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Abstract—In this article we propose an efficient numerical
scheme based on a Shishkin mesh for a class of singularly
perturbed parabolic convection-diffusion problems with bound-
ary turning point and retarded arguments. The solution of the
considered problem exhibit a boundary layer on the left side
of the domain. The continuous problem is semidiscretized by
means of backward Euler finite difference method in time to
get a system of ordinary differential equations at each time
level. This system of differential equations is discretized by
using the standard upwind finite difference scheme on a non-
uniform mesh of Shishkin type. It has been shown theoretically
that the numerical solution generated by the method converges
uniformly to the solution of the continuous problem with respect
to the singular perturbation parameter. Numerical experiments
supporting the theoretical results are given.

Index Terms—Singular perturbation, convection diffusion
parabolic problems, turning point, differential-difference equa-

tions, layer adapted piecewise uniform mesh.

I. INTRODUCTION

Singularly perturbed partial differential equations often

occur owing to the nature of certain physical phenomena

such as small viscosity in the Navier stoke’s equations.

They also occur in modeling and analysis of heat and mass

transfer process when the thermal conductivity and diffusion

coefficients are small and the rate of reaction is large. In

biology many singularly perturbed diffusive models have

been established to describe the dynamics of some biological

systems. The smallness of the diffusive parameter is found

in many real life applications, see, for e.g., Murray [9] in

which he pointed out that in blood hemoglobin molecules

have a diffusion coefficient of the order of 10−11 m2/s

while that for the oxygen in the blood is of the order of

10−9m2/s. As indicated in [1] the dynamics of the solutions

of these problems are far better than those of the solution

of SPDE-PDEs.

In recent years, many robust numerical methods have
been developed for solving the following singularly perturbed
ordinary differential equations with delay and advance

ε2u′′(x)−a(x)u′(x)+b(x)u(x−δ)+c(x)u(x)+d(x)u(x+η) = f(x),

where x ∈ (0, 1) and δ, η are delay and advance parameters

respectively. Lange and Miura gave a series of papers [2],

[3], [4] investigating different classes of problems of the
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above type using asymptotic analysis. Kadalbajoo and

Sharma [11], [12], [13], [14] considered different classes

of boundary value problems of the above type giving many

robust numerical schemes and illustrating the effect of delay

and advance on the solution behavior. Rai and Sharma [16],

[17] considered the class of problems of the above type

where the coefficient of the convection term vanishes inside

the domain and developed ε-uniformly convergent numerical

schemes for the solution of such type of problems. The

problem considered in this paper is a generalization of the

above problem and its study was started by Ramesh and

Kadalbajoo [18] where they discussed upwind and midpoint

upwind difference methods for singularly perturbed time

dependent differential equations. Kumar and Kadalbajoo [5]

constructed a numerical scheme comprising of standard

implicit finite difference scheme in the temporal direction

and a B-spline collocation method in the spatial direction.

In [18], [5] the authors restricted their study to the case

when the convection coefficient is non-vanishing through

out the domain. In this paper we are initiating the study of

singularly perturbed time dependent differential equations

with boundary turning point and retarded arguments.

Classical numerical methods turn out to be inapplicable

for singular perturbation problems. This happens because

errors of the numerical solution depend on the perturbation

parameter and become small only when the effective

mesh-size in the layer is much less than the value of the

parameter ε. These methods do not behave uniformly well

for each value of singular perturbation parameter ε and in

particular give unsatisfactory results when the perturbation

parameter ε is quite small. To overcome this drawback the

concept of ε-uniform numerical method is developed in

which the order of convergence and the error constant are

independent of the parameter ε, i.e., numerical methods

that converge ε-uniformly. Over the last few decades, many

ε-uniform numerical methods have been developed by many

researchers for stationary and non-stationary problems [10],

[8], [7]. In this paper we construct and analyze a fitted mesh

finite difference scheme which utilizes special piecewise

uniform mesh condensed in the boundary layer region.

Proposed scheme consist of backward Euler method for the

time discretization and standard finite difference operator

for the spatial discretization. For the theoretical analysis the

global error is decomposed into two parts; first due to the

time discretization and the second part due to the spatial

discretization of the semi-discrete problem obtained after

the time discretization.
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Throughout this paper C denotes a generic positive

constant independent of the perturbation parameter ε; N, M
denotes the number of mesh intervals in the spatial and

the temporal directions respectively. In the analysis we use

the standard supremum norm ||.||0, D which is defined by

||g||0, D = supξ∈D|g(ξ)| for a function g defined on some

domain D. When the domain is obvious or of no particular

significance we simply write ||.||0.

II. PROBLEM FORMULATION

We consider the following singularly perturbed two-point
boundary value problem

∂y(x, t)

∂t
− ε2

∂2y(x, t)

∂x2
− a(x, t)

∂y(x, t)

∂x
+ α(x, t)y(x − δ, t)

+ β(x, t)y(x, t) + ω(x, t)y(x + η, t) = f(x, t) (II.1)

where

a(x, t) = a0(x, t)x
p, p ≥ 1, ∀ (x, t) ∈ Ω̄, a0(x, t) ≥ α > 0, (II.2)

Ω = D × Λ = (0, 1) × (0, T ], S = Ω̄ \ Ω = Sx ∪ S0 ∪ S1, S0 =
{(0, t)| 0 ≤ t ≤ T}, Sx = {(x, 0)| 0 ≤ x ≤ 1} and S1 = {(1, t)| 0 ≤
t ≤ T} in the space time plane for some fixed positive time
T subject to the interval conditions

y(x, t) = φ(x, t), (x, t) ∈ Ω1 = {(x, t) : −δ ≤ x ≤ 0; t ∈ Λ} (II.3)

y(x, t) = ψ(x, t), (x, t) ∈ Ω2 = {(x, t) : 1 ≤ x ≤ 1 + η; t ∈ Λ}
(II.4)

y(x, 0) = y0(x), ∀ x ∈ Sx. (II.5)

Here, 0 < ε ≪ 1 is a small positive

parameter, δ(ε) and η(ε) are also small parameters

assumed to be of order o(ε). The functions

a(x, t), α(x, t), β(x, t), ω(x, t), f(x, t), φ(x, t), ψ(x, t)
and y0(x) are assumed to be smooth, bounded and

independent of ε. In the special case when δ = η = 0, the

above problem reduces to singularly perturbed parabolic

differential equation. We are concerned with the related

class of problems in which delay and advance terms occur

in the reaction term and hence making the problem more

difficult to tackle.

When the convection coefficient is non-zero the solution

of the problem (II.1) exhibit boundary layer behavior and

the position of the boundary layer depends upon the sign

of the convection coefficient. This case has been discussed

by various authors over last few years [18], [1], [5]. In this

chapter, we deal with the case when the coefficient of the

convection term vanishes at the boundary, i.e., it satisfies

(II.2) with p = 1.
Existence and uniqueness of the solution of (II.1) is

established by assuming that the data are Holder continuous
and imposing appropriate compatibility conditions at the
corner points (0, 0), (1, 0), (−δ, 0), (1+η, 0). The required
compatibility conditions becomes

y0(0) = φ(0, 0)

y0(1) = ψ(1, 0)

∂φ(0, 0)

∂t
− ε

∂2y0(0, 0)

∂x2
+ a(0)

∂y0(0, 0)

∂x
+α(0)φ(−δ, 0) + β(0)y0(0, 0) + ω(0)y0(η, 0) = f(0, 0), (II.6)

∂ψ(1, 0)

∂t
− ε

∂2y0(1, 0)

∂x2
+ a(1)

∂y0(1, 0)

∂x
+α(1)φ(1 − δ, 0) + β(1)y0(1, 0) + ω(1)y0(1 + η, 0) = f(0, 0).

Sufficient conditions for the existence and uniqueness of

the solution is given by the following classical theorem(

see [15]).

Theorem 2.1: Suppose φ(x, t) ∈
C2+ν,1+ν/2(Ω1), ψ(x, t) ∈ C2+ν,1+ν/2(Ω2), y0(x) ∈
C2+ν(D̄), a, b, c, d, f ∈ Cν(D̄), and assume the

compatibility conditions (II.6) on the data are satisfied.

Then (II.1) has a unique solution y ∈ C2+ν,1+ν/2(Ω).

III. A PRIORI ESTIMATES

Since δ ≡ τ1ε, η ≡ τ2ε where τ1, τ2 are of o(1) we use
Taylor’s series to approximate the retarded arguments.

y(x− δ, t) ≈ y(x, t)− δyx(x, t) +
δ2

2
yxx(x, t) (III.1)

y(x+ η, t) ≈ y(x, t) + ηyx(x, t) +
η2

2
yxx(x, t),

where yx =
∂y

∂x
, yxx =

∂2y

∂x2
. Using (III.1) in (II.1) we

get

Lεy(x, t) ≡ yt(x, t) −Cε(x, t)yxx(x, t) +Q(x, t)yx(x, t)

+R(x, t)y(x, t) = f(x, t), (x, t) ∈ Ω (III.2)

subject to the conditions

y(x, 0) = y0(x), x ∈ Sx

y(0, t) = φ(0, t), 0 ≤ t ≤ T (III.3)

y(1, t) = ψ(1, t), 0 ≤ t ≤ T

where Cε(x, t) = ε2 − α(x, t)
δ2

2
− ω(x, t)

η2

2
, Q(x, t) =

−a(x, t) − δα(x, t) + ηω(x, t), R(x, t) = α(x, t) +
β(x, t) + ω(x, t). Problem (III.2) differ from (II.1) by

O(δ3yxxx, η
3yxxx). It is assumed that 0 < Cε(x, t) <

ε2 − δ2M1 − η2M2 = Cε where 2M1, 2M2 are the lower

bound for α(x, t) and ω(x, t) respectively.

It is also assumed that

R(x, t) = α(x, t) + β(x, t) + ω(x, t) ≥ K0 > 0, (III.4)

and

δα(x, t) − ηω(x, t) ≥ 0. (III.5)

Lemma 3.1: Maximum principle: Suppose Φ(x, tj+1) is a

smooth function satisfying Φ(0, tj+1),
Φ(1, tj+1) ≥ 0 and LεΦ(x, tj+1) ≥ 0 for all x ∈ D then we

have Φ(x, tj+1) ≥ 0 for all x ∈ D̄.

Lemma 3.2: The bound on the solution y(x, t) of the

problem (III.2), (III.3) is given by

|y(x, t)| ≤ C, (x, t) ∈ Ω̄.

IV. TIME DISCRETIZATION

On the time domain [0, T ] we introduce equidistant meshes

with uniform time step ∆t such that Ω̄t
M

= {tj = j∆t, j =
0, . . . ,M, t0 = 0, tM = T, ∆t = T/M}, where M denotes

the number of mesh elements in t-direction.
On the above uniform mesh the time variable is discretized

by means of implicit Euler method to get the following
system of linear ordinary differential equations.

Y (x, tj+1)− Y (x, tj)

∆t
− Cε(x, tj+1)

∂2Y (x, tj+1)

∂x2

+Q(x, tj+1)
∂Y (x, tj+1)

∂x
+R(x, tj+1)Y (x, tj+1) = f(x, tj+1),

where 0 ≤ j < M and subject to Y (x, 0) = y0(x) x ∈ D̄

Y (0, tj+1) = φ(0, tj+1), S
M
0 = {(0, tj) : 0 < j ≤ M} (IV.1)

Y (1, tj+1) = ψ(1, tj+1), S
M
1 = {(1, tj) : 0 < j ≤ M}
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where Y (x, tj+1) is the solution of the equation (III.2) at

(j + 1)th time level.
Rewriting (IV.1) as

Y (x, 0) = y0(x), x ∈ D̄

LY (x, tj+1) ≡ −Cε(x, tj+1)
∂2Y (x, tj+1)

∂x2
+ Q(x, tj+1))

∂Y (x,tj+1)

∂x
(IV.2)

+T(x, tj+1))Y (x, tj+1) = g(x, tj+1), x ∈ D

Y (0, tj+1) = φ(0, tj+1), (0, tj) ∈ S
M
0

Y (1, tj+1) = ψ(1, tj+1), (1, tj) ∈ S
M
1

where T (x, tj+1)) = R(x, tj+1)) +
1

∆t
, g(x, tj+1) =

f(x, tj+1) +
Y (x, tj)

∆t
. The local truncation error of

the semi-discretization method (IV.1) is given by

ej+1 = y(x, tj+1) − Y (x, tj+1). The local error measures

the contribution of each time step to the global error of the

time discretization given by Ej at instant tj . We have the

following results for the local error and the global error.

Lemma 4.1: Suppose

∣

∣

∣

∣

∂iy(x, t)

∂ti

∣

∣

∣

∣

≤ C, ∀ (x, t) ∈ Ω̄, i =

0, 1, 2. Then the local truncation error in the temporal

direction is given by ||ej+1||0 ≤ C(∆t)2.
Proof: Equation (IV.1) can be written as

Y (x, tj+1) − Y (x, tj) = ∆t



Cε
∂2Y (x, tj+1)

∂x2
−Q(x)

∂Y (x, tj+1)

∂x





+∆t
[

−R(x)Y (x, tj+1) + f(x, tj+1)
]

. (IV.3)

Also

y(x, tj) = y(x, tj+1)−∆tyt(x, tj+1) +

∫ tj+1

tj

(tj − ξ)ytt(x, ξ)dξ.

(IV.4)
Substituting the value of yt(x, tj) from (III.2) we get

y(x, tj+1)− y(x, tj) = ∆t [Cεyxx(x, tj+1)−Q(x)yx(x, tj+1)]

+∆t [−R(x)y(x, tj+1) + f(x, tj+1)] + O(∆t)2. (IV.5)

Subtracting (IV.5) from (IV.3) gives us

∆tL(ej+1) = O(∆t)2, ej+1(0) = ej+1(1) = 0 (IV.6)

which with the application of the Lemma 3.1 on the operator

L gives us the desired estimate.

Lemma 4.2: Under the hypothesis of the Lemma 4.1 the

global error estimate is given by

||Ej ||0 ≤ C∆t, ∀j ≤ T/∆t.

Proof: Using local error estimate upto jth time step

given by Lemma 4.1, we get the following global error

estimate at (j + 1)th time step

||Ej+1||0 = ||
j

∑

l=1

el||0 j ≤ T/∆t

≤ ||e1||0 + ||e2||0 + ||e3||0 + · · ·+ ||ej ||0
≤ C1(j∆t)∆t

≤ C1T∆t since j∆t ≤ T

≤ C∆t

where C is a positive constant independent of ε and ∆t.
Theorem 4.1: The solution Y (x, tj) of the problem (IV.2)

satisfies the following bound on its derivatives
∣

∣

∣

∣

Y (k)(x, tj)

∣

∣

∣

∣

≤ C(Cε)
−i
2 , i = 0, 1, 2, 3.

Proof: Let Q(x, t) = Q0(x, t)(x−τ)p where , Q(τ, t) =
0, Q0(x) ≥ ν > 0 and using the streched variable x̂ =
(x− τ)/

√
Cε the problem (IV.2) is transformed into

−∂
2Y (x̂, tj)

∂x̂2
+Q0(x̂, t)C

p−1
2

ε x̂p
∂Y (x̂,tj)

∂x̂
+ T (x̂, t)Y (x̂, tj)

= g(x̂, tj+1), x̂ ∈ D0 = (−τ, (1 − τ)/
√
Cε). (IV.7)

Now we have two cases

Case 1: When p > 1. In this case the second term in
the above differential equation become negligible and other
terms are independent of ε therefore we have
∣

∣

∣

∣

Y (k)(x̂, tj)

∣

∣

∣

∣

≤ C, x̂ ∈ D0 = (−τ, (1 − τ)/
√

Cε), i = 0, 1, 2, 3

(IV.8)

which when transformed to the original variable x gives us
∣

∣

∣

∣

Y (k)(x, tj)

∣

∣

∣

∣

≤ CC
−i
2

ε , x ∈ D, i = 0, 1, 2, 3.

Case 2: When p = 1. In this case the problem become
independent of ε and therefore its solution Y (x, tj) and its
partial derivatives satisfy
∣

∣

∣

∣

Y (k)(x̂, tj)

∣

∣

∣

∣

≤ C, x̂ ∈ D0 = (−τ, (1 − τ)/
√

Cε), i = 0, 1, 2, 3

and returning back to the original variable, we obtain
∣

∣

∣

∣

Y (k)(x, tj)

∣

∣

∣

∣

≤ C(Cε)
−i
2 , x ∈ D, i = 0, 1, 2, 3.

To obtain stronger estimates for the bounds on the solution

Y (x, tj) and its derivatives we decompose the solution of

(IV.2) into regular and singular component as

Y (x, tj+1) = V (x, tj+1) +W (x, tj+1) x ∈ D̄

where the regular part V (x, tj+1) is the solution of the

inhomogeneous problem

LV (x, tj+1) = g(x, tj+1) x ∈ D (IV.9)

V (x, tj+1) = Y (x, tj+1) on Sx ∪ S1

V (x, tj+1) = h(x, tj+1) on S0

and the singular part W (x, tj+1) is the solution of the

homogeneous problem

LW (x, tj+1) = 0 x ∈ D (IV.10)

W (x, tj+1) = 0 on Sx ∪ S1

W (x, tj+1) = Y (x, tj+1)− V (x, tj+1) on S0.

Theorem 4.2: The solution V (x, tj+1) of (IV.9) satisfy the
following bound on its derivatives

∣

∣

∣

∣

V (k)(x, tj+1)

∣

∣

∣

∣

≤ C(1 + C
2− k

2
ε ), ∀x ∈ D̄ k = 0, 1, 2, 3

and the solution W (x, tj+1) of (IV.10) satisfy the following
bounds
∣

∣

∣

∣

W (k)(x, tj+1)

∣

∣

∣

∣

≤ CC
−k/2
ε exp

(

− x√
Cε

)

, ∀x ∈ D̄ k = 0, 1, 2, 3.

Proof: The three term asymptotic expansion of the
smooth component V (x, tj+1) is

V (x, tj+1) = V0(x, tj+1) + CεV1(x, tj+1) + C2
εV2(x, tj+1) (IV.11)
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where the function V0(x, tj+1) satisfy the reduced problem

Q(x)
∂V0(x, tj+1)

∂x
+ R(x)V0(x, tj+1) = g(x, tj+1),

V0(1, tj+1) = ψ(1, tj+1), x ∈ D (IV.12)

whereas the function V1(x, tj+1) satisfy

Q(x)
∂V1(x, tj+1)

∂x
+R(x)V1(x, tj+1) = − ∂2V0(x,tj+1)

∂x2 , (IV.13)

V1(1, tj+1) = 0

and finally, the function V2(x, tj+1) satisfy

Cε
∂2V2(x, tj+1)

∂x2
−Q(x, tj+1)

∂V2(x, tj+1)

∂x

−R(x, tj+1)V2(x, tj+1) =
∂2V1(x, tj+1)

∂x2
(IV.14)

V1(0, tj+1) = 0, V1(1, tj+1) = 0.

Since V0, V1 are independent of Cε we have

∣

∣

∣

∣

∂iV0

∂xi

∣

∣

∣

∣

≤ C,

∣

∣

∣

∣

∂iV1

∂xi

∣

∣

∣

∣

≤ C (IV.15)

for all the integers i and j such that 0 ≤ 2i+ j.
As (IV.14) has same form as (IV.1) therefore we have

∣

∣

∣

∣

∂iV2
∂xi

∣

∣

∣

∣

≤ CC
−i
2

ε . (IV.16)

Thus, combining (IV.15) and (IV.16) we get

∣

∣

∣

∣

∂iV

∂xi

∣

∣

∣

∣

≤ C(1 + C
2− i

2
ε ).

For finding estimates on W (x, tj+1) and its higher order

derivatives we define two barrier functions

Φ±(x, tj+1) = Cexp

(

− x√
Cε

)

±W (x, tj+1) (IV.17)

where C is a constant such that Φ±(0, tj+1), Φ
±(1, tj+1) ≥

0, for all j = 0, . . . ,M − 1.
Also

LΦ±(x, tj+1) = C

(

−1 +
Q(x, tj+1)√

Cε
+ T (x, tj+1)

)

exp

(

− x√
Cε

)

≥ 0, ∀x ∈ D (∵ T − 1 > 0, Q(x, t) ≥ 0).

Then using Lemma 3.1 we get

Φ(x, tj+1) ≥ 0, for all x ∈ D̄ (IV.18)

which when substituted in (IV.17) gives us

|W (x, tj+1)| ≤ Cexp

(

− x√
Cε

)

, x ∈ D̄. (IV.19)

Now using the transformation x̂ = x/
√
Cε for the problem

(IV.10) and the same technique which was used for finding

the bounds on the transformed problem (IV.7) we obtain

∣

∣

∣

∣

∂iW (x̂, tj+1)

∂x̂i

∣

∣

∣

∣

≤ C|W (x, tj+1)|.

Returning back to the original variable x and using (IV.19),

we obtain the desired estimate.

V. SPATIAL DISCRETIZATION

In this section we construct a piecewise uniform mesh

in such a way that more mesh points are generated in

the boundary layer region rather than outside this region.

Consider the spatial domain D̄ = [0, 1] and let N ≥ 4
be a positive integer. The given domain is divided into

two subintervals [0, σ], [σ, 1] and on each subinterval a

uniform mesh with N/2 mesh intervals is placed such that

D̄N = {0 = x1, x2, . . . , xN/2 = σ, . . . , xN = 1} where the

transition parameter σ is defined as σ = min(0.5,
√
CεlnN).

Mesh elements are given by

xi =

{

ihi if i = 0, 1, . . .N/2

σ + (i −N/2)hi if i = N/2 + 1, . . . , N

where

hi =

{

2σ/N 1 ≤ i ≤ N/2

2(1− σ)/N N/2 + 1 ≤ i ≤ N.

On the set of grid points Ω̄N = D̄N × [0, T ]∆t the parabolic

operator is now discretized by means of upwind finite

difference operator defined as

D+
xD

−
x Yi,j =

2

hi + hi+1

(

Yi+1,j − Yi,j
hi+1

− Yi,j − Yi−1,j

hi

)

D−
x Yi,j =

Yi,j − Yi−1,j

hi
D+

x Yi,j =
Yi+1,j − Yi,j

hi+1

The discrete analogue of (IV.2) is thus defined as

L∗Yi,j ≡ −Cε(xi)D
+
x D

−
x Yi,j +Q(xi)D

+
x Yi,j + T (xi)Yi,j

= g(xi, tj), i = 1, 2, . . . N − 1, j = 0, . . . ,M − 1

Y0,j+1 = φ(0, j + 1), YN,j+1 = ψ(1, j + 1), 0 ≤ j < M. (V.1)

The operator L∗ satisfy the following comparison principle

Lemma 5.1: Let Ψi,j = Ψ(xi, tj) be any mesh function

such that Ψi,j ≥ 0 on S. Then L∗Ψi,j ≥ 0 on ΩN implies

Ψi,j ≥ 0 on Ω̄N .

This Lemma is used to prove the following property of the

finite difference operator L∗.
Lemma 5.2: Let Zi,j = Z(xi, tj) be any mesh function

such that Zi,0 = 0, ∀ i = 0, . . .N, Z0,j = 0 = ZN,j, ∀ j =
1, . . . ,M. Then

|Zi,j | ≤
1

K0
max0<k<N |L∗Zk,j |, ∀ i = 0, 1 . . . , N, j = 0, 1, . . . ,M.

Theorem 5.1: The solution Y (xi, tj+1) of the problem

(IV.2) and Yi,j+1 of (V.1) satisfy the following error estimate

for all N

|Y (xi, tj+1)− Yi,j+1| ≤ CN−1(lnN)2, ∀ i = 0, 1, . . . , N

where C is a constant independent of ε, δ and η.

Proof: Similar to what we did for the semidiscrete

problem, the solution Y = {Yi,j}N, M
i=0, j=0 of (V.1) can be

decomposed into regular and singular component as

Yi,j+1 = Vi,j+1 +Wi,j+1 (V.2)

where the regular part Vi,j+1 is the solution of the inhomo-

geneous problem

L∗Vi,j+1 = gi,j+1

V0,j+1 = V (0, tj+1) (V.3)

VN,j+1 = V (1, tj+1)
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and the singular part Wi,j+1 is the solution of the homoge-

neous problem

L∗Wi,j+1 = 0

W0,j+1 = W (0, tj+1) (V.4)

WN,j+1 = W (1, tj+1).

The nodal error is given by

Yi,j+1−Y (xi, tj+1) = Vi,j+1−V (xi, tj+1)+Wi,j+1−W (xi, tj+1).
(V.5)

For computing the nodal error of the regular component we
have

L
∗
(Vi,j+1 − V (xi, tj+1)) = −Cε(xi, tj+1)

(

D
+
x D

−
x −

∂2

∂x2

)

V (xi, tj+1)

+Q(xi, tj+1)

(

D
+
x −

∂

∂x

)

V (xi, tj+1).

Let xi ∈ D̄N . Then for any function Ψ(x) ∈ C2(D̄N ) we
have

∣

∣

∣

∣

(

∂2

∂x2
−D+

xD
−
x

)

Ψ(xi)

∣

∣

∣

∣

≤ (xi+1 − xi−1)||Ψ(3)||3 (V.6)

∣

∣

∣

∣

(

∂

∂x
−D+

)

Ψ(xi)

∣

∣

∣

∣

≤ (xi − xi−1)||Ψ(2)||2.

For the proofs of the above results refer [10].

Using (V.6), Theorem 4.2 and the fact that xi+1−xi−1 ≤
2N−1, xi−xi−1 ≤ N−1 in (V.6) followed by simplification

we get
∣

∣

∣

∣

L∗ (Vi,j+1 − V (xi, tj+1))

∣

∣

∣

∣

≤ CN−1. (V.7)

Use of Lemma 5.2 for the function (Vi,j+1 − V (xi, tj+1))
results into

|Vi,j+1 − V (xi, tj+1)| ≤ CN−1, ∀ i. (V.8)

The derivation of the error on the singular component de-

pend upon the mesh parameter σ. We have following cases

depending upon the value of σ.
Case 1 : σ = 1

2 , i.e., uniform mesh.

In this case we have 1
2 <

√
CεlnN =⇒ C−1

ε < 4(lnN)2.
The error estimation for this case is similar to that of the
regular component. Using the fact that xi+1−xi−1 ≤ 2N−1

and xi − xi−1 ≤ N−1 we get

|L∗(Wi,j+1 −W (xi, tj+1))| ≤ C(N−1C
−1/2
ε +N−1C−1

ε )

≤ CN−1(lnN)2 xi ∈ DN . (V.9)

Applying Lemma 5.2 to the mesh function (Wi,j+1 −
W (xi, tj+1)) results into

|Wi,j+1 −W (xi, tj+1)| ≤ CN−1(lnN)2 xi ∈ D̄N . (V.10)

Case 2 : σ < 1/2, i.e., piecewise uniform mesh.

In this case the mesh is piecewise uniform and the mesh

spacing is h = 2σ/N in the subinterval (0, σ) whereas in

the subinterval (σ, 1) it is H = 2(1− σ)/N .

Conside ring the subinterval [σ, 1) and using triangle inequal-

ity we have

|Wi,j+1−W (xi, tj+1)| ≤ |Wi,j+1|+ |W (xi, tj+1)|. (V.11)

Now the bound on |W (xi, tj+1)| given by Theorem 4.2 is

|W (xi, tj+1)| ≤ Cexp

(

− σ√
Cε

)

= CN−1. (V.12)

For the subinterval (0, σ) the truncation error becomes

|L∗(Wi,j+1−W (xi, tj+1))| ≤ C(N−1lnN+Q(xi)N
−1lnN C

−1/2
ε ).
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Fig. 1. The numerical solution profiles of example 1 for ε = 2−4, δ =
0.6ε, η = 0.5ε and M = N = 128.

Now consider the barrier functions Ψ±

i,j+1 defined by

Ψ
±
i,j+1

= C(N
−1

lnN+N
−1

lnN C
−1/2
ε (σ−xi)+N

−1
)±(Wi,j+1−W (xi, tj+1)).

Applying Lemma 5.1 for the barrier function Ψ±

i,j+1 we get

Ψ±

i,j+1 ≥ 0, ∀ xi ∈ (0, σ).

This implies

|Wi,j+1 −W (xi, tj+1)| ≤ C(N−1lnN +N−1lnN C
−1/2
ε σ +N−1)

≤ C(N−1(lnN)2).

Thus combining the estimates in each of the subregions we
have

|Wi,j+1 −W (xi, tj+1)| ≤ CN−1(lnN)2, ∀ xi ∈ D̄N .

Theorem 5.2: Let y(x, t) be the solution of problem

(III.2), (III.3) and Yi,j+1 be the solution of (V.1) then we

have

||Y (x, t)− Yi,j+1||0 ≤ C(M−1 +N−1(lnN)2).

Proof: The proof follows from Lemma 4.2 and Theo-

rem 3.1.

VI. NUMERICAL EXPERIMENTS

To illustrate the theory given in the present study and
examine the performance of the proposed numerical scheme
a set of numerical experiments is carried out. Since exact
solution is not known for the considered problem a double
mesh principle [6] is used to tabulate the maximum pointwise
error and the order of convergence of the proposed method.
Maximum pointwise error EN,∆t

ε at all the mesh points are
evaluated using the formula

EN,∆t
ε = max0≤i,j≤N,M |Y N,∆t(xi, tj)− Y 2N,∆t/2(xi, tj)|,

EN,∆t = maxεE
N,∆t
ε

where the superscript N indicates the number of mesh points

used in the spatial direction and tj = j∆t where ∆t is the

time step. Rates of uniform convergence pN,δt
ε are

pN,∆t
ε =

log(EN,∆t
ε /E

2N,∆t/2
ε )

log2
.

Example 1:

εuxx(x, t) + xux(x, t) − ut(x, t)− u(x, t)− 2u(x− δ, t)

− u(x+ η, t) = x2 − 1

u(0, t) = 1 + t2, u(1, t) = 0, at T = 1

u(x, 0) = (1 − x)2, 0 ≤ x ≤ 1.
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Fig. 2. The numerical solution profile of example 1 for ε = 2−15, δ =
0.6ε, η = 0.5ε and M = N = 128.

TABLE I
THE MAXIMUM POINTWISE ERROR (EN,∆t

ε ) AND RATE OF

CONVERGENCE pNε , WHEN APPLIED TO EXAMPLE 1 FOR VARIOUS

VALUES OF ε, M, N AND δ = 0.5ε, η = 0.

ε M = N = 8 M = N = 16 M = N = 32 M = N = 64 M = N = 128 M = N = 256

2−2 3.265E − 02 1.869E − 02 1.014E − 02 5.296E − 03 2.706E − 03 1.368E − 03

0.66 0.76 0.84 0.94 1.0 1.1

2−6 4.703E − 02 3.164E − 02 2.240E − 02 1.384E − 02 7.268E − 03 3.745E − 03

0.58 0.63 0.70 0.8 0.89 0.99

2−10 4.487E − 02 3.014E − 02 2.088E − 02 1.331E − 02 8.051E − 03 4.716E − 03

0.58 0.63 0.7 0.77 0.85 0.93

2−14 4.441E − 02 2.980E − 02 2.052E − 02 1.308E − 02 7.899E − 03 4.627E − 03

0.58 0.63 0.7 0.77 0.85 0.93

2−18 4.43E − 02 2.972E − 02 2.043E − 02 1.302E − 02 7.861E − 03 4.604E − 03

0.58 0.63 0.7 0.77 0.85 0.93

TABLE II
THE MAXIMUM POINTWISE ERROR (EN,∆t

ε ) AND RATE OF

CONVERGENCE pNε , WHEN APPLIED TO EXAMPLE 1 FOR VARIOUS

VALUES OF ε, M, N AND δ = 0.9ε, η = 0.5ε

ε M = N = 8 M = N = 16 M = N = 32 M = N = 64 M = N = 128 M = N = 256

2−2 3.824E − 02 2.328E − 02 1.271E − 02 6.687E − 03 3.429E − 03 1.737E − 03

0.63 0.72 8.1 0.91 1.01 1.12

2−6 4.813E − 02 3.259E − 02 2.315E − 02 1.435E − 02 7.566E − 03 3.895E − 03

0.57 0.63 0.70 0.79 0.89 0.99

2−10 4.514E − 02 3.032E − 02 2.107E − 02 1.342E − 02 8.125E − 03 4.759E − 03

0.58 0.63 0.7 0.77 0.85 0.93

2−14 4.447E − 02 2.985E − 02 2.056E − 02 1.311E − 02 7.917E − 03 4.637E − 03

0.58 0.63 0.7 0.77 0.85 0.93

2−18 4.431E − 02 2.974E − 02 2.044E − 02 1.303E − 02 7.866E − 03 4.607E − 03

0.58 0.63 0.7 0.77 0.85 0.93

TABLE III
THE MAXIMUM POINTWISE ERROR (EN,∆t

ε ) AND RATE OF

CONVERGENCE pNε , WHEN APPLIED TO EXAMPLE 1 FOR VARIOUS

VALUES OF ε, M, N AND δ = 0.4ε, η = 0.8ε

ε M = N = 8 M = N = 16 M = N = 32 M = N = 64 M = N = 128 M = N = 256

2−2 2.623E − 02 1.453E − 02 7.724E − 03 4.005E − 03 2.038E − 03 1.029E − 03

0.69 0.79 0.88 0.98 1.08 1.18

2−6 4.426E − 02 2.983E − 02 2.057E − 02 1.275E − 02 6.683E − 03 3.430E − 03

0.59 0.64 0.72 0.81 0.91 1.01

2−10 4.417E − 02 2.968E − 02 2.043E − 02 1.303E − 02 7.867E − 03 4.609E − 03

0.58 0.64 0.70 0.78 0.85 0.94

2−14 4.423E − 02 2.969E − 02 2.040E − 02 1.301E − 02 7.853E − 03 4.599E − 03

0.58 0.63 0.7 0.77 0.85 0.93

2−18 4.425E − 02 2.97E − 02 2.040E − 02 1.300E − 02 7.85E − 03 4.598E − 03

0.58 0.63 0.7 0.77 0.85 0.93

VII. CONCLUSION

In the current work a numerical scheme is proposed to

examine the singularly perturbed time dependent differential-

difference equation with turning point in one space dimen-

sion on a rectangular domain. The solution of the considered

problem exhibit boundary layer on the left hand side of the

domain. Euler implicit finite difference method is used fin

time and the resulting set of ordinary differential equations

at each time level are discretized by using standard upwind

finite difference scheme on a non-uniform mesh of Shishkin

type. An extensive amount of analysis is carried out in

order to obtain uniform convergence. There are difficul-

ties to approximate the solution of the problem due to

presenceof the perturbation parameter, retarded arguments

and the turning point. Theoretical analysis is carried out in

order to obtain the stability and error estimate. It is proved

that the method proposed is unconditionally stable and the

convergence obtained is parameter uniform.
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