
 

 

 
Abstract—The paper mainly studies the exponential stability 

analysis problem for a class of grey neutral stochastic systems 
with distributed delays. As we know, till now, the stability 
problem of grey neutral stochastic systems has not been 
intensively studied except some papers, which motives our 
research. In this paper, by using an appropriately constructed 
Lyapunov-Krasovskii functional and some stochastic analysis 
approaches, especially, by utilizing decomposition technique of 
continuous matrix-covered sets, sufficient stability criteria are 
proposed which ensure the mean-square exponential stability 
and almost surely exponentially robustly stable for the systems. 
Moreover, an example is provided to illustrate the effectiveness 
and correctness of the obtained results. 
 

Index Terms—Grey Neutral Stochastic Systems, Distributed 
Delays, Lyapunov-Krasovskii Functional, Decomposition 
Technique,  Exponential Stability 
 

I. INTRODUCTION 
tochastic systems have come to play an important role 

in many branches of science or engineering applications, 
and time delays are frequently encountered in many 
real-word control systems, which is the main causes of 
instability, oscillation, and poor performance of the systems. 
Therefore, during the past decades, stochastic systems with 
time delays have been extensively investigated, many 
important results have been reported in the literature, see 
[1-8], and the references therein. On the other hand, in 
practice, many dynamical systems can be effectively 
established or described by neutral functional differential 
equations, such as the distributed networks, population 
ecology, chemical reactors, water pipes and so on [9]. When 
the number of summands in a system equation is increased 
and the differences between neighboring argument values are 
decreased, another type of time-delays, namely, distributed 
delays will appear, which can be found in the modeling of 
feeding systems and combustion chambers in a liquid 
monopropellant rocket motor with pressure feeding [10,11]. 
Hence, the study of neutral stochastic systems with 
distributed delays has come to become a subject of intensive 
research activity in recent years, much effort has been 
devoted to the study of this kind of systems [9-20]. For 
example, in [12], authors investigate the problem of stability 
analysis of neutral type neural networks with both discrete  
and unbounded distributed delays. In terms of linear matrix 
inequalities, delay-dependent conditions are obtained, which  
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guarantee the networks to have a unique equilibrium point. 

It is worth noting that, when the mathematical model of 
stochastic systems is built, the parameters are difficult to 
obtain. In addition, as pointed out in [21], if  the parameters 
of the systems are evaluated by grey numbers, the systems 
should be established indeterminately and become grey 
systems. Therefore, the study of grey systems has received 
much attention from many scholars, some significant and 
innovative results have appeared in the literature [21-24]. For 
instance, in [22], two easily verified delay-dependent criteria 
of mean-square exponential robust stability were obtained. 
However, to the best of our knowledge, till now, the problem 
of exponential stability for grey neutral stochastic systems 
with distributed delays has not been full investigated, which 
is still open and remains challenging. this situation motives 
our present study. 

In this paper, we investigate the exponential stability 
problem for a class of grey neutral stochastic systems with 
distributed delays. First, a new type of Lyapunov-Krasovskii 
functional is constructed. Then, by using the decomposition 
technique of the continuous matrix-covered sets of grey 
matrix (see [21-24]), we study the systems model directly 
with some well-known differential formulas, and sufficient 
criteria are obtained, which ensure the systems in the mean 
square exponential stability and almost surely exponentially 
robustly stable. Finally, an example is given to demonstrate 
the applicability of the proposed stability criteria. 
Notations:  The notations are quite standard. Throughout this 
paper, nR  and nnR   denote the n-dimensional Euclidean 
space and the set of all n ×n real matrices. The superscript 

""T  represents matrix transposition, and the notation 
YX   (respectively YX   ) where X  and Y are 

symmetric matrices, means that YX   is positive 
semi-definite (respectively positive definite). The symbol   

denotes the Euclidean norm for vector or the spectral norm of 
matrices. Moreover, Let   PFF tt ,,, 0  be a complete 

probability space with a filtration   0ttF satisfying the usual 

conditions. Let 0 and  nRC ];0,[  denote the family 

of all continuous nR -valued functions on ]0,[  . Let 

)];0,([2
0

n
F RL  be the family of all 0F -measurable 

bounded  nRC ];0,[  -valued random Variables 

 0:)(   . 
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II. PRELIMINARIES AND PROBLEM FORMULATION  
Consider a class of grey neutral stochastic systems with 

distributed delays: 
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(2.1) 
Where ),(A ),(B ),(C ),(D ),(E ),(F

)(G are grey n ×n -matrices, and let 

)()( a
ijA  , )()( b

ijB  , )()( c
ijC  , 

)()( d
ijD  , )()( e

ijE  , )()( f
ijF  , 

)()( g
ijG  . 

Here, a
ij , b

ij , c
ij , d

ij , e
ij , f

ij and g
ij  are said to be 

grey elements of  
),(A ),(B ),(C ),(D ),(E )(F and )(G . 

Now, we define 

},...2,1,,:)()ˆ({],[ njiaaaaAUL ijijijijaa 

},...2,1,,:)()ˆ({],[ njibbbbBUL ijijijijbb   

},...2,1,,:)()ˆ({],[ njiccccCUL ijijijijcc   

},...2,1,,:)()ˆ({],[ njiddddDUL ijijijijdd 

},...2,1,,:)()ˆ({],[ njieeeeEUL ijijijijee   

},...2,1,,:)()ˆ({],[ njiffffFUL ijijijijff 

},...2,1,,:)()ˆ({],[ njiggggGUL ijijijijgg 
Which are said to be the continuous matrix-covered sets of 

),(A ),(B ),(C ),(D ),(E ),(F and )(G . 
Here, 

),ˆ(A ),ˆ(B ),ˆ(C ),ˆ(D ),ˆ(E )ˆ(F and )ˆ(G  
are whitened (deterministic) matrices of 

),(A ),(B ),(C ),(D ),(E )(F and )(G . 
Moreover, 

],[ ijij aa , ],[ ijij bb , ],[ ijij cc , ],[ ijij dd , ],[ ijij ee , 

],[ ijij ff and ],[ ijij gg   

are said to be the number-covered sets of 
a
ij , b

ij , c
ij , d

ij , e
ij , f

ij and g
ij . 

Definition 2.1.  System(2.1)is said to be exponentially stable 
in mean square, if for all )];0,([2

0

n
F RL   and whitened 

matrices 

],[)ˆ( aa ULA  , ],[)ˆ( bb ULB  , ],[)ˆ( cc ULC  , 

],[)ˆ( dd ULD  , ],[)ˆ( ee ULE  , ],[)ˆ( ff ULF  , 

],[)ˆ( gg ULG  ,  

there exist scalars 0r and 0C , such that  

0,)(sup);( 2

0

2




 tECetxE rt 


. 

Definition 2.2. System(2.1)is almost surely exponentially 
robustly stable, if for all )];0,([2

0

n
F RL   and whitened 

matrices 

],[)ˆ( aa ULA  , ],[)ˆ( bb ULB  , ],[)ˆ( cc ULC  , 

],[)ˆ( dd ULD  , ],[)ˆ( ee ULE  , ],[)ˆ( ff ULF  , 

],[)ˆ( gg ULG  ,  

the following inequality holds: 

    ..,
2
ˆ

);(ln1suplim sartx
tt




                         

First, let us introduce the following lemmas, in particular, 
lemma 2.1, which will be important for the proof of our main 
results.  
Lemma 2.1. [21] If nm

a
ijA  )()( is a grey m×n -matrix, 

],[ ijij aa is a number-covered sets of grey element a
ij , then 

for whitened matrix ],[)ˆ( aa ULA  , it follows that 

i) ALA a )ˆ(      

ii) aa LUA 0      

iii) aaa LULA )ˆ(  

Where nmija aL  )( , nmija aU  )( , nmijijrA  )ˆ( ,  

0 ijijij aa , ijr̂  is a whitened number of ij , and ij  is 

said to be a unit grey number. 
Lemma 2.2. [25] Let nRyx , , nnRP  is a symmetric 

positive definite matrix, nnRNM , , constants 0 ,  
then one has the following inequality:  

PNyNyPMxMxPNyMx TTTTTT 12    
Lemma 2.3. [26] (Schur complement). Given constant 

matrices 









2212
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SS
SS

S T , where TSS 1111  , TSS 2222  , 

the following conditions are equivalent: 
i) 0S  

ii) 022 S , 012
1

221211   TSSSS  
 

III. MAIN RESULTS AND PROOFS  
In this section, we will discuss the stability problem of 

systems (2.1). In the following theorem, two sufficient 
criteria will be given, which guarantees the mean-square 
exponential stability and almost surely exponentially stable 
for the systems. 
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Theorem 3.1.  Let 1 ggg LULk , system (2.1) 

is exponentially stable in mean square, if there exist 
symmetric matrices 0,0,0  RQP , and constants 

01  , 02  , 03  , such that  
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Here, r satisfies the following inequalities: 
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Proof   By applying Lemma 2.3, it follows that  
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is equivalent to 
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Fix )];0,([2
0

n
F RL   and whitened matrices 

],[)ˆ( aa ULA  , ],[)ˆ( bb ULB  , ],[)ˆ( cc ULC  , 

],[)ˆ( dd ULD  , ],[)ˆ( ee ULE  , ],[)ˆ( ff ULF  , 

],[)ˆ( gg ULG  arbitrarily, and write ),( tx = )(tx .  

Now, we use the similar methods in[23] to proof the Theorem. 
First, we choose a Lyapunov-Krasovskii functional candidate 
for system (2.1) as follows: 
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By Itô’s formula and the definition of weak infinitesimal 
generator, we can obtain 
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For convenience, let 
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Moreover, by Lemma 2.1 and Lemma 2.2, we have 
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)]()()()([

]

)[(

)()(

)()(
)()ˆ()ˆ()(2

max

























txtxtxtx

LULU

LLU

LLUP

txPLLtx

txPLLtx
txPAGtx

TT

aagg

gaa

agg

g
T
a

T

a
T
g

T

TT

                            (3.11) 

 
Using the similar method as in (3.11), the following 
inequalities hold: 
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Furthermore,  
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Then, substituting of (3.4) - (3.22) into (3.3), and noting the 
definition of , it is clear that 
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It follows from (3.1) and (3.23) that, the following inequality 
holds: 
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Using the integration-by-parts formula and (3.24), (3.29), we 
can get 
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Integrating both sides of (3.31) from 0 to t> 0 and then taking 
the mathematical expectation, and considering (3.30), we 
have 

 


 



















t rs

t rs

t rs

rt

dsszEsxEsxEe

dsdsxeER

Qr

dssxEsxEerkrP

ER

QkP
ttxVeE

0

222
max

0

0 2
max

2

max

0

222
max

2

0
max

3

max
2

max

))()()(()(

)())(2

)((

))()(())((

)(sup)](2

)()22)(([
)),((

















 (3.32) 

 
In addition, the following inequalities hold: 
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and 
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Then, substituting of (3.33)-(3.35) into (3.32) yield, and 
noting that 
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Furthermore, noting that the following inequality holds: 
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Since 1)ˆ(  ggg LULkG , from (3.37), it 
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Then, for Tt 0 , from (3.36) and (3.38), we also have 
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Noting that, for Tt 0 , (3.39) also holds. Therefore, we 
have 
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Since 1rke , and (3.40) can be rewritten as 
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which indicates that the system(2.1) is exponentially stable in 
the mean square.  
 
Remark 3.1.  if AA )( , BB )( , CC )( , 

DD )( , EE )( , FF )( and GG )( ,  
system (2.1) becomes the deterministic stochastic neutral 
systems with distributed-delays (3.42). 
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Let 

AUL aa  ,  BUL bb  ,  CUL cc  , 

DUL dd  , EUL ee  ,  FUL ff  , 

GUL gg  . 

Now, following the similar line of the proof of Theorem 3.1, 
we also obtain the following exponential stability criterion 
for the deterministic stochastic system (3.42).  
Corollary 3.1.  Let 1 Gm , system (3.42) is 

exponentially robustly stable in mean square, if there exist 
symmetric matrices 0,0,0  RQP , and constants 

01  , 02  , 03  , such that  
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Theorem 3.2. Under the conditions of Theorem 3.1, system 
(2.1) is said to be almost surely exponentially robustly stable. 
In other words, for all )];0,([2

0

n
F RL   , then one has the 

following inequality: 
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where, }ln,,min{ˆ 11  krr  .  
 
Proof  By Doob's martingale inequality, Cauchy inequality 
and Borel-Cantelli lemma, the result can be worked out easily 
along the same line as in the proof of  Theorem 2 in [23,24], 
and thus is omitted. 

IV.  EXAMPLES 
In this section, an example is provided to demonstrate the 

effectiveness of the obtained results. 
Consider the following grey neutral stochastic systems 

with distributed delays 
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where 














34.323.0
22.035.3

aL ;     












45.331.0
32.015.3

aU  














16.123.0
20.015.1

bL ;      












09.131.0
22.012.1

bU  














24.112.0
02.035.0

cL ;     












15.116.0
04.025.0

cU  












56.229.0

60.019.0
dL ;       











99.131.0

62.020.0
dU  











34.129.1
92.015.2

eL ;            









45.131.1
82.025.2

eU  














56.153.1
20.115.0

fL ;      












69.139.1
22.119.0

fU  














84.243.0
23.035.2

gL ;     












75.241.0
22.015.2

gU  

Here, 
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aL , aU ； bL , bU ； cL , cU ； dL , dU ； eL , eU ；

fL , fU ； gL , gU  

are the lower bound and upper bound matrices of  

)(A , )(B , )(C , )(D , )(E , )(F and )(G . 

 

Using the programmed procedure (see [24]), it is easy to 

calculate and optimize 1 , 2 , 2 , and we can obtain that 

r =0.8216. It follows from Theorem 3.1 that the system (4.1) 

is exponentially stable in mean square. 

V. CONCLUSION  

In this paper, exponential stability problem for a class of 
grey neutral stochastic systems with distributed delays has 
been studied. Based on the Lyapunov stability theory and 
some well-known differential formulas, in particular, using 
decomposition approach of the continuous matrix-covered 
sets, the stability criteria have been derived to guarantee the 
exponential stability in mean square and almost surely 
exponentially robustly stable for our considered systems. In 
addition, an example is given to illustrate the effectiveness of 
the obtained results. 

 

ACKNOWLEDGMENT 
The author would like to thank the anonymous reviewers 

for their valuable comments and suggestions which have 
improved the presentation and quality of the paper. 

 

REFERENCES 
[1] E. K. Boukas and Z. K. Liu, Deterministic and Stochastic Time-Delay 

Systems.  Boston, MA: Birkhauser, 2002. 
[2] S. Arik, “Global robust stability analysis of neural networks with 

discrete time delays,” Chaos, Solitons & Fractals, vol. 26, no. 5, pp. 
1407-1414, 2005. 

[3] X. Mao, Stochastic Differential Equations and Applications, 
Chichester, UK: Horwood Publishing, 1997. 

[4] E. K. Boukas, and Z. K. Liu. “Robust stability and stabilizability of 
Markov jump linear uncertain systems with mode-dependent time 
delays,” Journal of Optimization Theory and Applications, vol. 109, no. 
3, pp. 587-600, 2001. 

[5] J. H. Park, “Robust stabilization for dynamic systems with mulitple 
time-varying delays and nonlinear uncertainties,” Journal of 
Optimization Theory and Applications, vol. 108, no. 1, pp. 155 -174, 
2001. 

[6] X. Mao. “Robustness of exponential stability of stochastic differential 
delay equation,” IEEE Trans.Autom. Control, vol. 41, no. 3, pp. 442 
-447, 1996. 

[7] R. Z. Khas’minskii, Stochastic Stability of Differential Equations, 
Sijthoff and Noordhoff, 1981. 

[8] L. Lin, “Stabilization of LTI Switched Systems with Input Time 
Delay,” Engineering Letters, vol. 14, no. 2, pp. 117-123, 2007.  

[9] D. Zhang, and L. Yu, “H∞ filtering for linear neutral systems with 
mixed time-varying delays and nonlinear perturbations,” J. Franklin 
Inst, vol. 347, no. 7, pp. 1374-1390, 2010. 

[10] S. Xu, and T. Chen, “An LMI approach to the H∞ filter design for 
uncertain system with distributed delays,” IEEE Trans. on Circuits and 
Systems-II, vol. 51, no. 4, pp. 195-201, 2004. 

[11] Y. A. Fiagbedzi, and A. E. Pearson, “A multistage reduction technique 
for feedback stabilizing distributed time-lag systems,” Automatica, vol. 
23, no. 3, pp. 311-326, 1987. 

[12] J. E. Feng, S. Y. Xu and Y. Zou, “Delay-dependent stability of neutral 
type neural networks with distributed delays,” Neurocomputing, vol. 
72, no. 10, pp. 2576-2580, 2009. 

[13] R. Rakkiyappan, and P. Balasubramaniam, “New global exponential 
stability results for neutral type neural networks with distributed time 
delays,” Neurocomputing, vol. 171, no. 4, pp. 1039-1045, 2008. 

[14] T. C. Kuo, and Y. J. Huang, “Global Stabilization of Robot Control 
with Neural Network and Sliding Mode,” Engineering Letters, vol. 16, 
no. 1, pp. 56-60, 2008.  

[15] Y. Glizer, V. Turetsky, and J. Shinar, “Terminal Cost Distribution in 
Discrete-Time Controlled System with Disturbance and 
Noise-Corrupted State Information,” IAENG International Journal of 
Applied Mathematics, vol. 42, no. 1, pp. 52-59, 2012. 

[16] J. H. Park, and S. Won, “Stability of neutral delay-differential systems 
with nonlinear perturbations,” International Journal of Systems 
Science, vol. 31, no. 8, pp. 961-967, 2000. 

[17] R. Samli, and S. Arik, “New results for global stability of a class of 
neutral-type neural systems with time delays,” Applied Mathematics 
and Computation, vol. 210, no. 2, pp. 564 -570, 2009.  

[18] J. H. Park, O. M. Kwon, and S. M. Lee. “LMI optimization approach 
on stability for delayed neural networks of neutral type,” Applied 
Mathematics and Computation, vol. 196, no. 1, pp. 236 - 244, 2008. 

[19] W. J. Xiong, and J. L. Liang, “Novel stability criteria for neutral 
systems with multiple time delays,” Chaos, Solitons & Fractals, vol. 
32, no. 5, pp. 1735-1741, 2007. 

[20] J. H. Park, “Further note on global exponential stability of uncertain 
cellular neural networks with variable delays,” Applied Mathematics 
and Computation, vol. 188, no. 1, pp. 850-854, 2007. 

[21] C. H. Su, and S. F. Liu, “The p-moment exponential robust stability for 
stochastic systems with distributed delays and interval parameters,” 
Applied Mathematics and Mechanics, vol. 30, no. 7, pp.915-924, 2009. 

[22] C. H. Su, and S. F. Liu, “Mean-square Exponential Robust Stability for 
a Class of Grey Stochastic Systems with Distributed Delays,” Chin. 
Quart. J. of Math., vol. 25, no. 3, pp. 451-458, 2010. 

[23] C. H. Su, and J. J. Li, “Research on Stability of Grey Neutral Stochastic 
Linear Delay Systems,” Acta Analysis Functionalis Applicata, vol. 12, 
no. 4, pp. 328-334, 2010. 

[24] C. H. Su, and S. F. Liu, “Exponential Robust Stability of Grey Neutral 
Stochastic Systems with Distributed Delays,” Chinese Journal of 
Engineering Mathematics, vol. 27, no. 3, pp. 403-414, 2010. 

[25] A. Friedman, Stochastic differential equations and their applications, 
New York, Academic Press, 1976. 

[26] S. Boyd, L. El. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix 
Inequalities in System and Control Theory,  Philadelphia (PA), SIAM, 
1994. 

 
 
 

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_15

(Advance online publication: 14 November 2015)

 
______________________________________________________________________________________ 




