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Exponential Stability Analysis for Neutral
Stochastic Systems with Distributed Delays

Jian Wang

Abstract—The paper mainly studies the exponential stability
analysis problem for a class of grey neutral stochastic systems
with distributed delays. As we know, till now, the stability
problem of grey neutral stochastic systems has not been
intensively studied except some papers, which motives our
research. In this paper, by using an appropriately constructed
Lyapunov-Krasovskii functional and some stochastic analysis
approaches, especially, by utilizing decomposition technique of
continuous matrix-covered sets, sufficient stability criteria are
proposed which ensure the mean-square exponential stability
and almost surely exponentially robustly stable for the systems.
Moreover, an example is provided to illustrate the effectiveness
and correctness of the obtained results.

Index Terms—Grey Neutral Stochastic Systems, Distributed
Delays, Lyapunov-Krasovskii Functional, Decomposition
Technique, Exponential Stability

I. INTRODUCTION

S tochastic systems have come to play an important role
in many branches of science or engineering applications,
and time delays are frequently encountered in many
real-word control systems, which is the main causes of
instability, oscillation, and poor performance of the systems.
Therefore, during the past decades, stochastic systems with
time delays have been extensively investigated, many
important results have been reported in the literature, see
[1-8], and the references therein. On the other hand, in
practice, many dynamical systems can be effectively
established or described by neutral functional differential
equations, such as the distributed networks, population
ecology, chemical reactors, water pipes and so on [9]. When
the number of summands in a system equation is increased
and the differences between neighboring argument values are
decreased, another type of time-delays, namely, distributed
delays will appear, which can be found in the modeling of
feeding systems and combustion chambers in a liquid
monopropellant rocket motor with pressure feeding [10,11].
Hence, the study of neutral stochastic systems with
distributed delays has come to become a subject of intensive
research activity in recent years, much effort has been
devoted to the study of this kind of systems [9-20]. For
example, in [12], authors investigate the problem of stability
analysis of neutral type neural networks with both discrete

and unbounded distributed delays. In terms of linear matrix
inequalities, delay-dependent conditions are obtained, which
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guarantee the networks to have a unique equilibrium point.

It is worth noting that, when the mathematical model of
stochastic systems is built, the parameters are difficult to
obtain. In addition, as pointed out in [21], if the parameters
of the systems are evaluated by grey numbers, the systems
should be established indeterminately and become grey
systems. Therefore, the study of grey systems has received
much attention from many scholars, some significant and
innovative results have appeared in the literature [21-24]. For
instance, in [22], two easily verified delay-dependent criteria
of mean-square exponential robust stability were obtained.
However, to the best of our knowledge, till now, the problem
of exponential stability for grey neutral stochastic systems
with distributed delays has not been full investigated, which
is still open and remains challenging. this situation motives
our present study.

In this paper, we investigate the exponential stability
problem for a class of grey neutral stochastic systems with
distributed delays. First, a new type of Lyapunov-Krasovskii
functional is constructed. Then, by using the decomposition
technique of the continuous matrix-covered sets of grey
matrix (see [21-24]), we study the systems model directly
with some well-known differential formulas, and sufficient
criteria are obtained, which ensure the systems in the mean
square exponential stability and almost surely exponentially
robustly stable. Finally, an example is given to demonstrate
the applicability of the proposed stability criteria.

Notations: The notations are quite standard. Throughout this

paper, R" and R™" denote the n-dimensional Euclidean
space and the set of all n xn real matrices. The superscript

"T" represents matrix transposition, and the notation
X 2>Y (respectively X >Y ) where X and Y are

symmetric matrices, means that X —Y is positive
semi-definite (respectively positive definite). The symbol ””
denotes the Euclidean norm for vector or the spectral norm of

matrices. Moreover, Let (Q,F ,{Ft} P) be a complete

>0
probability space with a filtration {Ft } 1o Satisfying the usual
conditions. Let 7 > 0 and C ([—T L] R" )denote the family
of all continuous R" -valued functions ¢ on [—7,0] . Let

LZFO ([-7,0];R") be the family of all F, -measurable

bounded C ([—T,O]; R" )-Valued random Variables
E={£0):—1<0<0}.
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II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a class of grey neutral stochastic systems with
distributed delays:

d[x(t) -Gt —7)]
=[A®(t) + B@x(t —7)+C((®) J’  X(s)sldt

+[D(®)x(t) + E@)x(t —7) + F(®) J: ~ X(s)dsldWt), t>0
x,=¢&, Ee Lio (=, 0LR"),—7<t <0

2.1)
Where 4(®), B(®), C(®), D(®), E(®), F(®),

G(®) are grey n xn -matrices, and let

A(®) =(®}),B(®) = (®;),C(®) = (®;),
D(®) =(®;),E(®) =(®;),F(®) =(®}),
G(®)=(®})).

Here, ®Z , ®f; ,®; ,®Z , ®; ,®f and ®g are said to be
grey elements of

A(®), B(®), C(®), D(®Y), E(®), F(®)and G(®) .
Now, we define

[L,,U.]={A(®) =(a,):a, <a, <ay.i,j=12,..n)
[L,.U, 1= (B®) = (b,):b, <b, <b,.i.j=12...n}
[L.,U.]1= {C(®) (¢;):c; <¢y <c i, j=12,..n}

[L,,U,1={D(®) =(d,): d <d, <d.i,j=12,.n}

(L,,U,1]= {E(®) (e;):¢; <e Sel],l] 1,2,..n}
[L,.U,]= {F(®)=(f4-,-)iﬁﬁﬁ-,- < fydsj=12,..n}
[L,.U,]1={G(®)=(g,) 18,5, < g0 j=12,..0)

Which are said to be the continuous matrix-covered sets of
A®), B(®), C(®), D(®), E(®), F(®),and G().
Here,

A(®), B(®), C(R), D(®), E(®), F(®)and G(K)
are whitened (deterministic) matrices of

A®), B(®), C(®), D(®), E(®), F(®)and G(®).

Moreover,

a;] . [b, b.] [cy,cy]

[a [d;.d;] . [eye;]

e ye

[fy -y Jandlg, . g, ]
are said to be the number-covered sets of
®;.®;,®;,®! @, and®.

Definition 2.1. System(2.1)is said to be exponentially stable
in mean square, if for all& EL?,O ([~r,0];R")and whitened
matrices

A®)€e[L,,U,],B®)e[L,,U,].C®)e[L,,U.],

D@®)e[L,,U,1.E®)elL,,U,]1,F®¢[L,U,],
G®elL,.U,].

there exist scalars 7 > 0and C > 0, such that
2 _ 2
Elx(t;&)” <Ce™ su >0,
—-7<0<0

Definition 2.2. System(2.1)is almost surely exponentially

robustly stable, if for all & EL?% ([-r,0];R")and whitened

matrices
A®)€e[L,,U,],B®)e[L,,U,].C®)e[L,,U.],
D®)el[L,.U,]. E®)€[L,U,]. F®)e[L,,U,].
G®)elL,.U,].

the following inequality holds:

lim suplln|x(t;§)| < —1, a.s.
t—0 t 2

First, let us introduce the following lemmas, in particular,
lemma 2.1, which will be important for the proof of our main
results.

Lemma 2.1. [21] If A(®)=(®&)}),,, is a grey mxn -matrix,

la,;,a; ] is a number-covered sets of grey element ®l , then

U 2
for whitened matrix A(@) €[L,,U,], it follows that
i) A®)=L, +Ad
i) 0SAA<U, —-L,
A®)| <[
Ua = (aii)mxn > AA = (5;']'”;;']' )tmn k4

5 =a; —a; >0, r is a whitened number of y;, and y ; is

iif)

Where L, =(au)

mxn >

said to be a unlt grey number.

Lemma 2.2. [25] Letx, y € R", P € R""is a symmetric

positive definite matrix, M, N € R"" , constants & > 0,
then one has the following inequality:
2x"M"PNy <ex"M"PMx+¢&™'y" NT PNy

Lemma 2.3. [26] (Schur complement). Given constant

. _ {Sn Sy } T T
matrices § =| ,where S|, =§,,,5, =855,
Sp Sy
the following conditions are equivalent:
)S<0
i) S,, <0, S, -S,5,8, <0

III. MAIN RESULTS AND PROOFS

In this section, we will discuss the stability problem of
systems (2.1). In the following theorem, two sufficient
criteria will be given, which guarantees the mean-square
exponential stability and almost surely exponentially stable
for the systems.

(Advance online publication: 14 November 2015)
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Theorem 3.1. Let k = HLg H + HUg -L, H <1, system (2.1) Then, for all & EL?% ([, 0];R"),

is exponentially stable in mean square, if there exist E|x(t; §)|2

symmetric matrices P > 0,0 >0, R > 0, and constants
< Ana (P)(2 + 2k*) + A (O)+ 2T31max (R)

(1-k)(1-ke™)

g >0,6,>0,&; >0, such that

A, A, A, M 2
Ay A, Ay O sup E|£(O)| e
< 0 -7<0<0
Ag AT5 Ay O Here, 7 satisfies the following inequalities:
M™ 0 0 -J
Where r>0, k' <1
A =PL,+L'P+Q+1°R+k,lI, Ao (PYr+7k)+ A, (P)<0
A,=PL,~L'PL,+LPL, D (PY(r 4 7K7) + (14 7) 2 (P)
A, =PL +IPL, + 1T (A () + 277 2, (R) < 0
Ay=-Q-L'PL,~LLPL, +k,I, with 3
Ay =L'PL, ~I'PL, A+ e PP A, A,
i=l1
Ay =-R+k,, y o= A’ A, A
M=(PPP) Al AS A
J =diag(el, €,1, &,1,)
with
2 Proof By applying Lemma 2.3, it follows that
ky=p+u, +ps+e U, - L, A A, A, M
2
kz:/11+/13+/14+/16+32HU/;_L/;H Ay Ay A0 <0
2 A, A A, O
ky = py + py + iy, + 65U, — L, MT 0 0 —J
Hy = Ao (P)[”Ug —-L, ” "La |+ ”Ua - La” "Lg ” is equivalent to
3
Hu, =L [ o, - L) A+ P A, A
# Ao PV =L e+ o = 2] ] v=| A A, A|<0
Hoa—Lafo.~£]p AL A
2 = s P = L] |2 |+ 0, = 2] 2]
+||Ud L, " ”U/. L, "] Fix & eLf,o ([-r.,0]; R") and whitened matrices
=2 (PO, — L, | L] [0, - L] [, A®e€lL,,U,].B@®)€[L,,U,].C®)€[L,,U.],

D@®)€[L,,U,1.E®)e[L,,U,]1,F®c¢[L,.U,],

#|us - Ll oo - L )
G(®) €[L,,U, ]arbitrarily, and write x(,&) = x(¢) .

2 PV L] |1, |+, -2, |

Now, we use the similar methods in[23] to proof the Theorem.

+ "U . Le” ”U s =L, ”] First, we choose a Lyapunov-Krasovskii functional candidate
' ' for system (2.1) as follows:
tte =2 PO, = L[] o - L] || V(x(0).0)
to, -2, |, - L)) = VL (6(0,0) + Vo (x(O,0) + Vi (x(0,0)+ Vi (x(0),0)
B 3 By Where
R 0.0
He = A (PY(|L, | +|U. = L.|)) =[x(t) - G(®)x(t — )" Px(t) - G(®)x(t - 7)]

tr = Ao (P[40, =L, )7 V(0,0 = [+ @)0x(eda
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Vix0.0) =[] 5 (@)dalRI] x(@)aldp
V,(x(t),1) = jo [ j '_ﬂ (o —t+ B)x" (@)Rx(at)dod

By It6’s formula and the definition of weak infinitesimal
generator, we can obtain

dV (x(t),t)
= LV (x(t),t)dt

+2[x(t) - G(®)x(t — 7)]" P[D(®)x(¢)

+ E®)x(t — 1)+ F(®) j x(s)ds]dW (£)

with
LV (x(2),t)

= 2[x(t) - G(®)x(t — 7)]" P[A(®)x(¢)

3.1)

+ B(®)x(t—1)+ C(®)jt’_T x(s)ds]

+[D(®)x(t) + E(®)x(t —7) + F(®) j x(s)ds]" P
[D@)x(t) + E@)x(t =)+ F(®)]_x(s)ds] .
+V, (x(0),0) + V, (x(0),1) + V, (x(£),1)

Here,

V,(x(0))
=x"()Ox(t)—x" (t —1)Ox(t — 1)

¥, (x(0).0)
- x"(OR] j;x(a)da]dﬂ
+] 1] 2" (@)aRx(1)dp
~1]_*" @dalR([ x(a)al
< j (a—t+17)x" () Rx(a)da
+f (a—t+17)x" (@)Rx(t)da
-] x(@)da] B[ x(e)da]
< j (a—t+7)x" (H)Rx(t)dot
+f (a—t+17)x" (a)Rx(a)da

| j x(a)da] R f_rx(a)da]

and
ZEON)
= |, " ORx(dp = [ 1] " (e)Rx(c)dadp

_ ng ORx(0) = [ (@ =1+1)x (@)Rx(a)dar

For convenience, letz(1) = [ x(a)dat , then
V,(x(),0) + V, (x(0),0) < t2x" ())Rx(t) — 2" (1)R=(1)
and (3.2) formula can be rewritten as
LV (x(¢),1)

< 2[x(1) - G(®)x(t —7)]" P[A(®)x(¢)

+ B(®)x(t—7) + C(®)z(1)]

+[D(®)x(t) + E(®)x(t —7) + F(®)z()]" P
[D(®)x(t) + E(®)x(t —7) + F(®)z(1)]

+x’ (H(QO+ rzR)x(t) —x' (t—1)0x(t—71)

-z (H)Rz(¢)
=x" (Q+7 2R)x(t) —x"(t- 7)0x(t—1)

- ZT(t)Rz(t)

+2xT ()PA(®)x(1) + 2x7 (1) PB(®)x(t - 7)

+2xT(1)PC(®)z(1)

—2x7(t=7)GT (®)PA(®)x(¢)

—2x"(t—7)G" (®)PB(®)x(t — 1)

—2x"(t-7)GT (®)PC(®)z(¢)

+xT(1)DT (®)PD(®)x(1)

+x7 ()D" (®)PE(®)x(t —T)

+xT(1)DT (®)PF (®)z(1)

+x7(t—=7)ET (®)PD(®)x(1)

+x"(t—1)ET (®)PE (®)x(t —T)

+x"(t —7)ET (®)PF (®)z(1)

+ 2T () FT(®)PD (®)x(1)
+zl () FT(®)PE (®)x(t —1)
+ 2T ()F T (®)PF (®)z(1) 33)
By using Lemma 2.1 and Lemma 2.2, we can get
2x7 (£) PA(®)x(7)
=x" (t)(PL, + L P)x(¢) + 2x" (t) PAAx(2)
<x"(O)PL,x(t) + x" (1)L} Px(?)
a.r 2 2 7 (3.4)
+&, X OP’x(O) +&|U, - L,| x" (0)x(0)
Similar to (3.4), we have
2x" ())PB(®)x(t - 7)
<x"(t)PL,x(t—7)+x" (t—7)L, Px(t)
(3.5)

+&,' x" ()P x(1)

+¢g, HUb —LbHZxT(t —7)x(t—71)
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and

2x7 (1) PC(®)z(1)
<x"(O)PL,z(t) + z" (t)L] Px(2) (3.6)

re;x! OP @) +&,|U, - L[ 2" 0)=(0)
Moreover, by Lemma 2.1 and Lemma 2.2, we have
—2xT (1= 7)GT (®)PA(®)x(1)
= —x"(t—1)L, PL x(t)
—x’ (t)LZPLgx(t -7)
—2x"(t—1t)AG" PL x(t)
—2x" (t —7) L, PAAx (1)
—2x"(t —1)AG" PAAx(t)

(3.7)

Where
—2x" (t—1)AG" PL x(t)

<G ||A|L. " =ty
<A (P)”Ug L, ” HLaH[xT Ox(t) +x" (1 —17)x(t —7)]

(3.8)
—2x"(t- T)Lg PAAx(¢)
< e P|U, ~ L, L, |1 )x(0) (3.9)
+x"(t-7)x(t—1)]
and
—2x"(t = 7)AG" PAAx(t)
e P|U, — L, | U, ~ L[ (0)x(0) (3.10)

+x"(t-7)x(t—1)]
Combining with (3.7)-(3.10) and computing them, we see
—2x7 (t=1)GT (®)PA(®)x(¢)
<—x"(t- T)Lg PL x(t)
—x" (t)LZPLgx(t -7)
+ de (P, — L, | 1] (3.11)
+jo. - L] .|
to, -] ve - L]

[x" (O)x()+x" (t —7)x(t —1)]

Using the similar method as in (3.11), the following
inequalities hold:

—2x7 (t = 7)GT (®)PB(®)x(t - 7)
<—x"(t- r)LZPL,,x(t -7)

—x"(t- T)LZPLgx(t -7)

e P, = L[ 2] 4]0, = 1] |2,

(3.12)

+HUg _Lg H HUb _Lb H]xT(t —-7)x(t—71)

—2x7(t - 7)GT (®)PC(®)z(¢)
<—x"(t —7)L,PL.z()
—z" (1)L PL x(t —7)
A (PU, =L, | |]
Hoo-fe+o, -2 lo. -2
[zF()z(t) +x" (t —7)x(t—71)]

(3.13)

x" (1)D" (®)PE (®)x(t — 1)

<x" ()L}, %PLex(t -7)

+x"(t-1)L! lPde(t)
2 (3.14)

5 e (P = L

o=l ] + v, - L] o, - -
[x" (O)x(t) + x" (t —=7)x(t —7)]
x" ()DT (®)PF (®)z(¢)

<x"(t)L], %PL 2O+ 2" ()L, %PL Xx(@)

+%zm v, - L||L,] (3.15)
o, =1L+ s -2l - 200
[x" (O)x(t) + 2" (1)z(1)]
x"(t —7)ET (®)PD(®)x(7)

<x"(t-7)L %Pde(t) +x" ()L, %PLex(t -7)

# A (P, - 1] |1

#o =Ll led+lo. - L] s - Ly

[x" ()x(t) +x" (t —1)x(t —7)]
(3.16)

(Advance online publication: 14 November 2015)
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xT(t=7)ET (®)PF (®)z(¢)

1
<x"(t-1t)L! EPsz(z)

+z' (t)LTf lPLex(t -7)
T2 (3.17)

Ue _Le

1
+ o Pl L

+ HUf - LfH Ll+|u, -L,

*|

Uf - Lf H] )
[z" (H)z(t)+ x" (t—1)x(t—1)]
T () FT (®)PD(®)x(1)
<z'(t)L} %Pde(t)
+x" ()L}, %PL ,2(1)

(3.18)

5 Ao PV~ ]

oo =L e +los -] Jvs = Lafp-
[2" (0)z() + x" ()x(1)]
2T (1)F T (®)PE (®)x(t —1)

1
<z'L" =PL x(t-1
(?) 7 X(E—1)

1
+x'(t—7)L, =PL ,z(1)
2 (3.19)

+ %AW (Pju, -L

Le

i

*|

Ue_Le Ue_Le].

L|+u, -1]]
[zF(D)z(t)+x" (t —1)x(t —17)]

Furthermore,

xT(1)D" (®)PD(®)x(t)

s A e O R

x"(t—1)E" (®)PE(®)x(t —7)

(3.21)
<A PY(L] U, ~ L2 =) -2)

+

T (t)FT (®)PF(®)z(t)

< (P +]U, = 2,72 0200 (3.22)

Then, substituting of (3.4) - (3.22) into (3.3), and noting the
definition of ¥ , it is clear that

LV (x(t),t)
x(¢)

<(x" (), x"(t-71),z" ()| x(t - 7) (3.23)
z(1)

< A OV + |3t = + |20

It follows from (3.1) and (3.23) that, the following inequality
holds:

dV (x(1),1)

< A (D@ +|xt =) +]z(0)])at
+2[x(t) - G(®)x(t —7)]” P[D(®)x(¢)
+E@)x(t-1)+ F(®)] x(s)ds1dW ()

On the other hand, from the definitions of
Vi(x(0),0).V,(x(2),1) . V5 (x(2),2) .V, (x(2),1) ,

we can obtain

Vi(x(0),1)

(3.24)

L > , (325
< A (PG| (6 +[xe =)
Vo (x(0),0) < 2 Q)] |x(@0)]"dex (3.26)
V3 (x(0),1)
<[ =P x" (@Rx(a)dadp
- ) (3.27)
< D (B[ [x(e)"dadp
<A (R)J;t_r |x(oc)|2da
Vi (x(0,0) ST 2 B[ [x(@)[ dex (3.28)

By (3.25) - (3.28) and the definition of V' (x(¢),) , we have
V(x(1),1)
< e (PY1+ G| O +[xt —2)f)
+[A,. (0)+27°4, (R)] j x(@)[ de
< D PYA+ Y (|x ()| +[x = 1))

(3.29)

A (0)+ 2024, (R)] j° x(¢+0)d0
and
V(x(0),0)
<[A. (P)2+2k>) +7A_ (O)
+20°4, (R)] _s11920|§(9)|2

Using the integration-by-parts formula and (3.24), (3.29), we
can get

(3.30)

(Advance online publication: 14 November 2015)
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dle” Vix(o).1)]
=" [V (x(t),0)dt+dV(x(0),1)]
<rd’ [2lmax(P)(1+k2)(]x(t)|2 +|x(t—r)|2)]dt
e’ [(,lmax(Q)+2ﬂmax(R))f T|x(t+9)|2d9:|dt

t+e" [Amaxc{f)qx(tjz e o)’ +|z(t)|2)]dt
+2¢" [M(t) - G@)x(t —7)] AD®)x(z) + @)t —7)

+F@) As)isdme)

(3.31)
Integrating both sides of (3.31) from 0 to t> 0 and then taking
the mathematical expectation, and considering (3.30), we
have

He vixo).0)]
[ P)R+2) +7A,, (O)
+20° 4, (R)] sup BEO)

+2,, (P)r+rk) j(: e” (Elx(s)|2 +Hx(s —T)|2)ds (3.32)
(A (O)+
20 (RNE[ e [ (s +0)f detis

A ()& (Ex(s) + Elx(s—0) + Elz(s) s

In addition, the following inequalities hold:

j; e" E|x(s— 1')|2 ds
<e [ Elxs) ds+e [ Eg@f a0 (33
t 0 2
El e” x(S + 9) dOds
.[o J.—r| | (3.34)
; 2 0 2
<te'’ (L e"E x(s)| ds + j_TE|§(9)| do)
and
[l e Elz(s)] ds
0 (3.35)

t 9
<t e”J. e”E
0

x(s)|2ds+z'2e” sup E|§(9)|2
-7<0<0

Then, substituting of (3.33)-(3.35) into (3.32) yield, and
noting that

A (P)(r + rkz) + A (P) <0
and
A (P)(7 + rkz) +(1+7)4,,, (YY)
+r7(A,, (0)+ 21'21max (R)<0

Hence, we see

Ele” V(x(2), t)]
L[ (P)2+2k7) 472, (O)
+22° 2, (R)] sup EE©O)’

max
—7<0<0

+[A_ (P)r+rk*)+(1+1)A__(P)

max max

7T (A (0)+27° 2 (R) I € sup E|E(O)
+{A_ (P)Yr+rk*)+1__(P)

max max

+[A_ (P)r+rk>)+(1+7)A__ (P)

7T (Q) 420 A (RN} i€ E
[ (P)2 42k )+ 72, (O)
+20° 2, (R)] sup E|EO)

-7<0<0

x(s)‘ ? ds

(3.36)

Furthermore, noting that the following inequality holds:
E[e"V (x(1),1)]

>e"[(1-k)Elx(z) - (% ~DE (-1 (337

Since‘G(@)‘ <k= HLg H + HUg -L, H <1, from (3.37), it
follows that

e E|(x(1),1)
1 , (338
< - E["V(x(1),0)]+ ke sup Elx(t+0)

—7<6<0

2

Then, for0 <¢ < T, from (3.36) and (3.38), we also have
e" E|(x(t),t)

< Lk sup E[e"V(x(2),1)]

— K 0<t<T

+k sup(e” sup E|x(t + 9)|2) (3.39)

0<¢<T -7<0<0

< Pmax (P)(2+ 2k?) + T (D) +20° A,y (R)

B 1-k

sup E|E(O)|" +ke™ sup (e"E[x(0)])
—r<t<T

-7<0<0

Noting that, for 0 < ¢ < T', (3.39) also holds. Therefore, we
have

sup e" E|(x(),1)

—r<t<T

2 3
< o (P24 2K + T (Q) 422 A (R)

-
sup E|E(O) +ke'™ sup (e" Elx(t))

-7<0<0 —r<t<T

Since ke'” <1, and (3.40) can be rewritten as

2
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sup e E|(x(1),0)|

—r<t<T

< A (P)2 + 2k + 1A, (O)+20°A_ (R)
B (1-k)(1—ke™)

sup E|£(0)

-7<0<0
which indicates that the system(2.1) is exponentially stable in
the mean square.

(3.41)

Remark 3.1. if A(®)=A4,B(®)=B,C(®)=C,
D®)=D ., E®)=E,F(®)=FandG(®) =G,

system (2.1) becomes the deterministic stochastic neutral
systems with distributed-delays (3.42).

d[x(t) — Gt —7)]
_ [ Axt) + Bt ~7)+C x(s)ds}dt

(3.42)
+ [Dx(t) +Ex(t—7)+ F[_ x(s)ds}dW(t), >0
x, =&, feLZFO([—T,O];R"),—TStSO
Let
L,=U,=4, L,=U,=B, L =U,=C,
L,=U,=D,L,=U,=E, L,=U,=F,
Lg :Ug =G

Now, following the similar line of the proof of Theorem 3.1,
we also obtain the following exponential stability criterion
for the deterministic stochastic system (3.42).

Corollary 3.1. Let m = ”G” <1, system (3.42) is

exponentially robustly stable in mean square, if there exist
symmetric matrices P > 0,0 >0, R > 0, and constants

g >0,¢,>0,g, >0, such that
X X E M

)LD Y ) 0
Do s o <0

DI AR Y1

MY 0 0 -J

Where
T, =PA+A"P+Q+1°R+wl,

Y, =PB-A"PG+D"PE

Y, =PC+D"PF

Y, =-0-G"PB-B"PG+w,lI,
Y, =E"PF-G'PC

Xy =—R+wl,

M =(PPP),

J =diag(e|l, &,1, €1,),
with

W = Ay (PO
Wy = Ay (P B[
wy = A (P)|F|

Theorem 3.2. Under the conditions of Theorem 3.1, system
(2.1) is said to be almost surely exponentially robustly stable.

In other words, for all & € L2 ([~r,0];R"), then one has the
)

following inequality:
. 1 7
lim sup—ln|x(t;§)| <——, as.
t—>© t 2
where, 7 =min{r,z ", Ink"'}.

Proof By Doob's martingale inequality, Cauchy inequality
and Borel-Cantelli lemma, the result can be worked out easily
along the same line as in the proof of Theorem 2 in [23,24],
and thus is omitted.

IV. EXAMPLES

In this section, an example is provided to demonstrate the
effectiveness of the obtained results.

Consider the following grey neutral stochastic systems
with distributed delays

d[x(t) - G(&)x(t—7)]
=[A®x(t) + B@)x(t —0.5)+ ((®) J’ ' x(s)dsldt

+HD®)X(E) + E®x(t—0.5) + F(®) J’  X(s)sdIe), 120
%, =& €L (FO50;R"),~05<1 <0

4.1
where
(=335 0.22 [—-3.15 0.32
La: ’ Ua:
| 023 -3.34 | 031 -345
[(—1.15  0.20 [—1.12 0.22
Lb: ’ Ub:
| 023 -1.16 | 031 -1.09
-0.35 0.02 [—0.25 0.04
LC: ’ UC:
0.12 -1.24 | 0.16 -1.15
0.19 0.60 [0.20 0.62
Ld = ’ Ud =
029 -2.56 1031 -1.99
2.15 0.92 2.25 0.82
Le: ’ Ue:
1.29 1.34 1.31 1.45
[—0.15 1.20 [—0.19 1.22 ]
| 153 -1.56 | 139 -1.69|
(=235 0.23 [—2.15 022 ]
L, = ; U, =
¢ 1043 -2.84 £ 1041 -275]
Here,
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L, U, LU L.U : LU : L .U

e’ e’
L 7o U,;: L - U <
are the lower bound and upper bound matrices of

A®),B(®),C(®),D(®),E(®), F(®)and G(®).

Using the programmed procedure (see [24]), it is easy to
calculate and optimize €, , €, , €, , and we can obtain that

¥ =0.8216. It follows from Theorem 3.1 that the system (4.1)

is exponentially stable in mean square.

V. CONCLUSION

In this paper, exponential stability problem for a class of
grey neutral stochastic systems with distributed delays has
been studied. Based on the Lyapunov stability theory and
some well-known differential formulas, in particular, using
decomposition approach of the continuous matrix-covered
sets, the stability criteria have been derived to guarantee the
exponential stability in mean square and almost surely
exponentially robustly stable for our considered systems. In
addition, an example is given to illustrate the effectiveness of
the obtained results.
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