
 

  
Abstract—The families of Lobatto Runge-Kutta methods that 

consist of Lobatto IIIA methods, Lobatto IIIB methods, and 
Lobatto IIIC methods are all of order 2s−2 and A-stable. Using 
V- transformation and the method of undetermined coefficients, 
a class of Lobatto Runge-Kutta methods of order 2s and 
A-stable are constructed through converting its stability 
function into diagonal Padé approximation to exp(z). The two 
numerical examples also show that the derived new Lobatto 
methods have higher accuracy than traditional Lobatto 
methods. 
 

Index Terms—Lobatto methods, order, V-transformation, 
Padé approximation 
 

I. INTRODUCTION 
obatto Runge-Kutta methods [1]-[4] for the numerical 
integration of ordinary differential equations are named 

after Rehuel Lobatto. They are characterized by the use of 
approximations to the solution at the two end points nt and 

1+nt  of each subinterval of integration ],[ 1+nn tt . One of 
well-known Lobatto methods is the implicit trapezoidal rule, 
which has been widely used in practice. 

Consider a system of ordinary differential equations 
(ODEs) 
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Starting from 0x  at 0t  one step ),(),( 11 ++® nnnn tt xx of the 
s-stage Lobatto Runge-Kutta methods applied to (1) can be 
expressed as follows 
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where the stage value s satisfies 2³s  and the coefficients 

jjij cba ,, characterize the Lobatto Runge-Kutta methods. The 

s intermediate values ),1(,~ sii Îx are called the internal 
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stages and can be considered as approximations to the 
solution at hct in + . Lobatto Runge-Kutta methods are 

characterized by 01 =c  and 1=sc . 
The families of traditional Lobatto methods involve 

Lobatto IIIA methods, Lobatto IIIB methods, and Lobatto 
IIIC methods. A comprehensive review about Lobatto 
methods can be found in Reference [1]-[3] and can be 
summarized in Table 1. 

 
TABLE I 

A SUMMARY OF TRADITIONAL LOBATTO METHODS 

methods simplifying assumptions order stability functions 

Lobatto IIIA B(2s−2), C(s), D(s−2) 2s−2 (s−1, s−1)−Padé 

Lobatto IIIB B(2s−2), C(s−2), D(s) 2s−2 (s−1, s−1)−Padé 

Lobatto IIIC B(2s−2), C(s−1), D(s−1) 2s−2 (s−2, s)−Padé 

 
However, these traditional Lobatto methods are all of order 

2s−2 and A-stable; they have the disadvantages of lower 
calculation precision when comparing with Gauss methods of 
order 2s. In this paper, we devoted to construct a class of new 
Runge-Kutta methods based on Lobatto quadrature formulas 
[5] whose order can be highest of 2s. 

II. LOBATTO QUADRATURE FORMULAS 
For a given number of stages s, the various Lobatto 

methods have the same coefficients b  and c based on the 
corresponding Lobatto quadrature formula [6]. The solution 
of (1) can be approximated by using a standard quadrature 
formula: 
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with s node coefficients sccc L,, 21 , and s weight coefficients 

sbbb L,, 21 . Lobatto quadrature formulas, also known as 
Gauss-Lobatto quadrature formulas in the literature, are given 
for 2³s  by a set of nodes and weights satisfying conditions 
described hereafter. The s nodes ic  are the roots of the 
polynomial of degree s 
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Those nodes satisfy 10 21 =<<<= sccc L . The weights 
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ib and nodes ic satisfy the condition B (2s−2) where 
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Lobatto quadrature formulas are symmetric, i.e., their nodes 
and weights satisfy 

jjs bb =-+1 , jjs cc -=-+ 11 , for sj ,,2,1 L=         (7) 

The families of Lobatto Runge-Kutta methods described 
above differ only in the values of their coefficients matrix A . 
The coefficients matrix A of these families can be linearly 
implicitly defined with the help of so-called simplifying 
assumptions [3] 
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 rk ,,2,1 L=                                 (9) 
The importance of these simplifying assumptions comes from 
a fundamental result due to Butcher. The coefficients 

jjij cba ,,  characterizing the Lobatto Runge-Kutta methods 

(2)-(3) can be arranged into the form of a table called a 
Butcher tableau [3] 
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III. CONSTRUCTION OF A CLASS OF LOBATTO METHODS OF 
ORDER 2S 

As is well-known that, if the stability function of an s-stage 
Runge-Kutta method is (s,s)-Padé approximation to exp(z) 
[7], then this method is of order 2s and A-stable. Inspired by 
this, the stability functions of new Lobatto methods are 
converted into diagonal Padé approximation to exp(z) by 
using the method of undetermined coefficients, so naturally, 
this class of new Lobatto methods are of order 2s and 
A-stable. 

Without changing the coefficients b  and c , an s-stage 
new Lobatto method is defined as 
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where 
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Equation 1~~ -= sss VAVA  is the famous “V-transformation” [8], 
[9]. Suppose that new Lobatto method satisfies symmetry 
condition AebPAP -= T [10], then, the stability function 
of new Lobatto method can be calculated by 
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Due to sA~  being a matrix with special structure, (14) can be 
further expressed as 
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Let )(zR  equal to (s,s)-Padé approximation to exp(z) 

denoted by z
se , i.e. 
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Comparing the corresponding polynomial coefficients on 
both sides of (16), it can be inferred that 
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Obviously, (17) can be further simplified to 
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Therefore, when the coefficients )~,,~,~(~
21 ss ααα L=α of new 

Lobatto method satisfy (18), then its stability function is 
(s,s)-Padé approximation to exp(z), so naturally, this Lobatto 
method is the method of order 2s. 

Gauss method is a good example for the proposed 
construction method. S-stage Gauss method satisfies (18) and 
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its stability function is (s,s)-Padé approximation to exp(z). 
Equation (18) has an unique solution for a given s, for 
example 42 ~s = , s

~α  are given by 

)21121(2 2 ,~,s -== α , 

)2151601(3 3 ,,~,s -== α , 

)212891412801(4 4 ,,,~,s --== α , 

…… 
Now, s-stage 2s-order Lobatto methods with s = 2, 3, 4 are 

listed below 

2=s ,  

2
1

2
1

12
5

12
71

12
1

12
10

T

-

=
b
Α~c                    3=s , 

6
1

3
2

6
1

15
2

15
11

15
21

24
1

3
1

24
5

2
1

30
1

15
1

30
10

T

-

-

=
b
Α~c  

4=s , 

12
1

12
5

12
5

12
1

168
11

56
5

12
5

56
5

12
5

168
171

120
5

210
1

210
5

24
5

420
547

24
5

120
5

420
37

10
55

120
5

210
1

420
547

24
5

210
5

24
5

120
5

420
37

10
55

56
1

56
5

56
5

56
10

T

+-

--++-
+

+---+
-

--

=
b
A~c  

To the author’s knowledge about Runge-Kutta methods, the 
Lobatto methods of order 2s and A-stable described above 
have so far not been reported. So, for convenience this class of 
Lobatto methods are named hereafter Lobatto IIIF methods.  

What’ more, the construction method based on 
V-transformation and described above can similarly be 
applied to construction of 2s−order Radau methods. 
Interestingly, when the construction method adopts 
coefficients c  and b  of traditional Radau IA methods, new 
Runge-Kutta methods are Radau IB methods [11], [12], when 
the construction method adopts coefficients c and b  of 
traditional Radau IIA methods, new Runge-Kutta method are 
Radau IIB methods[11], [12]. Radau IB methods and Radau 
IIB methods were first proposed by Sun Geng [11], [12] using 
W-transformation [2]. However, their stability functions are 
changed into (s,s)-Padé approximation to exp(z), instead of 
(s−1,s)-Padé approximation. Therefore, Radau IB methods 
and Radau IIB methods are not the method of order 2s−1 but 
order 2s.  

IV. NUMERICAL EXPERIMENTS 
In this section, we give two simple examples to illustrate 

our main results obtained in previous sections. 

Example 1. Consider a two-degree-of-freedom system 
governed by 

ïþ

ï
ý
ü

ïî

ï
í
ì

=
ïþ

ï
ý
ü

ïî

ï
í
ì

÷
÷

ø

ö

ç
ç

è

æ

-

-
+

ïþ

ï
ý
ü

ïî

ï
í
ì

÷
÷

ø

ö

ç
ç

è

æ

)3cos(5

0

42

26

10

02

2

1

2

1

tx

x

x

x

&&

&&
      (19) 

with initial condition 0(0)(0) 21 == xx , 0(0)(0) 21 == xx &&   

and the exact solution of the problem is  
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With the exact solution (20) as a reference, error trajectories 
will be observed and tracked using four kinds of Lobatto 
methods (error denoted by )(Δ 1 tx  and )(Δ 2 tx ). Fig.1 shows 
the displacement error trajectories comparison of Lobatto 
IIIA method and Lobatto IIIF method. Fig.2 shows the 
displacement error trajectories comparison of Lobatto IIIB 
method and Lobatto IIIF method. Fig.3 shows the 
displacement error trajectories comparison of Lobatto IIIC 
method and Lobatto IIIF method. From Figs.1-3, it has been 
shown that Lobatto IIIF method has higher calculation 
accuracy than all the traditional Lobatto methods. 
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(a) Error trajectories of )(1 tx  
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Fig. 1 Error trajectories comparison of Lobatto IIIA method and Lobatto IIIF 
method (s=3, h=0.2s) 
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(b) Error trajectories of )(2 tx  

Fig. 2 Error trajectories comparison of Lobatto IIIB method and Lobatto IIIF 
method (s=3, h=0.2s) 
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(a) Error trajectories of )(1 tx  
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Fig. 3 Error trajectories comparison of Lobatto IIIC method and Lobatto IIIF 
method (s=3, h=0.2s) 

Example 2. Consider a hardening elastic spring. The 
nonlinear dynamic equation is 

0)1( 2
21 =++ xsxsx&&                            (21) 

where 01 >s , 02 >s . The exact total energy is 

4)22( 4
21

2
1

2 xssxsxE ++= &                  (22) 

To assess the time integration numerical methods, the percent 
error in terms of the energy was introduced [12],  

%100)( 00 ´-= EEEEr                  (23) 

where 0E  is the total energy at 0=t . For numerical results 

present herein, 1001 =s , 102 =s . The initial conditions are 

5.10 =x& and 00 =x . 
Table 2 lists the maximum percentage errors of the total 

energy over the time duration of 20s. The results of four kinds 
of Lobatto methods are obtained with s=3 and the Newton 
method that is used in solving the nonlinear algebraic 
equations. 

 
TABLE II 

MAXIMUM PERCENTAGE ERRORS OF THE TOTAL ENERGY DURING 20S 

step size h 0.2s 0.1s 0.05s 0.01s 

Lobatto IIIF 26.9 5.6 0.0 0.0 

Lobatto IIIA 33.8 6.8 0.3 0.0 

Lobatto IIIB 35.3 7.0 0.2 0.0 

Lobatto IIIC 34.6 7.3 0.4 0.0 

 
It can be also seen from Table 2 that the Lobatto IIIF 

method has higher calculation accuracy than all the traditional 
Lobatto methods. Accurate results can be obtained with much 
larger step size using Lobatto methods. 

V. CONCLUSION 
A class of Lobatto methods of order 2s and A-stable have 

been successfully constructed and numerical examples have 
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shown that new Lobatto methods are more precise than 
traditional Lobatto methods of order 2s−2. The construction 
method based on V-transformation can be also applied to 
construction of 2s−order Radau methods. It has been found 
that 2s−order Radau methods are Radau IB methods and 
Radau IIB methods, whose stability functions are (s,s)−Padé 
approximation to exp(z). 

ACKNOWLEDGMENT 
The authors would like to thank the anonymous referees for 

their helpful comments and valuable suggestions, which led to 
the improvement of the manuscript. 

REFERENCES 
[1] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential 

Equations I: Nonstiff Problems. 2nd. ed. Berlin: Springer-Verlag, 
1993. 

[2] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: 
Stiff and Differential-Algebraic Problems. 2nd. ed. Berlin: Springer- 
Verlag, 1996. 

[3] J.C. Butcher, Numerical Methods for Ordinary Differential Equations. 
2nd. ed. New York, John Wiley & Sons, 2008. 

[4] N. Senu, M. Suleiman, and F. Ismail, et al, “A singly diagonally 
implicit Runge-Kutta-Nyström method for solving oscillatory 
problems,” IAENG International Journal of Applied Mathematics, vol. 
192, no. 1, , pp. 155–161, 2011. 

[5] W. Gautschi, “High-order Gauss-Lobatto formulae,” Numerical 
Algorithms, vol. 25, pp. 213–222, 2000. 

[6] H. Y. Liu and G. Sun, “Implicit Runge-Kutta methods based on 
Lobatto quadrature formula,” International Journal of Computer 
Mathematics, vol. 82, no. 1, pp. 77–88, 2005. 

[7] B. L. Ehle, “On Padé approximations to the exponential function and 
A-stable methods for the numerical solution of initial value problems,” 
Research Report CSRR 2010, Dept. AACS, University of Waterloo. 

[8] F. H Chipman, “A-stable Runge-Kutta process,” BIT Numerical 
Mathematics, vol. 11, no. 3, pp. 384–388, 1971. 

[9] K. Burrage, Stability and efficiency properties of implicit Runge-Kutta 
methods, PhD thesis, University of Auckland, 1978. 

[10] R.P.K. Chan, “On symmetric Runge-Kutta methods of high order,” 
Computing, vol. 45, pp. 301–309, 1990. 

[11] G. Sun, “Construction of high order symplectic Runge-Kutta 
methods,” Journal of Computational Mathematics, vol. 11, no. 4, pp. 
250–260, 1993. 

[12] G. Sun, “A simple way of constructing symplectic Runge-Kutta 
methods,” Journal of Computational Mathematics, vol. 18, no. 1, pp. 
61–68, 2000. 

[13] Y.M. Xie, “An assessment of time integration schemes for non-linear 
dynamic equations,” Journal of Sound and Vibration, vol. 41, no. 2, pp. 
321–331, 1996. 

IAENG International Journal of Applied Mathematics, 46:1, IJAM_46_1_02

(Advance online publication: 15 February 2016)

 
______________________________________________________________________________________ 




