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Abstract—In this paper, we start by introducing a novel disk
rational Bézier based on parallel projection, whose properties
are also discussed. Then applying weighted least squares, multi-
objective optimization techniques and constrained quadratic
programming, we achieve multi-degree reduction of this kind of
disk rational Bézier curve. The paper also gives error estimation
and shows some numerical examples to illustrate the validity
of theoretical reasoning.

Index Terms—Disk rational Bézier curve, Multi-degree re-
duction, Weighted least squares, Constrained quadratic pro-
gramming, Multi-objective optimization methods.

I. INTRODUCTION

BECAUSE operations of geometric objects in current
Computer-Aided Design systems are based on floating

point arithmetic, representations of geometric objects are
inaccurate and geometrical computations are approximate. In
order to deal with this problem, interval arithmetic is used
in the fields. In 1992, Sederberg and Farouki [1] formally
introduced the concept of interval Bézier curve that can
transfer a complete description of approximation errors along
with the curves to applications in other systems. Inspired
by Sederberg’s work, Hu et al. [2] [3] [4] researched the
algorithms for curve and surface intersections and solid mod-
eling. Chen and Lou [5] discussed the problem of bounding
interval Bézier curve with lower degree interval Bézier curve.
However, as Chen pointed out [5], interval curve possesses
two shortcomings: interval generally enlarge rapidly in a
computational process and rectangular intervals are not ro-
tationally symmetric. To overcome these shortcomings, Lin
and Rokne [6] applied a disk to replace a rectangle. The
corresponding interval curve are called disk Bézier curve.
Since interval Bézier curve can’t represent conic precisely,
Hu et al. [3] [4] introduced interval non-uniform rational
B-splines (INURBS) curve based on perspective projection.
In 2011, using parallel projection, the first author of [7]
defined a novel disk rational Bézier curve, whose error radius
functions are Bézier polynomial functions.

One of the important theme for rational Bézier curve
is degree reduction. This problem arises because of the
limit of maximum degree for polynomial and the need of
data compression [8]. In 1983, Farin [9] described a degree
reduction method for rational Bézier curve for interactive
interpolation and approximation. Later, Sederberg and Chang
[10] achieved one degree reduction based on perturbing the
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numerator and denominator polynomials of a rational curve
such that the best linear common divisor is canceled. Chen
[11] applied the shifted Chebyshev polynomials to achieve
the degree reduction of rational Bézier with C(0,0)-continuity
at end points. A deficiency of above methods is that reduced-
weights may be negative. in 2010, Cai and Wang [12]
researched C(r,s)-continuity at end points using the Steepest
Descent algorithm. In fact, the degree reduction of rational
Bézier curve is a vector-valued optimization problem, so the
multi-objective optimization method is used in this paper.
For the details about multi-objective optimization method,
the reader can see [13] or [16]. On the other hand, for the
degree reduction of the error radius curve, we can transform
it into solving a constrained quadratic programming problem.

This paper has the following structure: To ensure the
structural integrity of this paper, in section 2, we review the
definition of disk rational Bézier curve and its properties. In
section 3, we propose an efficient algorithm to the problem
of degree reduction of rational disk Bézier curve. In section
4, some examples are provided.

II. DISK RATIONAL BÉZIER CURVES

A. Disk rational arithmetic

A disk in the plane is defined to be the set

(q) = (x0, y0)r

= {x ∈ R2 | ‖x− q‖ ≤ r, r ∈ R+ },

whose centric point is q and radius is r.
For any two disks (qi) = (xi, yi)ri , i = 1, 2, the two

operations are defined as follow

k(qi) = (kqi)
= (kxi, kyi)|k|ri ,∀ k ∈ R, i = 1, 2, (1)

(q1) + (q2) = (x1 + x2, y1 + y2)r1+r2 . (2)

Equations (1) and (2) can be generalized as

n∑
i=0

ki(qi) =

(
n∑
i=0

kixi,
n∑
i=0

kiyi

)
n∑

i=0

|ki|ri

. (3)

In homogeneous coordinates, a disk can be defined as

(Pω) = (ωx0, ωy0, ω)ωr

= {xω = (ωx, ωy, ω) ∈ R3 | ‖xω − Pω‖ ≤ ωr}.

Applying the perspective projection H(·) to the disk (Pω) can
yields a corresponding rational disk in plane ω = 1. That is

(q) = H((Pω)) =

(
X0

ω
,
Y0

ω

)
R
ω

= (x0, y0)r. (4)
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In addition, the disk can also be represented by the homo-
geneous coordinates

(Pω) = (ωx0, ωy0, ω)r

= {xω = (ωx, ωy, ω) ∈ R3 | ‖xω − Pω‖ ≤ r}.

Applying the oblique projection I(·) to the disk (Pω) can
yields another corresponding rational disk in plane ω = 1.
That is

(q) = I((Pω)) =

(
X0

ω
,
Y0

ω

)
r

= (x0, y0)r. (5)

Both equations (4) and (5) obviously agree with operation
(3). Based on equations (3) and (4), a kind of disk rational
Bézier curve can be defined and has been researched in [3]
[4]. However, using oblique projection I(·), we can define
a novel kind of disk rational curve and its properties, such
as end interpolation, affine invariant etc., are similar to the
classic disk rational Bézier curve.

B. Disk rational Bézier curves

A disk rational Bézier curve of degree n with control
disk points (pi) = (xi, yi)ri and corresponding weights
ωi ∈ R+, i = 0, ..., n, is defined by

(p)(t) = [p(t); r(t)]

=


n∑
i=0

piωiBni (t)

n∑
i=0

ωiBni (t)
;
n∑
i=0

riB
n
i (t)

 ,
or be written in the basis form

(p)(t) = [p(t); r(t)]

=

[
n∑
i=0

piR
n
i (t);

n∑
i=0

riB
n
i (t)

]
,

where

Bni (t) =

(
n

i

)
ti(1− t)n−i, (0 ≤ t ≤ 1), i = 0, ..., n,

are Bernstein polynomials,

Rni (t) =
ωiB

n
i (t)∑n

j=0 ωjB
n
j (t)

, i = 0, 1, ..., n,

are the rational basis functions. p(t) and r(t) are respectively
called the center curve and the radius of the disk rational
Bézier curve (p)(t).

C. Properties of disk rational Bézier curves

A disk rational Bézier curve satisfies the following prop-
erties.
• End interpolation:

(p)(0) = (p0) and (p)(1) = (pn).

• Affine invariant: Let A be an affine transformation (for
example, a rotation, reflection, translation, or scaling), then

A

n∑
i=0

ωi(pi)Bni (t)

n∑
i=0

ωiBni (t)
=

n∑
i=0

ωiA(pi)Bni (t)

n∑
i=0

ωiBni (t)

• Convex hull: The disk rational Bézier curve lies in the
convex hull of the control disks.

Since the convex hull of control disks (pi), i = 0, 1, ..., n,
are the set of all convex combinations

∑n
i=0 αi(pi), where

αi = Rni (t) and
∑n
i=0R

n
i (t) = 1, and the property is

desired.
• Non-uniform convergence: Since

lim
ωi→+∞

Rni (t) =



0 t = 0, i 6= 0,

1 t = 0, i = 0,

1 0 < t < 1, i = 0, ..., n,

1 t = 1, i = n,

0 t = 1, i 6= n,

the disk rational Bézier curve converges non-uniformly on
colsed interval [0, 1],
• De Casteljau algorithm: For any t ∈ [0, 1], (p)(t) can

be computed as follows:
pji = (1− t)ω

j−1
i

ωj
i

pj−1
i + t

ωj−1
i+1

ωj
i

pj−1
i+1 ,

ωji = (1− t)ωj−1
i + tωj−1

i+1 ,

rji = (1− t)rj−1
i + trj−1

i+1 ,

where j = 1, ..., n and i = 0, ..., n− j.
• Subdivision: Let c ∈ (0, 1) be a real number. Then

(p)(t) can be subdivided into two segments:

(p)(t) =



 n∑
i=0

pii(c)ω
i
i(c)B

n
i ( t

c )

n∑
i=0

ωi
i(c)B

n
i ( t

c )
;

n∑
i=0

rii(c)B
n
i ( tc )

 ,
0 ≤ t ≤ c, n∑

i=0

pn−i
n (c)ωn−i

n (c)Bn
i ( t−c

1−c )

n∑
i=0

ωn−i
n (c)Bn

i ( t−c
1−c )

;
n∑
i=0

rn−in (c)Bni ( t−c1−c )

 ,
c ≤ t ≤ 1,

• Degree elevation: A disk rational Bézier curve (p)(t) of
degree m can be represented as a disk rational Bézier curve
of degree m+ s as follows

(p)(t) =

m∑
i=0

(pi)ωiBmi (t)

m∑
i=0

ωiBmi (t)

=

m+s∑
i=0

(p̂i)ω̂iB
m+s
i (t)

m+s∑
i=0

ω̂iB
m+s
i (t)

, 0 ≤ t ≤ 1,

where

ω̂i =

min(m,i)∑
j=max(0,i−s)

ωj

(
m

j

) ( s
i−j
)(

m+s
i

) ,
p̂i =

1

ω̂i

min(m,i)∑
j=max(0,i−s)

pjωj
(
m

j

) ( s
i−j
)(

m+s
i

) ,
and

r̂i =

min(m,i)∑
j=max(0,i−s)

rj

(
m

j

) ( s
i−j
)(

m+s
i

) , (6)

i = 0, 1, ...,m+ s.
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• Exact degree reduction:
A degree n disk rational Bézier curve (p)(t) represents

exactly a degree m (m < n) disk ratioanl Bézier curve (p̌)(t)
with control disks (p̌i) and weights ω̌i ∈ R+, i = 0, 1, ...,m,
if only if the following equations are satisfied

min(m,i)∑
j=max(0,i−n)

(m
j )( n

i−j)
(m+n

i )
ω̌jωi−jpi−j

=
min(m,i)∑

j=max(0,i−n)

(m
j )( n

i−j)
(m+n

i )
ω̌jωi−j p̌j ,

i = 0, 1, ..., n+m,

(7)

and

rk =

min(m,k)∑
j=max(0,k−n+m)

řj

(
m

j

)(n−m
k−j

)(
n
k

) , (8)

k = 0, 1, . . . , n.
For the center curve, by

p(t) = p̌(t),

we have
n∑
i=0

piωiB
n
i (t)

m∑
i=0

ω̌iB
m
i (t) =

n∑
i=0

p̌iω̌iB
n
i (t)

m∑
i=0

ωiB
m
i (t),

which, after some rearrangement of the equation, gives

m+n∑
i=0

min(m,i)∑
j=max(0,i−m)

(
m
j

)(
n
i−j
)(

m+n
i

) ω̌jωi−jpi−jB
m+n
i (t)

=
m+n∑
i=0

min(m,i)∑
j=max(0,i−m)

(
m
j

)(
n
i−j
)(

m+n
i

) ωi−jω̌j p̌jB
m+n
i (t).

Comparing coefficients of like terms on both sides of the
equation, this establishes the equation (7).

The proof for the radius (8) is straightforward by equation
(6). By equation (7), it is clear that if

Cj =

min(m,i)∑
j=max(0,i−m)

(
m
j

)(
n
i−j
)(

m+n
i

) (ω̌jωi−jpi−j − ωi−jω̌j p̌j)

= 0, (9)

where j = 0, ..., µ − 1, and j = n + n − ν + 1, ..., n + m,
then the curves p(t) and p̌(t) satisfy C(µ,ν) - continuity.

III. DEGREE REDUCTION OF DISK RATIONAL BÉZIER
CURVES

The problem of degree reduction of disk Rational Béziers
curve can be stated as follows:

Given a degree n disk rational Bézier curve (p)(t), find
a degree m < n disk rational Bézier curve (p̌)(t) such that
(p̌)(t) is a closure of (p)(t).

The above problem can be decomposed into two parts.
A) Degree reduction approximation of center curve.
Using weighted least squares, the degree reduction of ra-

tional Bézier curve with C(µ,ν) - continuity can be expressed
as the following mathematical formula

min
∫ 1

0
ρ(t)(p(t)− p̌(t))2dt

s.t. Cj = 0, j = 0, ..., µ− 1,

Cj = 0, j = n+ n− ν + 1, ..., n+m,

ω̌i > 0, i = 0, ...,m,

(10)

where Cj are given by equation (9).
Specifically, let

p(t) =
q(t)

ω(t)
=

n∑
i=0

ωipiBni (t)

n∑
i=0

ωiBni (t)
,

p̌(t) =
q̌(t)

ω̌(t)
=

m∑
i=0

ω̌ip̌iBmi (t)

m∑
i=0

ω̌iBmi (t)

and ρ(t) = (ω(t)ω̌(t))2. The objective functions of equation
(10) can be written as

(f1, f2) =

∫ 1

0

ρ(t)(p(t)− p̌(t))2dt

=

∫ 1

0

(ω̌(t)q(t)− ω(t)q̌(t))
2
dt

=
1

2m+ 2n+ 1

2n+2m∑
i=0

min(2m,i)∑
j=max(0,i−2n)

Hij

where

Hij =

(
2m
j

)(
2n
i−j
)(

2m+2n
i

) (AjBi−j − 2CjDi−j + EjFi−j) ,

Ak =

min(m,k)∑
j=max(0,k−m)

(
m
j

)(
m
k−j
)(

2m
k

) ω̌jω̌k−j ,

Bk =

min(n,k)∑
j=max(0,k−n)

(
n
j

)(
n
k−j
)(

2n
k

) ωjpjωk−jpk−j ,

Ck =

min(m,k)∑
j=max(0,k−m)

(
m
j

)(
m
k−j
)(

2m
k

) ω̌j p̌jω̌k−j ,

Dk =

min(n,k)∑
j=max(0,k−n)

(
n
j

)(
n
k−j
)(

2n
k

) ωjpjωk−j ,

Ek =

min(m,k)∑
j=max(0,k−m)

(
m
j

)(
m
k−j
)(

2m
k

) ω̌j p̌jω̌k−j p̌k−j

and

Fk =

min(n,k)∑
j=max(0,k−n)

(
n
j

)(
n
k−j
)(

2n
k

) ωjωk−j .

Many methods can be used to solve the above equation . The
weighted-sum-of-objective-functions method [13] is used in
this paper. That is, a new objective function is

f =
1

2
(f1 + f2).

Accordingly, we use the fmincon procedure of MATLAB to
solve the nonlinear programming and the algorithm option
is the interior-point method [14] [15].

B) Degree reduction approximation of error radius curve
The problem of degree reduction approximation of error

radius curve can be expressed as the following formula
min ‖ř(t)− r(t)‖22
s.t. ř(t) ≥ r(t) + dist(p(t), p̌(t))

řj > 0, j = 0, 1, ...,m.

(11)
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TABLE I
ERROR AND WEIGHT COMPARISONS OF THE SEDERBERG’S, CHEN’S AND OUR METHODS

Method Constraint Weights Error

Sederberg’s method N/A -0.4774, -2.4585, -0.6294, -0.9129 0.0276

Chen’s method C(0,0) -0.4768, -2.4570, -0.6293, -0.9112 0.0376

Cai and Wang’s method C(0,0) 0.3719,1.8149, 0.5698,0.7186 0.0138

Our method C(0,0) 1.6962, 8.3632,2.5549,3.1139 0.0168

where dist(p(t), p̌(t)), t ∈ [0, 1], is the Hausdorff distance
between the curve p̌(t) and the curve p(t).

In practice, the equation (11) can be further simplified as
quadratic programming.

For the constraint function, elevating the degree of the
error radius curve ř(t) from m to n by equation (8), we
have

ř(t) =
m∑
i=0

řiB
m
i (t) =

n∑
i=0

r̂iB
n
i (t),

where

r̂i =

min(m,i)∑
j=max(0,i−n+m)

řj

(
m

j

)(n−m
i−j
)(

n
i

) .

Then one of a sufficient condition to satisfy the equation (11)
can be stated as

r̂i > ri + d, i = 0, 1, ..., n,

where

d = max{ max
p(ti)∈p(t),

min
p̌(tj)∈p̌(t)

‖p(ti)− p̌(tj)‖ ,

max
p̌(ti)∈p̌(t),

min
p(tj)∈p(t)

‖p(ti)− p(tj)‖} (12)

and ‖p(ti)− p̌(tj)‖ is discrete Euclidean distance, p(ti) and
p̌(ti), i = 0, 1, · · · ,M, are discrete sample points on curves
p(t) and p̌(t).

For the objective function, we have

‖r(t)− ř(t)‖22

=

∫ 1

0

(r(t)− ř(t))2
dt

=

∫ 1

0

ř2(t)dt− 2

∫ 1

0

r(t)ř(t)dt+

∫ 1

0

r2(t)dt

=
m∑
i=0

m∑
j=0

řiřjHij − 2
m∑
i=0

n∑
j=0

řirjSij +
n∑
i=0

n∑
j=0

rirjGij ,

where Hij =
(m

i )(m
j )

(2m+1)(2m
i+j)

, Sij =
(m

i )(n
j)

(m+n+1)(m+n
i+j )

and Gij =

(n
i)(

n
j)

(2n+1)( 2n
i+j)

. The third term
∑n
i=0

∑n
j=0 rirjGij is constant

and can be omitted. So the problem of degree reduction of
error radius function can be transformed to find the optimal
solution of the following problem:

min
∑m
i=0

∑m
j=0 řiřjHij − 2

∑m
i=0

∑n
j=0 řirjSij

s.t. r̂i ≥ ri + d, i = 0, 1, . . . , n,

řj > 0, j = 0, 1, ...,m.

Similarity to the equation (12), the error between curves r(t)
and ř(t) is defined as

e = max{ max
r(ti)∈r(t),

min
ř(tj)∈ř(t)

‖r(ti)− ř(tj)‖ ,

max
ř(ti)∈ř(t),

min
r(tj)∈r(t)

‖r(ti)− r(tj)‖}

where r(tj) and ř(tj), j = 0, 1, · · · ,M , are discrete sample
points on curves r(t) and ř(t).

IV. EXAMPLES

Example 1 (Also example in [10]). Given a 4 degree
rational Bézier curve with control points (0, 0), (2, 2), (3, 0),
(4,−2), (4, 0) and associated weights 1, 4, 2, 1, 1, to find a
1-degree reduced rational Bézier curve to a approximate the
original curve. See Table 1 for comparisons of approximation
error, and Fig. 1 for illustration. Although our method’s error
is larger than Cai and Wang’s method [12], we find that our
resulting curve may be better than others by Fig. 2 and Fig.
3.

Example 2. Given a disk rational Bézier (p)(t) of
eight degree with control disks (6, 14.9)1, (8.6, 25)0.4,
(20.3, 30)1 ,(35, 31)1.5, (40.2, 25)2, (37.5, 11.5)1.8,
(47.2, 8.1)0.8,(65.1, 11.2)1, (71.5, 25)0.5 and associated
weights 1.88, 1.68, 1.63, 1.73, 1.79, 2.18, 1.24, 1.08,
1.9. The best 3-degree reduction curve satisfying
C(1,1)-continuity with the given curve has control
disks (6.0, 14.9)1.2577, (10.3896, 31.9518)0.2977,
(44.3244, 39.6231)2.8827, (38.4055, 12.9182)2.0760,
(48.2014,−25.2377)1.5577, (71.5, 25.0)0.7577 , and
associated weights 1.8658, 1.5801, 1.4595, 2.7315,
0.4741, 1.8977. (See Fig. 4 and Fig. 5). The error distances
of center curve and the error radius curve are 0.2577 and
0.3938, respectively (See Fig. 6 and Fig. 7).

V. CONCLUSION

In this paper, we discussed the problem of degree reduction
of disk rational Bézier curves and proposed an efficient
method to solve the problem. Theoretic results and exper-
iments show that the proposed algorithm produces is very
effective. The idea presented in this paper can be easily
generalized to solve the degree reduction problem of disk
rational Bézier surfaces and NURBS curves and surfaces.
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