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Abstract—This paper is concerned with a stochastic com-
petitive model with Markov switching. Sufficient conditions
for stochastic permanence, extinction, global attractivity and
stability in distribution are established. Some numerical figures
are introduced to validate the theoretical results.
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I. INTRODUCTION

IN the natural world, it is a common phenomenon that sev-
eral species compete for the limited resources, territories,

etc. At the same time, the growth of species in the natural
world is always affected by some random perturbations.
Therefore it is important to study the competitive models
with stochastic perturbations. As matter of fact, in recent
years many authors have studied the stochastic competi-
tive systems, and we here mention [1]-[12] among many
others. Particularly, Mao et al. [6] and [7] revealed that
the environmental noise can suppress a potential population
explosion in some cases while Mao [8] showed that different
structures of environmental noise may have different effects
on the population systems. Li and Mao [9] investigated the
following stochastic Lotka-Volterra competitive system

dxi = xi

[
bi −

n∑
j=1

aijxj

]
dt+αixidBi(t), i = 1, ..., n, (1)

where xi = xi(t) represents the population size of ith species
at time t, the constant bi means the intrinsic growth rate of
species i, and aij represents the effect of interspecific (if
i ̸= j) or intraspecific (if i = j) interaction, Bi(t) is standard
Brownian motion, α2

i denotes the intensity of the white noise,
1 ≤ i, j ≤ n. The authors [9] considered the permanence,
extinction and global attractivity of model (1).

However, it has been noted that (see e.g., [13] and
[14]), there are many random perturbations usually cannot
be described by the traditional (deterministic or stochastic)
Lotka-Volterra models. For example, the intrinsic growth
rate bi in model (1) often vary according to the changes
in nutrition and food resources. Another example is that,
the intrinsic growth rates of some species in the dry season
will be much different from those in the rainy season.
Similarly, the interspecific or intraspecific interactions differ
in different environments. Usually, the switching between
different environments is memoryless and the waiting time
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for the next switch has an exponential distribution. Therefore
we can model the random environments and other random
factors in the ecological system by a continuous-time Markov
chain γ(t), t ≥ 0 with finite-state space S = {1, 2, ...,m}.
Let Markov chain γ(t) be generated by Q = (qij), that is,

P{γ(t+∆t) = j|γ(t) = i} =


qij∆t+ o(∆t), j ̸= i;

1 + qii∆t+ o(∆t), j = i,
(2)

where qij ≥ 0 for i, j = 1, 2, ...,m with j ̸= i and∑m
j=1 qij = 0 for i = 1, 2...,m. Then the stochastic

competitive ecosystem with regime switching is governed
by

dxi = xi

[
bi(γ(t))−

n∑
j=1

aij(γ(t))xj

]
dt+αi(γ(t))xidBi(t),

(3)
or equivalently, in matrix form

dx = diag(x1, ..., xn)

{
[b(γ)−A(γ)x]dt+ α(γ)dB(t)

}
,

(4)
where B(t) = (B1(t), ..., Bn(t))

T is an n-dimensional
Brownian motion, b(k) = (b1(k), ..., bn(k))

T , A(k) =
(aij(k)), α(k) = diag(α1(k), ..., αn(k)), and bi(k), aij(k) ≥
0 for k ∈ S , 1 ≤ i, j ≤ n. The mechanism of the ecosystem
(4) can be explained as follows. Assume that initially, the
Markov chain γ(0) = κ ∈ S, then the ecosystem (4) obeys
the stochastic differential equation

dx = diag(x1, ..., xn)

{
[b(κ)−A(κ)x]dt+ α(κ)dB(t)

}
for a random amount of time until the Markov chain γ(t)
jumps to another state, say, ς ∈ S. Then the ecosystem obeys
the stochastic differential equation

dx = diag(x1, ..., xn)

{
[b(ς)−A(ς)x]dt+ α(ς)dB(t)

}
for a random amount of time until the Markov chain γ(t)
jumps to a new state again.

As matter of fact, in recent years model (3) has received
great attention, see e.g. [15]-[20]. Particularly, Zhu and Yin
[15], [16] have proposed the following assumption:
(A1) For each ι ∈ S and i, j = 1, 2, ..., n with j ̸= i,

aii(ι) > 0, aij(ι) ≥ 0.

The authors [15], [16] have claimed that if Assumption (A1)
holds, then

(i) for any initial conditions x(0) = x0 ∈ Rn
+ and γ(0)) ∈

S, where

Rn
+ := {(x1, x2, ..., xn) : xi > 0, i = 1, ..., n},
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there is a unique solution x(t) to (3) on t ≥ 0, and the
solution is continuous and will remain in Rn

+ almost
surely.

(ii) For any p > 0

sup
t≥0

E
[ n∑

i

xp
i (t)

]
≤ K < ∞.

(iii) The solution of (3) is stochastically upper bounded,
i.e., for any ε > 0, there is a constant Hε such that for
any initial data x0 ∈ Rn

+ and γ(0)) ∈ S,

lim inf
t→+∞

P{|x(t)| ≤ Hε} ≥ 1− ε.

(iv) The solution x(t) of (3) obeys

lim sup
t→∞

ln(|x(t)|)
ln t

≤ 1.

Based on the studies of [15], [16], some interesting topics
arise naturally.
(Q1) Note that model (3) is a population model, then it is

important and interesting to consider the permanence
and extinction of the model.

(Q2) In the study of population models, global attractivity
of the solution is also one of the most important topics.
Then, is the solution of model (3) globally attractive?

(Q3) In the study of population models, people always seek
for the positive equilibrium state and then study its
stability. However, model (3) has no positive equilibri-
um state, then the solution of model (3) can not tends
to any positive state. Therefore it is interesting and
important to study whether model (3) still has some
structural stability.

The aims of this paper are to study these problems. In Section
II, we investigate the stochastic permanence of model (3).
In Section III, the sufficient conditions for extinction are
given. In Section IV, we establish the sufficient conditions
for the global attractivity of model (3). In Section V, we
show that model (3) can be stable in distribution. In Section
VI, some examples and numerical simulations are introduced
to validate the main results. The conclusions are given in
Section VII.

II. STOCHASTIC PERMANENCE OF MODEL (3)

Throughout this paper, unless otherwise specified, let
(Ω,F , {Ft}t∈R+ , P ) be a complete probability space with
a filtration {Ft}t∈R+ satisfying the usual conditions(i.e. it
is right continuous and F0 contains all P -null sets). Let
B(t) = (Bl(t), ..., Bm(t))T be an m-dimensional Brownian
motion defined on the probability space. Assume that B(t)
and Markov chain γ(t) are independent. Without loss of
generality, we also assume that the initial conditions x(0)
and γ(0) are non-random. From now on, we assume (A1)
always holds

For the sake of convenience and simplicity, we define the
following notations:

au = max
ι∈S

{a(ι)}, al = min
ι∈S

{a(ι)}.

For any constant sequence {cij}, (1 ≤ i, j ≤ n), define

(čij) = max
1≤i,j≤n

cij , (ĉij) = min
1≤i,j≤n

cij .

Suppose that f(t) is a continuous function on [0,+∞),
define

[f(t)]+ =


f(t), f(t) > 0;

0, f(t) ≤ 0,

[f(t)]− =


−f(t), f(t) < 0;

0, f(t) ≥ 0,

If x ∈ Rn, its norm is denoted by |x| =
( n∑

i=1

x2
i

) 1
2

.

In order to give our results, let us now introduce another
hypothesis.
(A2) (r̂li) > 0, where

ri(γ(t)) = bi(γ(t))−
1

2
αi(γ(t)), t ≥ 0, 1 ≤ i ≤ n.

From a biological point of view, this assumption means that
each species in model (3) owns sufficiently large intrinsic
growth rate or sufficiently small intensity of the noise.

Lemma 1. Let Assumptions (A1) and (A2) hold. For any
initial conditions x(0) = x0 ∈ Rn

+ and γ(0)) ∈ S, the
solution x(t) of model (3) obeys

lim sup
t→+∞

E(
1

|x(t)|θ
) ≤ M (5)

and

lim inf
t→+∞

ln (|x(t)|)
ln t

≥ − (α̌u
i )

2

2(r̂li)
a.s., (6)

where θ is an arbitrary positive constant satisfying

θ(α̌u
i )

2 < 2(r̂li) (7)

and M is a constant.

Proof: Define

U(x) =
1

n∑
i=1

xi

, x ∈ Rn
+; V1(x(t)) = U(x(t)), t ≥ 0.

It then follows from the generalized Itô’s formula (see, e.g.
[21] and [22]) that

dV1(x) =

{
− V 2

1 (x)

n∑
i=1

xi

(
bi(γ)−

n∑
j=1

aij(γ)xj

)
+ V 3

1 (x)
n∑

i=1

α2
i (γ)x

2
i

}
dt

− V 2
1 (x)

n∑
i=1

αi(γ)xidBi(t).

where we drop t from xi(t) and bi(γ(t)) etc. From Assump-
tion (A2), we can choose a positive constant θ such that it
obeys (7). Define

V2(x(t)) = (1 + V1(x(t)))
θ.
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Making use of the generalized Itô’s formula again gives

dV2(x(t))

= θ(1 + V1(x))
θ−2

{
− (1 + V1(x))V

2
1 (x)

×
n∑

i=1

xi

(
bi(γ)−

n∑
j=1

aij(γ)xj

)
+V 3

1 (x)
n∑

i=1

α2
i (γ)x

2
i +

θ + 1

2
V 4
1 (x)

n∑
i=1

α2
i (γ)x

2
i

}
dt

−θ(1 + V1(x))
θ−1V 2

1 (x)

n∑
i=1

αi(γ)xidBi(t)

=: θ(1 + V1(x))
θ−2F (x, ι)dt

−θ(1 + V1(x))
θ−1V 2

1 (x)

n∑
i=1

αi(γ)xidBi(t).

(8)
Clearly, for t ≥ 0 and ι ∈ S,

F (x, ι) ≤ − 1

2n

[
2(r̂li)− θ(α̌u

i )
2

]
V 2
1 (x)

+

[
(ǎuij) + (α̌u

i )
2

]
V1(x) + (ǎuij).

Substituting the above inequality into (8) yields

dV2(x(t))

≤ θ(1 + V1(x))
θ−2

{
− 1

2n

[
2(r̂li)− θ(α̌u

i )
2

]
V 2
1 (x)

+

[
(ǎuij) + (α̌u

i )
2

]
V1(x) + (ǎuij)

}
dt

−θ(1 + V1(x))
θ−1V 2

1 (x)
n∑

i=1

αi(γ)xidBi(t).

(9)
Now, let κ be sufficiently small satisfying

0 <
2nκ

θ
< 2(r̂li)− θ(α̌u

i )
2

Define V3(x(t)) = eκtV2(x(t)). An application of the gen-
eralized Itô’s formula results in

dV3(x(t)) = κ eκtV2(x)dt+ eκtdV2(x)

≤ eκt(1 + V1(x))
θ−2

{
κ(1 + V1(x))

2

− θ

2n

[
2(r̂li)− θ(α̌u

i )
2

]
V 2
1 (x)

+θ[(ǎuij) + (α̌u
i )

2]V1(x) + θ(ǎuij)

}
dt

−θeκt(1 + V1(x))
θ−1V 2

1 (x)
n∑

i=1

αi(γ)xi(t)dBi(t)

= eκt
θ

2n
(1 + V1(x))

θ−2

{
−V 2

1 (x)

[
2(r̂li)− θ(α̌u

i )
2 − 2nκ

θ

]
+2n

[
(ǎuij) + (α̌u

i )
2 +

2κ

θ

]
V1 + 2n(ǎuij) +

2nκ

θ

}
dt

−θeκt(1 + V1(x))
θ−1V 2

1 (x)
n∑

i=1

αi(γ)xidBi(t)

=: eκtJ(x, ι)dt

−θeκt(1 + V1(x))
θ−1V 2

1 (x)
n∑

i=1

αi(γ)xidBi(t).

Note that J(x, ι) is upper bounded in Rn
+ × S, namely

M1 := sup
(x,ι)∈Rn

+×S
J(x, ι) < +∞. (10)

Consequently,

dV3(x) ≤ M1e
κtdt

−θ eκt(1 + V1(x))
θ−1V 2

1 (x)

n∑
i=1

αi(γ)xidBi(t).

Integrating both sides of the above inequality and then taking
expectations gives

E[V3(x)] = E[eκt(1 + V1(x))
θ] ≤ (1 + V1(x0))

θ +
M1

κ
eκt.

That is to say

lim sup
t→+∞

E[V θ
1 (x)] ≤ lim sup

t→+∞
E[(1 + V1(x))

θ] ≤ M1

κ
. (11)

For x(t) ∈ Rn
+, note that( n∑

i=1

xi

)θ

≤
(
n max

1≤i≤n
xi

)θ

≤ nθ|x|θ. (12)

Therefore,

lim sup
t→+∞

E
[

1

|x(t)|θ

]
≤ nθM1

κ
=: M,

which is the required assertion (5).
Now, we will prove (6). In fact, making use of (10), we

observe from (9) that

dV2(x) ≤ M1dt

−θ(1 + V1(x))
θ−1V 2

1 (x)
n∑

i=1

αi(γ)xidBi(t).

That is to say

E
[

sup
t≤τ≤t+1

V2(x(τ))

]
≤ E

[
V2(x(t))

]
+M1

+E
[

sup
t≤τ≤t+1

∣∣∣∣ ∫ τ

t

θ(1 + V1(x(s)))
θ−1

×V 2
1 (x(s))

n∑
i=1

αi(γ(s))xi(s)dBi(s)

∣∣∣∣].
(13)

By virtue of the Burkholder-Davis-Gundy inequality (see,
e.g. [23]) and the Hölder inequality, we can see that

E
[

sup
t≤τ≤t+1

∣∣∣∣ ∫ τ

t

θ(1 + V1(x(s)))
θ−1

×V 2
1 (x(s))

n∑
i=1

αi(γ(s))xi(s)dBi(s)

∣∣∣∣]
≤ 0.5E

[
sup

t≤τ≤t+1
V2(x(τ))

]
+9θ2(α̌u

i )
2E

[ ∫ t+1

t

V2(x(s))ds

]
.

Substituting this inequality into (13), we can show that

E
[

sup
t≤τ≤t+1

V2(x(τ))

]
≤ 2E[V2(x(t))] + 2M1

+ 18θ2(α̌u
i )

2E
[ ∫ t+1

t

V2(x(s))ds

]
.
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Letting t → ∞ and making us of (11) gives

lim sup
t→+∞

E
[

sup
t≤τ≤t+1

V2(x(τ))

]
≤ 2M1

κ
+ 18θ2(α̌u

i )
2M1

κ
+ 2M1.

It follows from (12) and the definition of V2(x(t)) that

lim sup
t→+∞

E
[

sup
t≤τ≤t+1

1

|x(τ)|θ

]
≤ 2nθ

{
M1

κ
+ 9θ2(α̌u

i )
2M1

κ
+M1

}
=: M2.

Then for arbitrarily small ε > 0, by the Chebyshev inequal-
ity, we get

P

{
supk≤τ≤k+1

1

|x(τ)|θ
> tε+(θ(α̌u

i )
2)/(2(r̂li))

}
≤ M2

tε+(θ(α̌u
i )

2)/(2(r̂li))
.

In view of the Borel-Cantelli lemma (see e.g. [23]), one can
obtain that for almost all ω ∈ Ω,

sup
k≤τ≤k+1

1

|x(τ)|θ
≤ tε+(θ(α̌u

i )
2)/(2(r̂li)) (14)

holds for all but finitely many k. Therefor there exists a
k0(ω) excluding a P -null set, for which (14) holds whenever
k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≤ t ≤ k+1
and k ≥ k0, then

− ln |x(t)|θ

ln t
≤

(
ε+ θ

(α̌u
i )

2

2(r̂li)

)
ln k

ln k
= ε+ θ

(α̌u
i )

2

2(r̂li)

Therefore
ln |x(t)|θ

ln t
≥ −ε− θ(α̌u

i )
2

2(r̂li)
.

Thereby

lim inf
t→+∞

ln |x(t)|
ln t

≥ −ε

θ
− (α̌u

i )
2

2(r̂li)
, a.s.

Letting ε → 0 we obtain the desired assertion (6). This
competes the proof.

Now, we are in the position to show the stochastic perma-
nence whose definition is given below.

Definition 1. Model (3) is said to be stochastic permanence
if for any ε ∈ (0, 1), there exists a pair of positive constants
δ = δ(ε) and χ = χ(ε) such that for any initial value x(0) ∈
Rn

+ and γ(0) ∈ S, the solution obeys

lim inf
t→+∞

P{|x(t)| ≤ χ} ≥ 1− ε,

lim inf
t→+∞

P{|x(t)| ≥ δ} ≥ 1− ε.

Theorem 1. Under assumptions (A1) and (A2), model (3) is
stochastically permanent.

Proof: From the works of [16], it is easy to see that
we need only to show

lim inf
t→+∞

P{|x(t)| ≥ δ} ≥ 1− ε.

For any ε > 0, let δ = ε/M . Then by the Chebyshev
inequality

P{|x(t)| < δ} = P{1/|x(t)| > 1/δ} ≤ δE[1/|x(t)|].

That is to say,

lim sup
t→+∞

P{|x(t)| < δ} ≤ δM = ε.

In other words,

lim inf
t→+∞

P{|x(t)| ≥ δ} ≥ 1− ε.

This completes the proof.

III. EXTINCTION

In the previous section, we have shown that under some
condition, model (3) is stochastic permanence which is one
of most important topics in biomathematics. In this section,
we will investigate another important topic — extinction.

Definition 2. x(t) is said to go to extinction if lim
t→+∞

x(t) =

0.

Now we give our main result of this section.

Theorem 2. For any given initial value x(0) ∈ Rn
+ and

γ(t) ∈ S, the solution x(t) of model (3) has the property
that for every 1 ≤ i ≤ n,

lim sup
t→+∞

lnxi(t)

t
≤

m∑
k=1

ρkri(k), (15)

where ρ = (ρ1, ..., ρk) is the stationary distribution of the
Markovian chain γ(t). Particularly, if

∑m
k=1 ρkri(k) < 0,

then xi goes to extinction.

Proof: Making use of the generalized Itô’s formula
yields

d lnxi(t) =

[
ri(γ(t))−

n∑
j=1

aij(γ(t))xj(t)

]
dt

+αi(γ(t))dBi(t).

That is to say

lnxi(t) = lnxi(0) +

∫ t

0

ri(γ(s))ds

−
∫ t

0

n∑
j=1

aij(γ(s))xj(s)ds+

∫ t

0

αi(γ(s))dBi(s)

≤ lnxi(0) +

∫ t

0

ri(γ(s))ds+

∫ t

0

αi(γ(s))dBi(s)

=: lnxi(0) +

∫ t

0

ri(γ(s))ds+ U(t).

(16)
Clearly, U(t) is a martingale with quadratic variation

⟨U,U⟩t =
∫ t

0

α2
i (γ(s))ds ≤ (αu

i )
2 t.

Making use of the strong law of large numbers for martin-
gales gives

lim
t→+∞

U(t)

t
= 0, a.s.

Dividing t on the both sides of (16) and then letting t → ∞
results in

lim sup
t→+∞

lnxi(t)

t
≤ lim sup

t→+∞

1

t

∫ t

0

ri(γ(s))ds,

which is the required assertion (15).
Theorem 2 shows that if one species in model (3) owns

sufficiently small intrinsic growth rate or sufficiently large
intensity of the noise, then the survival of this species is
threatened.
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IV. GLOBAL ATTRACTIVITY

In this section, we will establish sufficient conditions for
the global attractivity to model (3).

Definition 3. Let x(t), y(t) be two arbitrary solutions
of model (3) with initial data (x(0), γ(0)) ∈ Rn

+ × S and
(y(0), γ(0)) ∈ Rn

+ × S, respectively. If

lim
t→+∞

|x(t)− y(t)| = 0, a.s.

then system (3) is said to be globally attractive.

A3 There exist positive constants λ1, λ2, ..., λn and λ such
that

λiaii(ι)−
n∑

j=1,j ̸=i

λjaji(ι) > λ

for all 1 ≤ i ≤ n and ι ∈ S. The biological interpretation
of this assumption is that, each species in model (3) owns
sufficiently large intraspecific interaction coefficients or suf-
ficiently small small interspecific interaction coefficients.

Theorem 3. Under Assumption (A3), model (3) is globally
attractive.

Proof: Let x(t), y(t) be two arbitrary solutions of
model (3) with initial data (x(0), γ(0)) ∈ Rn

+ × S and
(y(0), γ(0)) ∈ Rn

+ × S, respectively. It then follows from
the generalized Itô’s formula that

d lnxi(t) =

[
ri(γ(t))−

n∑
j=1

aij(γ(t))xj(t)

]
dt

+αi(γ(t))dBi(t),

d ln yi(t) =

[
ri(γ(t))−

n∑
j=1

aij(γ(t))yj(t)

]
dt

+αi(γ(t))dBi(t).

Thus

d (lnxi(t)− ln yi(t)) = −
n∑

j=1

aij(γ(t))(xj(t)− yj(t))dt.

(17)
Define

V (t) =
n∑

i=1

λi| lnxi(t)− ln yi(t)|, t ≥ 0.

In view of the generalized Itô’s formula, one can see that

d+V (t) =
n∑

i=1

λisgn(xi(t)− yi(t))d(lnxi(t)− ln yi(t))

= −
n∑

i=1

λisgn(xi(t)− yi(t))

n∑
j=1

aij(γ)(xj(t)− yj(t))

≤ −
n∑

i=1

λiaii(γ(t))

∣∣∣∣xi(t)− yi(t)

∣∣∣∣dt
+

n∑
i=1

n∑
j=1,j ̸=i

λiaij(γ(t))

∣∣∣∣xj(t)− yj(t)

∣∣∣∣dt
= −

n∑
i=1

λiaii(γ(t))

∣∣∣∣xi(t)− yi(t)

∣∣∣∣dt
+

n∑
j=1

n∑
i=1,i̸=j

λjaji(γ(t))

∣∣∣∣xi(t)− yi(t)

∣∣∣∣dt
= −

n∑
i=1

λiaii(γ)

∣∣∣∣xi(t)− yi(t)

∣∣∣∣dt
+

n∑
i=1

n∑
j=1,j ̸=i

λjaji(γ)|xi(t)− yi(t)|dt

≤ −
n∑

i=1

(
λiaii(γ)−

n∑
j=1,j ̸=i

λjaji(γ)

)∣∣∣∣xi − yi

∣∣∣∣dt
≤ −λ

n∑
i=1

∣∣∣∣xi(t)− yi(t)

∣∣∣∣dt.
(18)

Integrating (18) from 0 to t yields

V (t) + λ

∫ t

0

n∑
i=1

|xi(s)− yi(s)|ds ≤ V (0) < ∞.

Letting t → ∞, one can observe that∫ ∞

0

|x(s)− y(s)|ds ≤
∫ ∞

0

n∑
i=1

|xi(s)− yi(s)|ds < ∞.

(19)
Moreover, one can see that

E
∫ ∞

0

|x(s)− y(s)|ds < ∞. (20)

Now set v(t) = x(t) − y(t). Then it is obvious that v ∈
C(R+, R). Clearly, it follows from (19) that

lim inf
t→+∞

|v(t)| = 0, a.s. (21)

We now claim that

lim
t→+∞

|v(t)| = 0, a.s. (22)

If this statement is not true, then

P{lim sup
t→+∞

|v(t)| > 0} > 0.

Fixing a number ε > 0 such that

P (Ω1) ≥ 2ε, (23)

where
Ω1 = {lim sup

t→+∞
|v(t)| > 2ε}.

Define the stopping times

σ1 = inf{t ≥ 0 : |v(t)| ≥ 2ε},

σ2k = inf{t ≥ σ2k−1 : |v(t)| ≤ ε},
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σ2k+1 = inf{t ≥ σ2k : |v(t)| ≥ 2ε}, k = 1, 2, ....

By (21) and the definition of Ω1 one sees that

σk < ∞ for ∀ k ≥ 1 if ω ∈ Ω1. (24)

Using (20) one then derive that

∞ > E
∫ ∞

0

|v(s)|ds

≥
∞∑
k=1

E
[
I{σ2k−1<∞,σ2k<∞}

∫ σ2k

σ2k−1

|v(s)|ds
]

≥ ε
∞∑
k=1

E
[
I{σ2k−1<∞}(σ2k−1 − σ2k)

]
,

(25)

where IA stands for the indicator function of set A. Note
that (21) implies σ2k < ∞ provided σ2k−1 < ∞.

At the same time, rewriting equation (3) gives

xi(t) = xi(0) +

∫ t

0

fi(x(s), s, γ(s))ds

+

∫ t

0

gi(x(s), s, γ(s))dBi(s),

where

fi(x(s), s, γ(s)) = xi(s)

[
bi(γ(s))−

n∑
j=1

aij(γ(s))xj(s)

]
,

gi(x(s), s, γ(s)) = αi(γ(s))xi(s).

Compute that

E
(∣∣∣∣fi(x(s), s, γ)∣∣∣∣2)

= E
(
x2
i (s)

∣∣∣∣bi(γ)− n∑
j=1

aij(γ)xj(s)

∣∣∣∣2)
≤ 0.5E(x4

i (s)) + 0.5E
[∣∣∣∣bi(γ)− n∑

j=1

aij(γ)xj(s)

∣∣∣∣4]
≤ 0.5E(x4

i (s)) + 0.5(n+ 1)3

×E
(
b4i (γ) +

n∑
j=1

a4ij(γ)x
4
j (s)

)
≤ 0.5E(x4

i (s)) + 0.5(n+ 1)3

×
[
(bui )

4 +

n∑
j=1

(auij)
4E(x4

j (s))

]
=: Fi(2, x(0)),

and

E
(∣∣∣∣gi(x(s), s, γ(s))∣∣∣∣2) = E

(
|αi(γ(s))|2x2

i (s)

)
≤ (αu

i )
2E(x2

i (s)) =: Gi(2, x(0)).

It then follows from the Hölder inequality and the moment

inequality of stochastic integrals that

E
[
I{σ2k−1<∞} sup

0≤t≤T

∣∣∣∣xi(σ2k−1 + t)− xi(σ2k−1)

∣∣∣∣2]
≤ 2E

[
I{σ2k−1<∞} sup

0≤t≤T∣∣∣∣ ∫ σ2k−1+t

σ2k−1

fi(x(s), γ(s), s)ds

∣∣∣∣2]
+2E

[
I{σ2k−1<∞} sup

0≤t≤T∣∣∣∣ ∫ σ2k−1+t

σ2k−1

gi(x(s), γ(s), s)dBi(s)

∣∣∣∣2]
≤ 2TE

[
I{σ2k−1<∞}

∫ σ2k−1+T

σ2k−1

|fi(x(s), γ(s), s)|2ds
]

+8E
[
I{σ2k−1<∞}

∫ σ2k−1+T

σ2k−1

|gi(x(s), γ(s), s)|2d(s)
]

≤ 2(T + 4)T [Fi(2, x(0)) +Gi(2, x(0))]

.

This implies that

E
[
I{σ2k−1<∞} sup

0≤t≤T

∣∣∣∣x(σ2k−1 + t)− x(σ2k−1)

∣∣∣∣2]
= E

[
I{σ2k−1<∞} sup

0≤t≤T
n∑

i=1

∣∣∣∣xi(σ2k−1 + t)− xi(σ2k−1)

∣∣∣∣2]
≤

n∑
i=1

E
[
I{σ2k−1<∞} sup

0≤t≤T∣∣∣∣xi(σ2k−1 + t)− xi(σ2k−1)

∣∣∣∣2]
≤ 2(T + 4)T

n∑
i=1

[
Fi(2, x(0)) +Gi(2, x(0))

]
.

(26)
Similarly, we can show that

E
[
I{σ2k−1<∞} sup

0≤t≤T

∣∣∣∣y(σ2k−1 + t)− y(σ2k−1)

∣∣∣∣2]
≤ 2(T + 4)T

n∑
i=1

[
Fi(2, y(0)) +Gi(2, y(0))

]
.

(27)
Let

Fi(2) = max{Fi(2, x(0)), Fi(2, y(0))},

Gi(2) = max{Gi(2, x(0)), Gi(2, y(0))}.

By (ii), we can let T = T (ε) > 0 be sufficiently small such
that

16(T + 4)T
n∑

i=1

[Fi(2) +Gi(2)] ≤ ε3.

Applying (26) and (27) yields

P

{
{σ2k−1 < ∞}

∩
Ω1

k

}
≤

2(T + 4)T
∑n

i=1[Fi(2) +Gi(2)]

0.25ε2
≤ ε

2
.

(28)

P

{
{σ2k−1 < ∞}

∩
Ω2

k

}
≤

2(T + 4)T
∑n

i=1[Fi(2) +Gi(2)]

0.25ε2
≤ ε

2
,

(29)
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where

Ω1
k =

{
sup

0≤t≤T
|x(σ2k−1 + t)− x(σ2k−1)| ≥

ε

2

}
,

Ω2
k =

{
sup

0≤t≤T
|y(σ2k−1 + t)− y(σ2k−1)| ≥

ε

2

}
.

It follows from (28) and (29) that

P

{{
σ2k−1 < ∞

}∩
{Ω1

k

∪
Ω2

k

}
} ≤ ε.

Making use of (24) gives

P

{{
σ2k−1 < ∞

}∩{
(Ω1

k)
c
∩
(Ω2

k)
c

}}
= P

{
σ2k−1 < ∞

}
−P

{{
σ2k−1 < ∞

}∩{
Ω1

k

∪
Ω2

k

}}
≥ 2ε− ε = ε,

where Ac means the complementary set of A. We further
compute that

P

{{
σ2k−1 < ∞

}
∩{

sup
0≤t≤T

∣∣∣∣ν(σ2k−1 + t)− ν(σ2k−1)

∣∣∣∣ < ε

}}
≥ P

{
{σ2k−1 < ∞

}∩{
(Ω1

k)
c
∩
(Ω2

k)
c

}}
≥ ε.

(30)
Set

Ω3
k =

{
sup

0≤t≤T

∣∣∣∣ν(σ2k−1 + t)− ν(σ2k−1)

∣∣∣∣ < ε

}
.

It is easy to see that if ω ∈ {σ2k−1 < ∞}
∩
Ω3

k, then

σ2k(ω)− σ2k−1(ω) ≥ T.

Using (25) and (30) gives

∞ > ε
∞∑
k=1

E
[
I{σ2k−1<∞}(σ2k−1 − σ2k)

]
≥ ε

∞∑
k=1

E
[
I{σ2k−1<∞}

∩
Ω3

k
(σ2k−1 − σ2k)

]
≥ εT

∞∑
k=1

P

{
{σ2k−1 < ∞}

∩
Ω3

k

}
≥ εT

∞∑
k=1

ε

= ∞.

which is a contraction. Therefore (22) must hold and this
completes the proof.

V. STABILITY IN DISTRIBUTION

In this section, let us consider the stability in distribu-
tion of the model (3). Let y(t) denote the Rn

+ × S-valued
process (x(t), γ(t)) which is the solution of model (3). Let
p(t, x0, ι, dy × χ) stand for the transition probability of the
process y(t) and P (t, x0, ι,B × S) represent the transition
probability of the event {y(t) ∈ B × S} with initial data

y(0) = (x0, ι), where B is a Borel set of Rn
+, S is a subset

of S. Therefore

P (t, x0, ι,B× S) =
∑
χ∈S

∫
B

p(t, x0, ι, dy × χ).

Let P(Rn
+ × S) be the space of all probability measures

on Rn
+ × S. For any P1, P2, define

dL(P1, P2) = sup
g∈L

∣∣∣∣∑
ι∈S

∫
Rn

+

g(x0, ι)P1(dx0, ι)

−
∑
ι∈S

∫
R2

+

g(x0, ι)P2(dx0, ι)

∣∣∣∣,
where

L =

{
g : Rn

+ × S → R

∣∣∣∣|g(x0, ι)− g(y0, χ)| ≤

|x0 − y0|+ |ι+ χ|, |g(·)| ≤ 1

}
.

For the sake of convenience, let λι(t) stand for the Markov
chain starting from ι ∈ S at t = 0 and let xx0,ι(t) represent
the solution of Eq. (4) with initial data x(0) = x0 ∈ Rn

+ and
γ(0) = ι ∈ S.

Definition 4. If there exists a unique probability measure
π(·× ·) on Rn

+×S such that for any (x0× ι) ∈ Rn
+×S, the

transition probability p(t, x0, ι, dy× {χ}) of x(t) converges
weakly to π(dy × {χ}) when t → +∞, then System (4) is
said to be asymptotically stable in distribution (ASD).

Now we are in the position to state and prove our main
results of this section.

Theorem 4. Let Assumptions (A1), (A2) and (A3) hold, then
the model (4) is ASD.

Proof: Define Ka,R = {x ∈ Rn
+|a ≤ |x| ≤ R} and

K
c

a,R = Rn
+ −Ka,R for a sufficiently large positive number

R and a sufficiently small positive number a. Hence by (ii)
and the tightness of transition probability density of x(t) we
have for any ε0 > 0,

p(s, x0, ι,K
c

a,R × S) ≤ ε0. (31)

For any f ∈ L, there is a T1 > 0 such that∣∣∣∣Eg(xx0,ι(t), λι(t))− Eg(yy0,χ(t), λχ(t))

∣∣∣∣
≤ 2P{τιχ > T1}

+E(Iτιχ>T1
)

∣∣∣∣g(xx0,ι(t), λι(t))− g(yy0,χ(t), λχ(t))

∣∣∣∣,
(32)

where τιχ = inf{t ≥ 0, λι(t) = λχ(t)} for ι, χ ∈ S. Note
that the Markov chain is ergodic, then τιχ < ∞. Therefore
for such T1 and any ε1 > 0, we have

P{τιχ > T1} ≤ ε1
8
, ι, χ ∈ S. (33)

Let u = xx0,ι(τιχ), v = yy0,ι(τιχ) and k = λι(τιχ) =
λχ(τιχ). Compute the second part of (32), one can observe
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that

E(Iτιχ≤T1)

∣∣∣∣g(xx0,ι(t), λι(t))− g(yy0,χ(t), λχ(t))

∣∣∣∣
≤ E

[
Iτιχ≤T1E

(∣∣∣∣g(xx0,ι(t), λι(t))

− g(yy0,χ(t), λχ(t))

∣∣∣∣|Fτιχ

)]
≤ E

[
Iτιχ≤T1E

(∣∣∣∣g(xu,k(t− τιχ), λk(t− τιχ))

− g(yv,k(t− τιχ), λk(t− τιχ))

∣∣∣∣)]
≤ E

[
Iτιχ≤T1E

(
2
∧∣∣∣∣xu,k(t− τιχ)− yv,k(t− τιχ)

∣∣∣∣)]
(34)

Define

Ω1 = {ω ∈ Ω|a ≤ |xx0,ι| ≤ R}, t ∈ [0, T1],

where R > 0 is a sufficiently large number and a > 0 is a
sufficiently small number. Then (ii) and (5) shows that

P (Ω1) > 1− ε1
16

, (x0, ι) ∈ Ka,R × S. (35)

It then follows from Theorem 3 and Chebyshev’s inequality
that there exists a T2 > 0 such that for all t ≥ T2,

E
(
2
∧∣∣∣∣xx0,ι(t)− yy0,ι(t)

∣∣∣∣) <
ε1
2
. (36)

Consequently, in view of (35) and (36), we can see that

E
[
Iτιχ≤T1E

(
2
∧∣∣∣∣xu,k(t− τιχ)− yv,k(t− τιχ)

∣∣∣∣)]
≤ 2P (Ω− Ω1) + E

[
IΩ1∩{τιχ≤T1}

×E
(
2
∧∣∣∣∣xu,k(t− τιχ)− yv,k(t− τιχ)

∣∣∣∣)]
≤ ε1

4 + ε1
2 = 3ε1

4 .
(37)

Substituting (33) and (37) into (32) results in∣∣∣∣Eg(xx0,ι(t), λι(t))− Eg(yy0,χ(t), λχ(t))

∣∣∣∣ ≤ ε1. (38)

Now for any g ∈ L and t, s > 0, fix any (x0, ι) ∈ Rn
+×S,

one can obtain that∣∣∣∣Eg(xx0,ι(t+ s), λι(t+ s))− Eg(xx0,χ(t), λι(t))

∣∣∣∣
=

∣∣∣∣E[E(g(xx0,ι(t+ s), λι(t+ s))|Fs

)]
− Eg(xx0,ι(t), λι(t))

∣∣∣∣
=

∣∣∣∣∑
i∈S

∫
Rn

+

Eg(xz0,i(t), λi(t))p(s, x0, ι, dz × {i})

− Eg(xx0,ι(t), λι(t))

∣∣∣∣
≤

∑
i∈S

∫
Rn

+

∣∣∣∣Eg(xz0,i(t), λi(t))− Eg(xx0,ι(t), λι(t))

∣∣∣∣
× p(s, x0, ι, dz × {i})

≤ 2p(s, x0, ι,K
c

a,R × S) +
∑
i∈S

∫
K

c
a,R

∣∣∣∣Eg(xz0,i, λi)

− Eg(xx0,ι(t), λι(t))

∣∣∣∣p(s, x0, ι, dz × {i}).

An application of (31) and (38) gives that for t > T, s > 0∣∣∣∣Eg(xx0,ι(t+ s), λι(t+ s))− Eg(xx0,χ(t), λι(t))

∣∣∣∣ ≤ ε,

where ε = ε0 + ε1. It then follows from the arbitrariness of
g that

sup
g∈L

∣∣Eg(xx0,ι(t+ s), λι(t+ s))− Eg(xx0,ι(t))
∣∣ ≤ ε.

In other words

dL(p(t+s, x0, ι, ·×·), p(t, x0, ι, ·×·)) ≤ ε, ∀t ≥ T, s > 0.

Hence {p(t, 0, 1, · × ·) : t ≥ 0} is Cauchy in P with metric
dL. Consequently there is a unique π(· × ·) ∈ P such that

lim
t→0

dL(p(t, 0, 1, · × ·), π(· × ·)) = 0.

In view of Theorem 3, one can see that

lim
t→0

dL(p(t, x0, ι, · × ·), p(t, 0, 1, · × ·)) = 0.

Thereby

lim
t→0

dL(p(t, x0, ι, · × ·), π(· × ·))
≤ lim

t→0
dL(p(t, x0, ι, · × ·), p(t, 0, 1, · × ·))

+ lim
t→0

dL(p(t, 0, 1, · × ·), π(· × ·)) = 0,

This completes the proof.

VI. EXAMPLES AND NUMERICAL SIMULATIONS

In this section, let us work out some numerical figures to
illustrate the main results by use the the Milstein methods
given in [29] (see also [30], [31]). Consider the following
two-species model:

dx1(t) = x1(t)

[
b1(γ(t))− a11(γ(t))x1(t)

− a12(γ(t))x2(t)

]
dt+ α1(γ(t))x1(t)dB1(t),

dx2(t) = x2(t)

[
b2(γ(t))− a21(γ(t))x1(t)

− a22(γ(t))x2(t)

]
dt+ α2(γ(t))x2(t)dB2(t),

(39)
where γ(t) is a Markovian chain with states S = {1, 2},
a11(γ(t)) ≡ 0.8, a12(γ(t)) ≡ 0.4, a21(γ(t)) ≡ 0.5,
a22(γ(t)) ≡ 0.7, b1(γ(t)) ≡ 0.6, b2(γ(t)) ≡ 0.5. It is easy
to see that Assumptions (A1) and (A3) hold (λ1 = λ2 = 1).

In Fig.1, we choose α2
1(1) = 0.3, α2

1(2) = 0.1, α2
2(1) =

0.25, α2
2(2) = 0.15, ρ1 = 0.5. Then r̂li = 0.375. By Theorem

1, the model (39) is stochastically permanent. Fig.1 confirms
this.

In Fig.2, we choose α2
1(1) = 2.5, α2

1(2) = 0.1, α2
2(1) =

0.95, α2
2(2) = 0.15, ρ1 = 0.5. Then ρ1r1(1) + ρ2r1(2) =

−0.05 and ρ1r2(1)+ρ2r2(2) = −0.05. By Theorem 2, both
x1 and x2 go to extinction. See Fig.2.

In Fig.3, the parameters are the same with Fig.1. It
then follows from Theorem 3 that model (39) is globally
attractive. Fig.3 confirms this.

In Fig.4, the parameters are the same with Fig.1. By The-
orem 4, model (39) is asymptotically stable in distribution.
See Fig.4.
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Fig. 1: Plot of a solution trajectory for model (39) with initial
conditions x1(0) = 0.6, x2(0) = 0.2. This figure shows that
model (39) is stochastically permanent.
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Fig. 2: Plot of a solution trajectory for model (39) with initial
conditions x1(0) = 0.6, x2(0) = 0.2. This figure shows that
both x1 and x2 go to extinction.

VII. CONCLUSION AND FURTHER RESEARCH

Recently, owing to their theoretical and practical sig-
nificance, stochastic differential equations with Markovian
switching have received great attention and have been studied
extensively (see, for example,[15]-[20],[24]-[28]). This paper
has been devoted to an n-dimensional stochastic competitive
model with Markovian switching. Sufficient conditions for
stochastic permanence, extinction, global attractivity and
stability in distribution were obtained.

Some interesting questions deserve further investigation.
The classical competitive exclusion principle (see, for ex-
ample, [32]) tells us that competitive coefficients play a
very important role in determining persistence-extinction of
populations in deterministic competitive model, then it is an
interesting and important topic to find out whether compet-
itive coefficients also play an important role in determining
persistence-extinction of populations in model (3). It is also
interesting to consider other population models (see, for

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

x
1
(t)

y
1
(t)

x
2
(t)

y
2
(t)

x
1
(t)

y
2
(t)

x
2
(t)

y
1
(t)

Fig. 3: Plot of two solution trajectories for model (39) with
two sets of initial conditions x1(0) = 0.6, x2(0) = 0.2,
y1(0) = 0.4 y2(0) = 0.3. This figure shows that model (39)
is globally attractive.
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Fig. 4: Distribution for model (39) with initial conditions
x1(0) = 0.6, x2(0) = 0.2. This figure shows that model (39)
is asymptotically stable in distribution.

example, [33]-[38]) with Markovian switching.
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