CPU 0.937 1.688 2.469 3.035 3.422

TABLE VII
COMPARISON OF NUMERICAL RESULTS AT t = 1 FOR EXAMPLE 3 WITH DIFFERENT γ , h = 0.001.

γ 0.009 0.007 0.005 0.003 0.001

Xie [11] ∥eN∥∞ 6.6602e− 04 6.6602e− 04 9.6423e− 03 4.2083e− 02 6.6619e− 01
∆t = 0.5h ∥eN∥ 4.5370e− 04 1.0534e− 03 2.2967e− 03 7.2300e− 03 7.5986e− 02

CPU 6.625 7.093 8.640 9.750 9.797

Liao [12] ∥eN∥∞ 1.3640e− 03 4.5181e− 04 5.3489e− 04 2.3978e− 03 6.1255e− 02
∆t = 0.5h ∥eN∥ 3.3473e− 04 3.3473e− 04 9.7659e− 05 9.7659e− 05 5.0355e− 03

CPU 6.547 7.078 8.703 9.859 9.953

Algorithm 2 ∥eN∥∞ 1.2747e− 03 2.6207e− 04 1.4322e− 05 1.2007e− 05 3.4259e− 03
∆t = 0.04h ∥eN∥ 3.1287e− 04 5.6679e− 05 2.6823e− 06 3.9175e− 06 3.9576e− 04

CPU 1914.844 1919.734 1936.625 1953.657 1943.781

Algorithm 3 ∥eN∥∞ 1.2748e− 03 2.6220e− 04 1.5011e− 05 5.4175e− 06 5.3895e− 04
∆t = 0.5h ∥eN∥ 3.1288e− 04 5.6706e− 05 2.8062e− 06 3.6184e− 06 2.8890e− 04

CPU 34.375 34.375 34.844 38.390 38.390

REFERENCES

[1] J.M. Burgers, “A mathematical model illustrating the theory of turbu-
lence,” Advances in Applied Mechanics, vol. I, Academic Press, New
York, pp. 171–199, 1948.

[2] J.D. Cole, “On a quasi-linear parabolic equations occuring in aerody-
namics,” Quarterly of Applied Mathematics, vol. 9, pp. 225–236, 1951.

[3] E. Hopf, “The partial differential equqation ut + uux = µuxx,”
Communications on Pure and Applied Mathematics, vol. 3, pp. 201–
230, 1950.

[4] E. Benton, G.W. Platzman, “A table of solutions of the one-dimensional
Burgers equations,” Quarterly of Applied Mathematics, vol. 30, pp.
195–212, 1972.

[5] A. Kelleci and A. Yıldırım, “An efficient numerical method for solving
coupled Burgers’ equation by combining homotopy perturbation and
Pade techniques,” Numerical Methods for Partial Differential Equations,
vol. 27, pp. 980–995, 2001.

[6] N. Taghizadeh, M. Akbari, and A. Ghelichzadeh, “Exact solution
of Burgers equations by homotopy perturbation method and reduced
differential transformation method,” Australian Journal of Basic and
Applied Sciences, vol. 5, pp. 580–589, 2011.

[7] Mohan. K. Kadalbajoo and A. Awasthi, “A numerical method based on
Crank-Nicolson scheme for Burgers equation,” Applied Mathematics
and Computation, vol. 182, 1430–1442, 2006.

[8] I.A. Hassanien, A.A. Salama, and H.A. Hosham, “Fourth-order finite
difference method for solving Burgers’ equation,” Applied Mathematics
and Computation, vol. 170, pp. 781–800, 2005.

[9] M. Sari and G. Gürarslan, “A sixth-order compact finite difference
scheme to the numerical solutions of Burgers equation,” Applied
Mathematics and Computation, vol. 208, pp. 475–483, 2009.

[10] P. Zhang and J. Wang, “A predictor-corrector compact finite difference
scheme for Burger’ equation,” Applied Mathematics and Computation,
vol. 219, pp. 892–898, 2012.

[11] S. Xie, G. Li, and S. Heo, “A compact finite difference method
for solving Burgers’ equation,” International Journal for Numerical
Methods in Fluids, vol. 62, pp. 747–764, 2010.

[12] W. Liao and J. Zhu, “An implicit fourth-order compact finite difference
scheme for one-dimensional Burgers’ equation,” Applied Mathematics
and Computation, vol. 206 pp. 755-764, 2008.

[13] T. Özis, E.N. Aksan, and A. Özdes, “A finite element approach for
solution of Burgers’ equation,” Applied Mathematics and Computation,
vol. 139, pp. 417–428, 2003.

[14] S. Kutluay, A. Esen, and I. Dagb, “Numerical solutions of the Burgers
equation by the least-squares quadratic B-spline finite element method,”
Journal of Computational and Applied Mathematics, vol. 167, pp. 21–
33, 2004.

[15] R. Zhang, X. Yu, and G. Zhao, “Local discontinuous Galerkin method
for solving Burgers and coupled Burgers equations,” Chinese Physics
B, vol. 20, Arthcle ID 110205, 6 pages, 2011.

[16] A. Hashemian, H.M. Shodja, “A meshless approach for solution of
Burgers equation,” Journal of Computational and Applied Mathematics,
220, pp. 226–239, 2008.

[17] R. Mokhtari, A.S. Toodar, and N.G. Chegini, “Application of the gen-
eralized differential quadrature method in solving Burgers’equations,”
Communications in Theoretical Physics, vol. 56, pp. 1009–1015, 2011.

[18] H. Cao, L. Liu, Y. Zhang, and S. Fu, “A fourth-order method of
the convection-diffusion equations with Neumann boundary conditions,”
Applied Mathematics and Computation, vol. 217, pp. 9133–9141, 2011.

[19] B. Wongsaijai, K. Poochinapan, and T. Disyadej, “A compact finite

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_11

(Advance online publication: 14 November 2015)

__

Fig. 2. Example 3 with γ = 0.001 (solved by Algorithm 3 with ∆t =
0.0005, h = 0.001): Numerical solution and corresponding errors

difference method for solving the general Rosenau-RLW Equation,”
IAENG International Journal of Applied Mathematics, vol. 44, no. 4,
pp. 192-199, 2014.

[20] J.C. Chen and W. Chen, “Two-dimensional nonlinear wave dynamics
in blasius boundary layer flow using combined compact difference
methods,” IAENG International Journal of Applied Mathematics, vol.
41, no. 2, pp. 162-171, 2011.

[21] W. Liao and Y. Yan, “Singly diagonally implicit Runge-Kutta method
for time-dependent reaction-diffusion equation,” Numerical Methods for
Partial Differential Equations,” vol. 27, pp. 1423–1441, 2011.

[22] N. Senu, M. Suleiman, F. Ismail, and M. Othman, “A singly diagonally
implicit Runge-Kutta-Nyström method for solving oscillatory problem-
s,” IAENG International Journal of Applied Mathematics, vol. 41, no.
2, pp. 155-161, 2008.

[23] C.W. Shu, “A survey of strong stability preserving high order time
discretizations methods, In: Collected Lectures on the preservation of
Stability under Discretization,” SIAM, Philadelphia, 2002.

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_11

(Advance online publication: 14 November 2015)

__

