
 

 
Abstract—The objective of this paper was to propose 

TestSTAT confidence interval estimation for a one parameter 
exponential distribution. Evaluation of the efficiency for this 
estimation was proved via theorems and a simulation study 
was conducted to compare the coverage probabilities and 
expected lengths of the three confidence intervals (TestSTAT, 
Exact and Asymptotic confidence intervals). The results 
showed that the TestSTAT confidence interval which is derived 
in this paper uses the same formula as for the Exact confidence 
interval which is widely used. Additionally, the expected length 
of the TestSTAT confidence interval is shorter than that of the 
Asymptotic confidence interval for a small sample size and all 
levels of the parameter and confidence coefficient. 
Furthermore, the three confidence interval estimations get 
systematically closer to the nominal level for all levels of the 
sample size and the parameter. In addition, the efficiencies of 
the three confidence interval estimations seem to be no 
different for a large sample size and all levels of the parameter 
and confidence coefficient. 
 

Index Terms—Confidence interval, estimation, exponential 
distribution, coverage probability, parameter 
 

I. INTRODUCTION 
HE one parameter exponential distribution is a 
continuous distribution and is often used as a model for 

duration. It is also suitable for the distribution of the time 
between events when the number of events in any time 
interval is determined using a Poisson process. This 
distribution plays an important role in the formation of 
models in many fields of reliability analysis research, e.g., 
biological science, environmental research, industrial and 
systems engineering [1], [2], [3], [4], [5], [6], [7]. In 
addition, the one parameter exponential distribution is also 
used in the theory of waiting lines or queues which is 
applied in many situations, including banking teller queues, 
airline check-ins and supermarket checkouts [8], [9], [10], 
[11]. In addition, Sani and Daman [12] applied the one 
parameter exponential distribution to analyze queuing 
system with an exponential server and a general server 
under a controlled queue discipline. Whether these 
reliability and queuing analysis methods can yield precise 
and accurate results depend on the methods of parameter 
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estimation. There are two types of parameter estimation 
from a probability distribution, namely point and interval 
estimations. In statistics, a point estimation involves the use 
of observed data from the distribution to calculate a single 
value as the value of parameter  ; it is almost certain to be 
an incorrect estimation as mentioned by Koch and Link 
[13]. In this research, we investigate the interval estimation 
of parameter   that provides a range of values with a 
known probability of capturing the true parameter  . The 
general theory of confidence interval estimation was 
developed by Neyman [14] who constructed confidence 
intervals via the inversion of a family of hypothesis tests. 
The widely used technique of constructing a confidence 
interval of the parameter for one parameter exponential 
distribution is based on the pivotal quantities approach 
which determines what is known as an Exact confidence 
interval as mentioned by Hogg and Tanis [15], and Casella 
and Berger [16]. This method is valid for any sample size n 
as mentioned by Geyer [17], Balakrishnan et al. [18] and 
Cho et al. [19]. Where a large sample size n is applied, an 
Asymptotic confidence interval is mostly used to construct a 
sequence of the estimator n̂  

of   with a density function 

f ( ; )  that is asymptotically normally distributed with mean 

  and variance 2
n ( )   [4], [20], [21]. 

In this study, the TestSTAT confidence interval 
estimation is proposed for one parameter exponential 
distribution. This confidence interval is derived based on the 
approach of inverting a test statistic which has a very strong 
correspondence between hypothesis testing and interval 
estimation. The TestSTAT method is most helpful in 
situations where intuition deserts us and we have no idea as 
to what would constitute a reasonable set as mentioned by 
Casella and Berger [16]. The efficiency comparisons in 
terms of the coverage probabilities and the expected lengths 
of the three confidence intervals are investigated via the 
theorem proofs. Furthermore, a simulation can be also 
performed to carry out efficiency comparisons. 

II. MATERIALS AND METHODS  

A. Criterions for the Efficiency Comparison 
The efficiency comparison criteria among the three 

methods of the (1 )100%  confidence intervals (Exact, 
Asymptotic and TestSTAT confidence intervals) are the 
coverage probability and the expected length of confidence 
interval. 
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 Let  CI L( ), U( ) X X  be a confidence interval of a 
parameter   based on the data X  having the nominal 
(1 )100%   level, where L( )X  and U( )X , respectively, 
are the lower and upper endpoints of this confidence 
interval. The following definitions provide the efficiency 
comparison criterions in this study: 
 

Definition 2.1 The coverage probability associated with a 
confidence interval  CI L( ), U( ) X X  for the unknown 

parameter   is measured by   P L( ), U( )  X X  (see 

[4]). 
 

Definition 2.2 The length of a confidence interval, 
W U( ) L( ) X X , is simply the difference between the 
upper U( )X  and lower L( )X  endpoints of a confidence 

interval  CI L( ), U( ) X X . The expected length of a 

confidence interval CI is given by E (W)  (see [22], [23], 

[24]). 

B. Confidence Interval Estimations for Parameter    
Throughout the following discussion, the essential 

conditions for this work are denoted by (A1) – (A3) as 
follows: 

 

(A1) Let 1 2 nX ,X ,..., X  be a random sample of size n from a 

population of one parameter exponential distribution with 
parameter   where  : 0       . The probability 
density function of one parameter exponential random 
variable X is given by (see [4]) 
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          0,              otherwise.       
                      

(A2) Let 2
, 2n2

  and 2
1 , 2n2


 , respectively, be the 

th
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 and 
th

1
2
  

 
 quantiles of the chi-square 

distribution with 2n degrees of freedom where n 0.  
 

(A3) Let 
2

Z  be a positive constant which satisfy the 

relation 
2 2

Z Z 1 
   

        
   

 and ( )   is 

the cumulative distribution function of the standard normal 
distribution. 

  
For 0 1   , the following three methods of (1 )100%  

confidence intervals are studied for the efficiency 
comparisons: 

 
 
 
 

1) Exact confidence interval  
The confidence set construction with the use of pivotal 

quantities is called the Exact confidence interval. For 
0 1   , the (1 )100%  Exact confidence interval for 
parameter   is given by (see [16]) 

 
n n

i i
i 1 i 1

Exact 2 2
1 , 2n , 2n2 2

2 X 2 X
CI , 

 

 
 
     
  

 
              (1) 

where 2
, 2n2

  and 2
1 , 2n2


  hold in condition (A2). 

 
2) Asymptotic confidence interval 
An asymptotic confidence interval is valid only for a 

sufficiently large sample size. For 0 1   , the 
(1 )100%  asymptotic confidence interval for parameter 
  is given by (see [20]) 

Asymptotic
2 2

X XCI ,
Z Z

1 1
n n

 

 
 
 

  
 
  
  

                  (2)    

where 
2

Z  holds in condition (A3). 

 
3) TestSTAT confidence interval 
We propose the TestSTAT confidence interval which is 

derived from using an inversion of a test statistic as shown 
in theorem 2.1. 

 
Lemma 2.1  Let 1 2 nX , X ,..., X  hold in condition (A1). The 
acceptance region for an  , 0 1   , level likelihood ratio 
test of 0 0H :     versus 1 0H :     is given by 

 

n
i

i 10

nn
1 xi

*i 1
0 1 2 n

0

x
A( ) (x , x ,..., x ): e k

 
     

              
  

   


, 

where *k  is a constant chosen to satisfy  

 
0 1 2 n 0P (X , X ,..., X ) A( ) 1     . 

Proof  Let 1 2 nX , X ,..., X  hold in condition (A1). 

Consider testing 0 0H :     versus 1 0H :     with level 

(0,1)  where 0  is a fixed positive real number, we have 

 0   . 

The likelihood function is given by  
n

i
i 1

L( ) f (x ; )
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since   has the single element 0 . On the other hand, one 

has 
nn

n n
i

i 1
Sup L( ) n x e




 

 
    

 
 ,              (4) 

since 
n

i
i 1

1X X
n 

   is the maximum likelihood estimator of 

 , so that the value x  maximizes L( )  over  . 
Combining equations (3) and (4), the likelihood ratio test 
statistic is  
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.        

We do not reject 0 0H :     if and only if k  where 

k 0  is a generic constant or  

n
i

i 10

nn
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*i 1

0
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e k

 
     

 
      
 
 


 where 

n
* nk k

e
   
 

.  

Thus, the acceptance region for an  , 0 1   , level 
likelihood ratio test of 0 0H :     versus 1 0H :     is 

given by 

n
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A( ) (x , x ,..., x ) : e k ,

 
     

              
  

   



where  *k  is a constant chosen to satisfy 

 
0 1 2 n 0P (X , X ,..., X ) A( ) 1     . 

  
Lemma 2.2  Let X be a chi-square random variable with n 
degrees of freedom where n 0 . The probability density 
function of X is given by 

 

          
n x1
2 2

n
2

1 x e
n 2
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,    x 0  

f (x)    
          0,                otherwise.              (5) 
                                            

There exists a moment generating function of X such that

 X n
2

1M (t)

(1 2t)





 for 1t
2

 . 

Proof  Let X be a chi-square random variable with n degrees 
of freedom where n 0 . From (5), we find the moment 
generating function of X as follows:    

 tX
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   where 1 2t 0   or 1t
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 . 

 
Thus, the moment generating function of X is given by 

X n
2

1M (t)

(1 2t)





 for 1t
2

 . 

 
Lemma 2.3  Let 1 2 nX ,X ,..., X  hold in condition (A1). 

Then 
n

i
i 1

2W X



  is a chi-square random variable with 

2n degrees of freedom where n 0 .    
Proof  Let 1 2 nX ,X ,..., X  hold in condition (A1). Then the 

moment generating function of iX  is given by (see [8]) 

iX
1M (t)

1 t


 
, 1t

2
  where i 1, 2,..., n . 

The moment generating function of 
n

i
i 1

2W X



  is  
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We refer from Lemma 2.2, equation (6) is a moment 
generating function of a chi-square random variable with 2n 

degrees of freedom where n 0 . Thus, 
n

i
i 1

2W X



  a 

chi-square random variable with 2n degrees of freedom 
where n 0 .  

 
Theorem 2.1  Let 1 2 nX ,X ,..., X  hold in condition (A1). 

For 0 1   , the (1 )100%  TestSTAT confidence 
interval for parameter   is given by 

n n

i i
i 1 i 1

TestSTAT 2 2
1 , 2n , 2n2 2

2 X 2 X
CI , 
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where 2
, 2n2

  and 2
1 , 2n2


  hold in condition (A2). 

Proof  Let 1 2 nX ,X ,..., X  hold in condition (A1). From 

Lemma 2.1, we know that the acceptance region gives the 
(1 )100%   confidence set  
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.   (   )8  

The expression of 1 2 nC(x , x ,..., x )  in equation (8) depends 

on 1 2 nx , x ,..., x only throug 
n

i
i 1

x

 , thus the confidence 

interval can be expressed in the form of equation (9). 
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where L and U are functions which satisfy the constraints in 
equations (10) and (11) as follows: 
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              (12) 

where constants  a b 0  . 
Substituting equation (12) in equation (11), results in 

 a bn n
2 2a be e

2 2

       
   

.                  (13) 

From equations (9) and (12), the (1 )100%  TestSTAT 
confidence interval for parameter   is given by  

n n
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where constants a b 0   satisfy the following 
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From Lemma 2.3, we know that 
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 is a chi-

square random variable with 2n degrees of freedom where 
n 0 . For the equal-tails probability, the constants a and b 

are equal to 2
, 2n2

 and 2
1 , 2n2


 , respectively, which 

hold in condition (A2).  
Therefore, the (1 )100%  TestSTAT confidence 

interval for parameter   is given by 
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Remark 2.1 The (1 )100%  TestSTAT confidence 
interval for parameter   uses the same formula as the 
(1 )100%   Exact confidence interval.  

III. EVALUATION OF EFFICIENCY FOR THE PROPOSED 
CONFIDENCE INTERVAL 

In this section, we investigate the performances of the 
three confidence intervals (Exact, Asymptotic and 
TestSTAT confidence intervals) which are given in the 
theorems 3.1 – 3.3. As a result of Remark 2.1, the following 
theorems are proved merely for the Asymptotic and 
TestSTAT confidence intervals:   

 
Theorem 3.1  Let 1 2 nX ,X ,..., X  hold in condition (A1).  

The AsymptoticCI  and TestSTATCI  denote the Asymptotic 

and TestSTAT confidence interval, respectively. The 
coverage probabilities of AsymptoticCI  and TestSTATCI  
satisfy equation (16) for all levels of the parameter   and 
the confidence coefficient  . 

   Asymptotic TestSTATP CI P CI 1          (16) 

Proof  Let 1 2 nX , X ,..., X  hold in condition (A1). 

Then, the mean and variance of iX are given by iE(X )    

and iV(X )   , respectively.  

First, we consider the coverage probability associated with a 
confidence interval TestSTATCI  which is denoted by  
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From Lemma 2.3, we know that 

n

i
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2 X




 is a chi-square 

distributed with 2n degrees of freedom.  
 

Then,  TestSTATP CI 1                 (17) 

 
Likewise, the coverage probability associated with a 
confidence interval AsymptoticCI  is given by  
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Using the central limit theorem, we know that 
X

n




 is 

approximately standard normally distributed. 

Then,  AsymptoticP CI 1              (18) 

From equations (17) and (18), we obtain the following 
result: 

   Asymptotic TestSTATP CI P CI 1       for all 

levels of the parameter   and the confidence coefficient  . 
 

Proposition 3.1 Let 1 2 nX , X ,..., X  hold in condition (A1). 

The expected length of an Asymptotic confidence interval is 
given by 
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for all levels of the parameter   and the 

confidence coefficient  . 

Proof Let Asymptotic
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 be the 

Asymptotic confidence interval. Using the Definition 2.2, 
the length of  AsymptoticCI  is denoted by 
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The expected length of an Asymptotic confidence interval is 
given by 

Asymptotic
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Since E X       where 0  , then
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      for all levels of the parameter   

and the confidence coefficient  . 
  

Proposition 3.2 Let 1 2 nX ,X ,..., X  hold in condition (A1). 

The expected length of a TestSTAT confidence interval is 
given by 
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The expected length of a TestSTAT confidence interval is 
given by 
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Theorem 3.2  Let 2
, 2n2

  and 2
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  hold in 

condition (A2), and
 2

Z  holds in condition (A3). If there 

exist a sample size n such that 2
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Proof  Let 2 2
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levels of the confidence coefficient  .
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From Propositions 3.1 and 3.2, the difference between the 
expected of TestSTATW  and that of AsymptoticW  can be 

written in the form of equation (19). 
 

TestSTAT AsymptoticE W E W 
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 D C                                   (19)
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In equation (20), we know that 2 n 0  and 

2
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,  

then D C 0                       (21) 
 

Since 0   and substituting equation (21) in equation (19), 

then we obtain TestSTAT AsymptoticE W E W 0 
        . 

That is TestSTAT AsymptoticE W E W 
       . 

 
Lemma 3.1  Let W be a chi-square random variable with 2n 
degrees of freedom where n 0 . The values of 2

, 2n2
  

and 2
1 , 2n2


  which hold in condition (A2). They can be 

written in the forms of  
(i)  
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increases for all levels of the confidence coefficient .  
Proof   Let W be a chi-square random variable with 2n 
degrees of freedom for n 0 , the mean and variance of W 
are given by E(W) 2n  and V(W) 4n , respectively. The 
condition (A2) holds. Then, the proof of (i) is as follows: 
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standardization) tends to the standard normal distribution as 
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Also, by using condition (A3), we have 
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After rearranging equation (28), we conclude that 
2
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2n 2 nZ     as n increases for all levels of  . 

As a result of 2
, 2n2
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Likewise, the proof of (ii) is as follows: 
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2n 2 n Z 
   as n increases for all levels of  . 

As a result of 2
1 , 2n2

0
  , we also obtain 

2
2n 2 n Z 0  . That is, the sample size n must be 

greater than 2

2
Z . 
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Theorem 3.3  If conditions (A1) – (A3) hold and there 
exists a sample size n such that 2

2
n Z , then 

(i)   TestSTAT AsymptoticE W E W 
      

, 

(ii)  TestSTATE W
    tends to decrease and  

(iii) AsymptoticE W
 
  tends to decrease  

when sample size n increases for all levels of the parameter 
  and the confidence coefficient  . 
Proof  Assume conditions (A1) - (A3) hold. When a sample 
size n such that 2

2
n Z

 
increases for all levels of the 

confidence coefficient  , the proofs of (i) – (iii) are as 
follows: 

(i) To prove TestSTAT AsymptoticE W E W 
       , we use 

Proposition 3.2 that   TestSTATE W D
                (34) 

where 
2 2

, 2n 1 , 2n2 2

2n 2nD
 

 
 

          (35) 

Substituting equations (22) and (23) from Lemma 3.1 in 
equation (35), we obtain that 

2 2

2n 2nD
2n 2 n Z 2n 2 n Z 

 
 

    

     2 2

n n
n Z n Z 

 
 

             (36) 

Substituting equations (36) in equation (34), we obtain 

TestSTAT

2 2

n nE W
n Z n Z

 

 
          
 

 which is 

the approximate formula as for AsymptoticE W
 
   in 

Proposition 3.1.  

Thus, TestSTAT AsymptoticE W E W 
        as n increases 

for all levels of   and   . 
(ii)  We know that 2 2

, 2n 1 , 2n2 2
0  
    from condition 

(A2). Then, there exist a constant D which is shown in 
Proposition 3.2 such that 

2 2
, 2n 1 , 2n2 2

2 2D 0

n n

 

  
 

 for all levels of n and  .       

Consider equations (22) and (23) from Lemma 3.1 such that 

2
, 2n2 2 2

2n 2 n Z 2 n n Z 0  
 

      
 

   (37)
 

2
1 , 2n2 2 2

2n 2 n Z 2 n n Z 0  

 
      

 
   (38) 

where 
2

Z  is a positive constant which depends on   and 

2

2
Z n   for condition (A3) holds. From equations (37) and 

(38), the values of 2
, 2n2

  and 2
1 , 2n2


  tend to increase 

when n increases. Therefore, the value of 

2 2
, 2n 1 , 2n2 2

2 2D

n n

 

 
 

tends to decrease as n increases. 

That is, TestSTATE W D
      tends to decrease as n 

increases for all levels of n,   and  . 
(iii)  There exists a constant C which is shown in 
Proposition 3.1 such that  

2 2

n nC
n Z n Z 

 
 

  
2

2

2

2
n Z

nZ








  where 
2

Z  is a 

positive constant which depends on   for condition (A3)  

holds. Therefore, the value of 
2

2

2

2C
n Z

nZ








 tends to 

decrease as n increases. That is, AsymptoticE W C
      

tends to decrease as n increases for all levels of n,   and  . 

IV. SIMULATION RESULTS 
This section provides a simulation study for the coverage 

probabilities and expected lengths of the three confidence 
intervals (Exact, Asymptotic and TestSTAT confidence 
intervals). Nine populations were each generated of size N = 
100,000 in the form of a one parameter exponential 
distribution with  = 0.5, 1, 2, 5, 7, 10, 30, 50 and 100. For 
each population, sample sizes of n = 10, 20, 30, 40, 50, 60, 
70, 80, 90, 100, 500 and 1,000 were randomly generated 
5,000 times. From each set of samples, we then used the 
three methods to construct the 95% confidence interval for 
the parameter  . In this section, the case of sample size 

2

2
n Z  where 2

2
Z 3.8416   is conducted to guarantee 

that the results of the simulation study conform to the results 
in theorems 3.1–3.3 which are mentioned in section III. The 
results from the simulation are presented in Figs 1 and 2. 

Fig 1 shows that the Exact, Asymptotic and TestSTAT 
confidence intervals achieve coverage closest to the nominal 
level (0.95) on average for all levels of   and sample size n. 
This simulation result conforms to the results in theorem 
3.1. In addition, Fig 2 shows that the Asymptotic confidence 
interval has the widest expected length of confidence 
interval for a small sample size. This conclusion conforms 
to the results in theorem 3.2. Furthermore, the expected 
lengths of the three confidence intervals do not seem to be 
different for a large sample size and all levels of  . In 
addition, they tend to decrease when the sample size 
increases for all levels of  . This simulation result 
conforms to the results in theorem 3.3.    
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Fig 1. Coverage probabilities of the three confidence intervals for  = 0.5, 1, 2, 5, 7, 10, 30, 50 and 100.   
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Fig 2. Expected lengths of the three confidence intervals for  = 0.5, 1, 2, 5, 7, 10, 30, 50 and 100. 
 

V. DISCUSSION 
The TestSTAT confidence interval which is derived in 

this paper uses the same formula as for the Exact confidence 
interval which is widely used. This simulation study and the 
proof in theorem 3.1 found that the coverage probabilities of 
the TestSTAT and Exact confidence intervals were close to 
the nominal level for all levels of sample size as mentioned 

by Geyer [17], Balakrishnan et al. [18], Cho et al. [19] and 
Jiang and Wong [25]. In addition, the study using the 
simulation dataset and the proof in theorem 3.3 found that 
the Asymptotic confidence interval was very efficient (short 
expected length of confidence interval) for a large sample 
size, as mentioned by Mukhopadhyay [4], Cho et al. [19], 
Mood et al. [20] and Shawiesh [21].  

 

0

0.5

1

1.5

10 20 30 40 50 60 70 80 90 10
0

50
0

10
00

Ex
pe

ct
ed

 le
ng

th
 

Sample Size (n)

ϴ = 0.5

0
0.5

1
1.5

2
2.5

10 20 30 40 50 60 70 80 90 10
0

50
0

10
00

Ex
pe

ct
ed

 le
ng

th
 

Sample Size (n)

ϴ = 1

0
5

10
15
20
25

10 20 30 40 50 60 70 80 90 10
0

50
0

10
00

Ex
pe

ct
ed

 le
ng

th
 

Sample Size (n)

ϴ = 10

0
1
2
3
4
5

10 20 30 40 50 60 70 80 90 10
0

50
0

10
00

Ex
pe

ct
ed

 le
ng

th
 

Sample Size (n)

ϴ = 2

0

20

40

60

80

10 20 30 40 50 60 70 80 90 10
0

50
0

10
00

Ex
pe

ct
ed

 le
ng

th
 

Sample Size (n)

ϴ = 30

0

5

10

15

10 20 30 40 50 60 70 80 90 10
0

50
0

10
00

Ex
pe

ct
ed

 le
ng

th
 

Sample Size (n)

ϴ = 5

0

50

100

150

10 20 30 40 50 60 70 80 90 10
0

50
0

10
00

Ex
pe

ct
ed

 le
ng

th
 

Sample Size (n)

ϴ = 50

0

5

10

15

10 20 30 40 50 60 70 80 90 10
0

50
0

10
00

Ex
pe

ct
ed

 le
ng

th
 

Sample Size (n)

ϴ = 7

0
50

100
150
200
250

10 20 30 40 50 60 70 80 90 10
0

50
0

10
00

Ex
pe

ct
ed

 le
ng

th
 

Sample Size (n)

ϴ = 100

Exact       
Asymptotic      
TestSTAT 

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_13

(Advance online publication: 14 November 2015)

 
______________________________________________________________________________________ 



 

VI. CONCLUSION 
The TestSTAT confidence interval is derived based on 

inverting a test statistic approach which is most helpful in 
situations where we have no good idea about a parameter  . 
After the proof, we found that the TestSTAT confidence 
interval gave the same formula as for the Exact confidence 
interval which is most commonly used.  

A simulation study was performed to guarantee the 
theoretical results 3.1 – 3.3 that are presented in this article 
and to compare the efficiencies of the three methods—
Exact, Asymptotic and TestSTAT confidence intervals—in 
terms of the coverage probabilities and expected lengths of 
confidence interval. The comprehensive comparison results 
showed that for all levels of   and  , the expected length 
of TestSTAT confidence interval is shorter than that of the 
Asymptotic confidence interval for a small sample size n 
which satisfy the conditions that 2

2
n Z  and 

2
2 2

2, 2n 1 , 2n2 2
2

Z
1 1

n n Z



  

 
    
 

. For a large 

sample size n such that 2

2
n Z , there seemed to be no 

difference in the efficiency of the three methods for all 
levels of   and  .   
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