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Abstract—In order to decrease the chattering generated by 

the sliding mode controller (SMC) in the manipulator 
trajectory tracking, we present a new adaptive sliding mode 
controller based on radial basis function (RBF) neural network. 
The sliding mode variable structure control is used for resisting 
disturbance and guaranteeing the system stability, and the RBF 
neural network is introduced to reduce the switching gain 
through self-learning ability. The input of RBF neural network 
is the sliding mode function, and its output is the switching gain 
which can be adjusted adaptively. Under the condition of 
existing model errors and external disturbances, the simulation 
studies on the multi-joint rigid manipulator show that the 
proposed algorithm can obtain good performance both in 
tracking the trajectory and reducing the chattering. 
 

Index Terms—manipulator, RBF neural network, sliding 
mode variable structure control, trajectory tracking 
 

I. INTRODUCTION 

he manipulator system is a time-varying, strong coupling 
and nonlinear system. The manipulator trajectory 

tracking have attracted considerable attentions of scholars 
[1]-[3]. 

Sliding-mode control is a robust design methodology 
using a systematic scheme based on a sliding surface and 
Lyapunov’s stability theorem. The main advantage of SMC is 
that the system uncertainties and external disturbances can be 
accommodated because of the invariance characteristics of 
system sliding conditions. However, the switching control in 
SMC results in control gain chattering. When the model of 
the manipulator is precisely known, Zhai et al. [4] proposed a 
new improved dual power reaching law based on the 
traditional sliding mode control. The adaptive items were 
added based on the dual power reaching law, the variables   

and k  were adjusted to effectively improve the approaching 
speed. The simulation result shows that the method has less 
chattering for the manipulator trajectory tracking. However, 
manipulator system is a complex nonlinear system, whose 
dynamic parameters are difficult to be forecasted precisely. 
In fact, it is almost impossible to obtain exact dynamic 
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models because of such uncertainties as nonlinear frictions 
and flexibilities of the joints and links of manipulator. In the 
literature [5], the genetic algorithm was used to optimize the 
switching function, the size of the chattering as the index of 
fitness function was optimized, and a switching function with 
relative minimum chattering was constructed. Feiy et al. [6] 
presented a sliding mode control based on disturbance 
observer for robot, the coupling system was decoupled by the 
feedback joint angle; it achieved high precision, but the 
simple control structure demanded that the control 
parameters must be known. In literature [7], the sliding mode 
control was applied to deal with the robust control of space 
robot in capturing operation of the target and controlling the 
spacecraft motion under unknown parameters. The saturation 
function was introduced in order to avoid the chattering 
phenomena, the simulation results proved the feasibility of 
the algorithm. 

The self-learning characteristics and high parallel 
computing characteristic of neural network are very powerful, 
it can approximate the nonlinear systems with arbitrary 
accuracy, and it also has a strong robustness. In addition, 
aiming at the approximation errors of the neural network, 
most of the researches get the result that the tracking errors 
can be uniformly ultimately bounded or can be kept 
arbitrarily small if some gain parameters are sufficiently large. 
Lin et al. [8] combined sliding mode control and RBF neural 
network to design the controller. The output of RBF neural 
network was regarded as the input of sliding mode controller. 
It achieved a certain effect on eliminating the chattering, but 
it used the objective function to estimate the network weights, 
so it can not realize the adaptive weight updated online. The 
controller of literature [9] was composed of SMC, RBF 
neural network, and fuzzy control. A Lyapunov function was 
selected for the design of the SMC, and RBF neural network 
was proposed to compute the equivalent control. The weights 
of the RBF neural network were adjusted according to an 
adaptive algorithm. Fuzzy logic was used to adjust the gain of 
the corrective control of the SMC. The real time 
implementations indicated that the proposed method can be 
applied to manipulator trajectory control. In this paper, the 
RBF neural network and sliding mode controller is designed 
serially, RBF neural network approximate the switching gain, 
and the robust term is used to eliminate the neural network 
error. The simulation results demonstrate that the chattering 
and the steady state errors are eliminated and satisfactory 
trajectory tracking is achieved.  

The paper is organized as follows. In section 2, the related 
knowledge of the manipulator is introduced. In section 3, the 
slide model control method is described, and its 
disadvantages are discussed; the sliding mode controller with 
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RBF neural network is designed and the stability proof is 
presented. Section 4 gives an example of a two degrees of 
freedom robot arm to show the effect of the proposed method. 
In Section 5 the concluding remarks are discussed. 
  

II. PRELIMINARIES 

A. Model of Manipulator 

A standard method for deriving the dynamics equations of 
a mechanical system is via the Euler-Lagrange equations. 
Using this method, the dynamics equations of a n  degree of 
freedom rigid manipulator can be described in the following 
general form [10]: 
 

( ) ( , ) ( ) dD q q C q q q G q         (1) 

 
Where ( )D q  is an n n  inertia matrix, which is a positive 

definite matrix. ( , )C q q  is an n n  matrix containing the 

centrifugal and Coriolis forces. ( )G q is an 1n  vector 

containing gravity torques. q is joint position, q  is joint 

velocity, q  is joint acceleration.  is joint drive torque. d  

denotes the external disturbance and 
0

T
d d dt 



  is 

bounded. 
The dynamic characteristics of manipulator system are as 

follows: 
Property 1: Inertia matrix ( )D q  is a symmetric positive 

definite matrix bounded by
2 2

1 2( )Td x x D q x d x  , 

where 1d and 2d  are known positive constants.  
Property 2: The matrix ( ) 2 ( , )D q C q q  is skew-symmetric, 

so it satisfies ( ) 2 ( , )T Tx D q x x C q q x  , nx R . 

Property 3: The unknown disturbance satisfies d db

 , 

where db  is a positive constant. 
Our objective is to design a trajectory tracking controller 

whose output is the control torque , which can make the 
position of joints track the desired trajectory accurately. 

B. RBF Neural Network 

RBF neural network was proposed by J. Moody and C. 
Darken in the 1980s, and the corresponding theory was 
developed by Powell. It is a powerful feed forward neural 
network architecture [11]. This type of network was applied 
to the real multivariable interpolation problem and was first 
formulated as neural network by Broomhead and Lowe. In 
the control engineering, the RBF neural network is usually 
used as a tool for modeling nonlinear function up to a small 
error tolerance because of its good capabilities in function 
approximation. 

The structure of typical RBF neural network is made up of 
a collection of parallel processing units called nodes as 
shown in Fig. 1: 

2x
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mh
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

1x

j

 
Fig. 1.  The structure of RBF neural network 

 

The RBF neural network has a feed forward architecture 
with an input layer, a hidden layer, and an output layer. The 
hidden layer is responsible for nonlinear transformation from 
the input space to the hidden space. The output layer is linear, 
which is designed to provide the response to the input signal. 

There is a layer of processing units called hidden units 
between the inputs and outputs. Each of them is implemented 
by a radial basis function. The input layer of the network has 
n  units for an n  dimensional input vector. The input units 
are fully connected to the hidden layer units, which are in 
turn fully connected to the output layer units. In this paper, 
the number of input layer is 2, the number of hidden layer is 5, 
the number of output layer is 1. 

The input-output mapping relationship is: 
 

1

( ) ( )
m

T

j

f x h x


   (2) 

 
Where x  is the input signal of neural network, ( )f x is the 

output signal, ( )h x is the Gaussian basis function, and   
denotes neural network weights. 

The activation function of the hidden layer is generally a 
Gaussian function which is expressed as: 
 

2 2( ) e x p ( / )j jh x x c b    (3) 

 

Where jc are the RBF centers in the input vector space. 

jb denote the width of the node, 1, 2, ,j m  . 
Under the condition of the following assumptions, RBF 

neural network can approximate continuous functions with 
any degree of accuracy in a compact set [12]. 

1. The neural network output ˆ ˆ( , )f x   is continuous. 

2. The ideal approximation of the neural network output 

is *ˆ ( , )f x  , for a very small positive number 0 , which has: 

 
*

0
ˆmax ( ) ( , )f x f x     (4) 

 

Where
* is an n n  matrix, and denotes the best 

approximation of neural network weights. 
Define the approximation error of ideal neural network, 

namely: 
 

*ˆ( ) ( , )f x f x    (5) 
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By the approximation capability of RBF neural network, 

the modeling error   is bounded, we assume that it is 0 . 

 
*

0
ˆsup ( ) ( , )f x f x    (6) 

 
Where: 
 

* *ˆ ( , ) ( )Tf x h x   (7) 

 

III. THE DESIGN OF THE CONTROLLER 

A. The Design of the Sliding Mode Controller 

Sliding mode variable structure is a class of nonlinear 
control. The characteristic of this kind of control is that it has 
no fixed structure, and can change movement way according 
to the specific circumstances so as to achieve the 
presupposition state. Because the given trajectory has no 
association with the system state and the external disturbance, 
so the control system has strong robustness, and operation 
method of this control is simple. 

The control objective is to drive the joint position q  to the 

desired position dq . Define the tracking error: 

 
de q q   (8) 

 
Define the sliding surface: 
 

s e e   (9) 
 

Where 1[ ], 0i n idiag       . 
Define the reference state [13]: 

 

r dq q s q e       (10) 

r dq q s q e         (11) 

 

Assuming that there is no external interference d , we 

choose the control input  : 
 

ˆ sgnK s    (12) 

ˆ ˆˆˆ r rDq Cq G As       (13) 

 

Where D̂ , Ĉ , Ĝ are the estimated values of D , C , G  
respectively, and 11[ ]ii nnK diag K K K   is a diagonal 

positive definite matrix in which iiK is a positive constant and 

1[ ]i nA diag a a a   is also a diagonal positive definite 

matrix in whichis ia  a positive constant. sgn( )  is a sign 

function, it is given as follows: 

 

1 , 0

sgn( ) 0 , 0

1 , 0

s

s s

s


 
 

 (14) 

 
Substituting Eq. (12) and (13) into Eq. (1), we can get: 
 

( ) sgnDs C A s f K s      (15) 

 

Where r rf Dq Cq G        , ˆD D D   , 

ˆC C C   , ˆG G G   . 
Assuming that i i bound

f f   , where i bound
f  is the 

boundary of if , we choose iiK such that: 

 

ii i bound
K f   (16) 

 
Define the Lyapunov function candidate: 
 

( ) / 2TL s D q s  (17) 

 
Differentiating (17) and considering Eq. (12), (13) and 

(15), we get [13]: 
 

1

    

    

/ 2

[ ( ) sgn( ) ]

[ sgn( )]

[ sgn( ) ]

[ ( sgn( ))] 

0

 

T T

T

T

T T

n
T

i i ii i
i

T

L s Ds s Ds

s C A s f K s Cs

s As f K s

s f K s s As

s f K s s As

s As



 

     

   

   

   

 



 

 (18) 

 
The control law of (12) and (13) may be sensitive to 

uncertainties in the process of tracking and may lead to 
chattering. In addition, there is a difficulty to determine the 
switching gain of a sliding mode controller to achieve desired 
performance. At present, a trial and error procedure is 
commonly used to tune the parameters of the sliding mode 
controller. Thus the problem considered in our work is to 
propose a method to tune adaptively the switching gain K  
of the SMC in order to achieve accurate and robust tracking 
of the manipulator with minimum chattering phenomena. 

B. The Design of the RBF Neural Network Sliding Mode 
Controller (RBFNNSMC) 

The design of the structure is shown as Fig. 2: 
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 Fig. 2.  The structure of trajectory tracking control with RBFNNSMC 
 

Manipulator equation is shown as Eq. (1), the new control 
law is as follows: 

 
ˆ ˆˆ

r rDq Cq G As K v         (19) 

 

Where 1 2[ , ]K k k  is the output of RBF neural network of 

two joint manipulator; v is the robust term, 

0( )sgn( )dv b s  ， it is used for overcoming the neural 

network approximation error  and external interference d . 
Substituting Eq. (19) into Equation (1), yield:  
 

( )Ds C A s f K v        (20) 

 
The adaptive law is designed as:  
 

( )i i iPs h s   (21) 

 
Where 1,2i   represents the joint 1 and joint 2 of 

manipulator. P is a symmetric positive definite matrix, and 
its inverse matrix is existing.  

Let us introduce the candidate Lyapunov function: 
 

2
1

1

/ 2 ( ) / 2T T
i i

i

L s Ds P 



     (22) 

 
Where  
 

*ˆ
i i i     (23) 

 
Differentiating (22), we get: 
 

2
1 1

1

2
1

1

2
1

1

2
1

1

2
1

1

( ) / 2 ( ) / 2

(2 ) / 2 ( )

( ) ( )

[ ( ) ] ( )

( ) ( )

T T T T T
i i i i

i

T T T
i i

i

T T
i i

i

T T
i i

i

T T T
i i

i

L s Ds s Ds s Ds P P

s Ds s Ds P

s Ds Cs P

s C A s f K v Cs P

s As s f K P s

   

 

 

 

 

 



















    

  

  

        

      











       

  

 

 

 

2 2
1

1 1

( ) ( )

T

T T T
i i i i i

i i

v

s As s f k P s v 
 

         

(24) 

 

Because of *( ) ( )T T
i i i i ik h s h s   , we obtain: 

 
2 2

* 1

1 1

2 2
* 1

1 1

2 2
* 1

1 1

( ) ( )

( ) ( )

( ) ( )

T T T T T
i i i i i i

i i

T T T T T
i i i i i i i

i i

T T T T
i i i i i i

i i

L s As s f h h P s v

s As s f h s h P s v

s As s f h sh P s v

   

   

  



 



 



 

      

       

       

 

 

 

   

  

 

 (25) 

 
Substituting Eq. (21) into Eq. (25), yield:  
 

2
*

1

[ ( )]T T T
i i i i

i

L s As s f h s s v


       (26) 

 

The existence of a very small positive real number i , 
which makes the Eq. (26) satisfy: 

 
* ( )T

i i i i if h s s      , 0 1i   (27) 

 
Then : 
 

2* 2( )T
i i i i i i i is f h s s s       (28) 

 
Therefore: 
 

2
2

1

2
2 2

0
1

( )

0

T T
i i

i

i i i i d
i

L s As s s v

a s s s b



 





   

    









 (29) 

 

Where 1 2[ , ]i diag   , i ia  , 0 0  , 0db  . 

According to Eq. (29), only when 0s  , 0L  , the 
adaptive law asymptotic convergence. Finally, we may get 
the following conclusion: 

 

lim lim( ) 0
t t

s e e
 

    (30) 
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Namely: 
 

lim d
t

q q


 , lim d
t

q q


   (31) 

 
From the above analysis it can be seen that the 

RBFNNSMC method can guarantee that the tracking errors 
converge arbitrarily close to zero. The following case study 
based on simulation will demonstrate this conclusion. 

 

IV. SIMULATION RESULTS  

A. The Simulation of Two DOF manipulator 

In this section, a simulation study is conducted to 
demonstrate the performance of our algorithm. A simple two 
degrees of freedom (DOF) manipulator is shown in Fig. 3. 
The dynamic equation is given as follows: 

 

( ) ( , ) ( ) dD q q C q q q G q         (32) 

 
Where: 
 

1 2 3 2 2 3 2

2 3 2 2

2 cos cos
( )

cos

p p p q p p q
D q

p p q p

   
   

 (33) 

3 2 2 3 1 2 2

3 1 2

sin ( )sin
( , )

sin 0

p q q p q q q
C q q

p q q

   
  
 

  



 (34) 

4 1 5 1 2

5 1 2

cos cos( )
( )

cos( )

p g q p g q q
G q

p g q q

  
   

 (35) 

[0.2sin( ) 0.2sin( )]T
d t t   (36) 

1

1
r 

2

0.8
7

r


1q

2m

2q

1m

 
Fig. 3.  Structure of the manipulator 

 

The mass of link 1 is 1 2.04m kg , the mass of link 2 is 

2 1m kg , the length of link 1 is 1 1r m , and the length of 

link 2 is 2 0.87r m . The 2
1 1 2 1( )p m m r   , 2

2 2 2p m r , 

3 2 1 2p m r r , 4 1 2 1( )p m m r  , 5 2 2p m r , and 
29.8 /g m s . 

The desired trajectory of the manipulator is 1 2sin( )dq t  
and 2 sin( )dq t , and the initial states of the manipulator are 

1 2(0) (0) 0q q  , 1 2(0) (0) 0q q   . The RBF neural 

network input is sliding mode function s  and its differential 

term s . The parameters of the Gaussian basis function are 

100 50 0 50 100

5 0 510 10
c

  
   

, 50b  . 

The control parameters 
{100,100}diag  , {27,27}A diag , 

{10,10,10,10,10}P diag . In the robust term, 0 0.3  , 

0.2db  . SIMULINK and S function is used to design the 

control system. In order to compare the advantages of the 
proposed method, under the same given parameters, we 
simulate the sliding mode control method and the proposed 
method. The simulation results are shown as Fig. 4-Fig. 12. 
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Fig. 4. Position tracking of SMC 
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Fig. 5.  Position tracking of RBFNNSMC 

 

It can be seen from Fig. 4 and Fig. 5, the position tracking 
curves of joint 1 and 2 of manipulator are both ideal under the 
control of the two kind of algorithms. 
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Fig. 6.  Position tracking error of SMC 
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Fig.7.  Position tracking error of RBFNNSMC 

 

Fig. 6 and Fig. 7 show the position tracking error of the 
two joints. Fig. 6 shows that the position tracking error under 
the control of SMC, the sdeady error of joint 1 fluctuates 
between 0.025 to -0.025, and the sdeady error of joint 2 
fluctuates between 0.01 to -0.01. Fig. 7 shows that the 
position tracking error under the control of RBFNNSMC, the 
steady state error of joint 1 ranges from 0.002 to -0.006, the 
steady state error of joint 2 ranges from 0.01 to -0.01. From 
the error comparison of joint 1, we can know that the control 
precision of RBFNNSMC is better than SMC. As to the 
steady state error of joint 2, it is hard to compare the 
RBFNNSMC quantitatively with SMC, but the initial error 
under the control of RBFNNSMC is smaller than SMC. From 
Fig. 6 and 7 we can prove, the global performance of the 
system is improved using the RBF neural network, and 
because of using of the robust control term, the adverse 
effects which caused by the neural network approximation 
error is compensated effectively. 
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Fig. 8.  Velocity tracking of SMC 
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Fig. 9.  Velocity tracking of RBFNNSMC 

 

From Fig. 8 and Fig. 9, we can conclude that the velocity 
tracking errors have big fluctuation under the control of SMC. 
However, the velocity curve under the control of 
RBFNNSMC can trace the given velocity signal smoothly.  
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Fig. 10.  Control torque of SMC 
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Fig. 11.  Control torque of RBFNNSMC 

 

Fig. 10 and Fig. 11 show the output control torque of 
manipulator, Fig. 10 shows the chattering of SMC is very big, 
so this control method is very difficult to apply in practice. 
After joining the RBF neural network controller, the system 
can adaptively adjust the switching gain, which reduces the 
system chattering caused by sliding mode control.  
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Fig. 12.  The adaptive change of gain under the RBFNNSMC 

 

Fig. 12 shows the changing process of switching gain 
under the adjustment of the RBF neural network. 

B. The Simulation of Three DOF manipulator 

In order to verify the effectiveness of the algorithm, we use 
the assembly manipulator in the literature [14] to do the 
simulation. It is a space manipulator with three degrees of 
freedom. The diagram is shown in Fig. 13, the first joint do 
the translational motion, the second joint and the third joint 
do the revolving motion.  

 
Fig.13.  The diagram of the three DOF manipulator 

 

We can know the parameters from the literature [14], the 

mass of link 1 is 1 1m kg , the mass of link 2 is 2 1m kg , 

the mass of link 3 is 3 1m kg , the length of link 2 is  

1 0.2l m , and the length of link 3 is 2 0.2l m . 

Dynamic matrices are shown below: 

11

22 23

32 33

0 0

( ) 0

0

a

D q a a

a a

 
   
  

 (37) 

22 23

32

0 0 0

( , ) 0

0 0

C q q b b

b

 
   
  

  (38) 

1 2 3( )

( ) 0

0

m m m g

G q

  
   
  

 (39) 

 
Where  
 

11 1 2 3a m m m    (40) 
2 2 2

22 2 2 3 3 3 2 2 3 3 3/ 3 / 3 cos( )a m l m l m l l l m q     (41) 
2

23 32 3 3 2 3 3 3/ 3 cos( ) / 2a a m l l l q m    (42) 

22 2 3 3 3 3sin( ) / 2b l l q m q    (43) 

23 3 2 3 3 3 3 2 3 3 2sin( ) / 2 sin( ) / 2b m l l q q m l l q q     (44) 

32 3 2 3 3 2sin( ) / 2b m l l q q    (45) 

 

The desired trajectory of the manipulator is 1 2sin( )dq t , 

2 sin( )dq t , 3 sin(2 )dq t , and the initial states of the 

manipulator are 1 2 3(0) (0) (0) 0q q q   ,  

1 2 3(0) (0) (0) 0q q q     . External disturbance is 

[0.2sin( ) 0.2sin( ) 0.1sin( ) ]T
d t t t  . The RBF neural 

network parameters are 

10 10 10 10 10

1 1 1 1 1

5 5 5 5 5

c

 
   
  

 and 5b  . 

The inputs are the sliding mode function of the three joints 
respectively, namely, (1)s , (2)s and (3)s . The structure of 

the RBF neural network is 3-5-1. The control parameters 
{80,80}diag  , {30,30}A diag  and 
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{10,10,10,10,10}P diag . In the robust term, 0 0.3  , 

0.2db  . The simulation results are shown as Fig. 14-Fig. 

18 . 
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Fig. 14.  Position tracking of RBFNNSMC 
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Fig.15.  Position tracking error of RBFNNSMC 

We can conclude from the Fig. 14 that tracking curves of 
the three joints are very ideal. Fig. 15 are the position error 
curves of three joints. The tracking error of joint 1 is 0.002; 
the tracking error of the joint 2 and joint 3 is also very small, 
it is 10-3 order of magnitude. 
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Fig. 16.  The adaptive change of gain under the RBFNNSMC 

 

Fig. 16 is the changing process of switching gain under the 
adjustment of the RBF neural network. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-100

0

100

200

300

Jo
in

t1
 T

or
qu

e 
(N

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

0

10

Jo
in

t2
 T

or
qu

e 
(N

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

Time (s)

Jo
in

t3
 T

or
qu

e 
(N

m
)

 
Fig. 17.  Control torque of RBFNNSMC 
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Fig. 18.  Control torque of SMC 

 

Fig. 17 is the output torque under the control of 
RBFNNSMC. Fig. 18 is the output torque under the control 
of traditional SMC. Because of the gravity term of joint 2 and 
joint 3 are zero, so the output torques are very small in the Fig. 
17 and Fig. 18. We can see that the chattering is very big 
under the control of traditional SMC. However, there is 
almost no chattering under the control of RBFNNSMC.  
 

V. CONCLUSION 

This paper mainly studies the multi-joint manipulator 
system with uncertainties for the trajectory tracking control. 
This paper combines the sliding mode control with RBF 
neural network. The sliding mode control is used to resist 
interference and ensure the stability of the system, RBF 
neural network is used to adjust the sliding mode gain online, 
so as to reduce the chattering of output torque. The RBF 
neural network approximation error is overcome by adding 
the robust term. The design guarantees the closed-loop 
stability by using Lyapunov method. The simulation results 
show that the proposed control method is appropriate for 
design of manipulator with uncertainty and the external 
interference. 
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