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Abstract—The main purpose of this paper is to discuss the
convergence of uncertain variables and the truncation method
for uncertain measure. Based on uncertain measure theory, we
propose the concepts of convergence with uncertain measure 1
and convergence almost everywhere. Then we investigate some
properties of the convergence concepts. Finally, we present
and prove the truncation method in uncertain environment.
All obtained results are the natural extensions of the classical
conclusions to the case where the measure tool is non-additive.

Index Terms—uncertain measure, convergence with uncer-
tain measure 1, convergence almost everywhere, truncation
method, uncertain variables.

I. INTRODUCTION

CONVERGENCE concepts are basic and important con-
cepts in classical measure theory [1], [2], [3]. With

the development of the classical measure theory, some
mathematicians felt that additivity is too restrictive in some
application contexts. In fact, the additivity requirement of
most circumstances cannot be easily satisfied or might not
be satisfied at all [4], [5], [6]. Therefore, it is more reasonable
to utilize non-additive measure to study the convergence
concepts. Some Mathematics workers have explored them for
fuzzy measures and uncertain measure, such as Liu Baoding
[7], Wang Zhenyuan [8], Zhang Zhiming [9], Gianluca
[10] and so forth. Some recent applications of convergence
concepts for non-additive measure can be found in [11], [12],
[13].

It is known that truncation method is also important in
classical measure theory. It is a fundamental technique in
proving the strong law of large numbers [1], [2]. When the
measure tool is non-additive, this method is very different
from additive case. Some mathematics workers have explored
the truncation method for non-additive measures such as
[14], [15], [16].

Uncertain measure is a kind of non-additive measure,
which is a generalization of classical measure. It is essentially
to deal with the uncertainty behaves neither randomness
nor fuzziness. It was widely applied by some scholars such
as Zhang Zhiming [9], Gao Xin [17], Liu Baoding [18],
[19], [20] and so on. In this paper, some convergence
concepts of uncertain variables and the truncation method
for uncertain measure will be investigated. Our work helps to
build important theoretical foundations for the development
of uncertain measure theory.
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II. PRELIMINARY

Uncertain measure is a typical non-additive measure,
which is widely applied in some practical application. In this
section, the definition and the properties of uncertain measure
will be given. Then the expected value for uncertain variables
will also be introduced. Some interested readers can refer to
[4], [7], [21] for more details on uncertain measure theory.

A. The Definition and Properties of Uncertain Measure

Definition 2.1 let X be a nonempty set, and let F be a
σ−algebra of X . If for any A ∈ F , the set function Un(A)
satisfies the four axioms as follows:

Axiom 1. (Normality) Un(X) = 1.
Axiom 2. (Monotonicity) ∀A, B ∈ F , A ⊂ B,

Un(A) ≤ Un(B).

Axiom 3. (Self-Duality) A, Ac ∈ F ,

Un(A) + Un(Ac) = 1.

Axiom 4. (Countable-Subadditivity) ∀{An} ∈ F , we have

Un(
∞⋃

n=1

An) ≤
∞∑

n=1

Un(An).

Then the set function Un is called an uncertain measure on
F . The triplet (X, F , Un) is called an uncertainty space.

Here Ac is the complement of A.
Theorem 2.1 Let Un be an uncertain measure. Then for

any event A, we have

Un(∅) = 0, 0 ≤ Un(A) ≤ 1.

Proof. By using of definition 2.1,

Un(∅) = 1− Un(X) = 1− 1 = 0,

and ∅ ⊆ A ⊆ X , one can see that

Un(∅) ≤ Un(A) ≤ Un(X),

that is
0 ≤ Un(A) ≤ 1.

Definition 2.2 An uncertain variable is a measurable
function ξ from an uncertainty space (X, F , Un) to the
set of real numbers.

Definition 2.3 The uncertain distribution Φ : R → [0, 1]
of an uncertain variable ξ is defined by

Φ(x) = Un{ξ ≤ x}.

That is, Φ(x) is the uncertainty that the uncertain variable
takes a value less than or equal to x.
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Definition 2.4 The uncertain variables ξ1, ξ2, ..., ξn , ...
are said to be independent, if

Un{
n⋂

i=1

{ξi ∈ Bi}} = min
1≤i≤n

Un{ξi ∈ Bi}

for any Borel sets B1, B2, ..., Bn of real numbers set R.
Definition 2.5 The uncertain variables ξ1, ξ2, ..., ξn, ...

are said to be identically distribution if

Un{ξi ∈ B} = Un{ξj ∈ B}, i, j = 1, 2, ...

for any Borel set B of R.

B. Expected Value for Uncertain Variables

Definition 2.6 Suppose that ξ is an uncertain variable.
Then the expected value of ξ is defined by

E[ξ] =
∫ +∞

0

Un{ξ ≥ r}dr −
∫ 0

−∞
Un{ξ ≤ r}dr,

provided that at least one of the two integrals is finite.
Theorem 2.2 Let ξ be an uncertain variable with

uncertainty distribution Φ(x). If

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1

and the Lebesgue-Stieltjes integral∫ +∞

−∞
xdΦ(x)

is finite, then we have

E[ξ] =
∫ +∞

−∞
xdΦ(x).

Theorem 2.3 Let ξ and η be independent uncertain
variables with finite expected values. Then for any real
numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η].

III. SOME DISCUSSIONS FOR UNCERTAIN MEASURE

In this section, convergence concepts of uncertain vari-
ables sequence and the truncation method will be given on
uncertainty space.

A. Convergence Concepts of Uncertain Variables

Definition 3.1 Suppose that ξ, ξ1, ξ2, ..., ξn, ...
are uncertain variables defined on the uncertainty space
(X,F , Un). If there exists E ∈ F with Un(E) = 0 such
that {ξn} converges to ξ on Ec, then we say {ξn} converges
to ξ almost everywhere. Denoted by

ξn → ξ (a.e.).

Definition 3.2 Suppose that ξ1, ξ2, ..., ξn, ... is a
sequence of uncertain variables. If there exists a uncertain
variable ξ, such that

Un{ lim
n→∞

ξn = ξ} = 1,

then we say that ξn converges with uncertain measure 1 to
ξ. Denoted by

lim
n→∞

ξn = ξ (Un− a.s.).

Lemma 3.1 [3] Suppose that ξ1, ξ2, ..., ξn, ... is sequence
of uncertain variables, ξ is a uncertain variable. If

An,m = {|ξn − ξ| ≥ 1
m
},

then

{ lim
n→∞

ξn = ξ} =
∞⋂

m=1

∞⋃
n=1

⋂
k≥n

Āk,m.

Lemma 3.2 Suppose that ξ1, ξ2, ..., ξn, ... is a sequence
of uncertain variables, ξ is a uncertain variable, then the
following propositions are equivalent.

1) lim
n→∞

ξn = ξ (Un− a.s.);

2) Un{
∞⋂

m=1

∞⋃
n=1

⋂
k≥n

[|ξk − ξ| < 1
m

]} = 1,

namely

Un{
∞⋃

m=1

∞⋂
n=1

⋃
k≥n

[|ξk − ξ| ≥ 1
m

]} = 0;

3) ∀ε > 0, Un{
∞⋃

n=1

⋂
k≥n

[|ξk − ξ| < ε]} = 1,

namely

Un{
∞⋂

n=1

⋃
k≥n

[|ξk − ξ| ≥ ε} = 0.

Proof. It follows from lemma 3.1 and 1) that

Un{
∞⋂

m=1

∞⋃
n=1

⋂
k≥n

[|ξk − ξ| < 1
m

]} = 1.

Since uncertain measure is self-dual,

Un{
∞⋃

m=1

∞⋂
n=1

⋃
k≥n

[|ξk − ξ| ≥ 1
m

]} = 0

is true. So 1) is equivalent to 2). Now we prove that 2) is
equivalent to 3). ∀ε > 0, when m > 1

ε , we have

∞⋂
n=1

⋃
k≥n

[|ξk − ξ| ≥ ε] ⊂
∞⋂

n=1

⋃
k≥n

[|ξk − ξ| ≥ 1
m

]

⊂
∞⋃

m=1

∞⋂
n=1

⋃
k≥n

[|ξk − ξ| ≥ 1
m

],

thus

Un{
∞⋂

n=1

⋃
k≥n

[|ξk − ξ| ≥ ε]}

≤ Un{
∞⋃

m=1

∞⋂
n=1

⋃
k≥n

[|ξk − ξ| ≥ 1
m

]}.

According to 2), we know 3) is true. Conversely, for any
given positive integer m, assume that

Tm =
∞⋂

n=1

⋃
k≥n

[|ξk − ξ| ≥ 1
m

],
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by virtue of 3), Un(Tm) = 0. Because Un is countable-
subadditivity, we have

0 ≤ Un{
∞⋃

m=1

∞⋂
n=1

⋃
k≥n

[|ξk − ξ| ≥ 1
m

]}

≤
∞∑

m=1

Un{
∞⋂

n=1

⋃
k≥n

[|ξk − ξ| ≥ 1
m

]}

=
∞∑

m=1

Un{Tm} = 0,

this implies that

Un{
∞⋃

m=1

∞⋂
n=1

⋃
k≥n

[|ξk − ξ| ≥ 1
m

]} = 0,

thus 2) is true.
Lemma 3.3 Suppose that X is a nonempty set, ρ(X) is

the power set of X . Let Ak ∈ ρ(X),

uk = Un{Ak}, k = 1, 2, ...,

if ∞∑
k=1

uk < ∞,

then

Un{
∞⋂

n=1

⋃
k≥n

Ak} = 0.

Proof. When ∞∑
k=1

uk < ∞,

for ∀ε > 0, there exists a positive integer N , such that

0 ≤ Un{
∞⋂

n=1

⋃
k≥n

Ak} ≤ Un{
⋃

k≥N

Ak}

≤
∑
k≥N

Un{Ak} =
∑
k≥N

uk ≤ ε,

one can see that

Un{
∞⋂

n=1

⋃
k≥n

Ak} = 0.

Lemma 3.4 ([2]) Suppose that ξn, ξ ∈ F , for any given
εk > 0,

lim
n→∞

εk = 0,

we have

(1) {ξn → ξ} =
⋂
ε>0

∞⋃
m=1

∞⋂
n=m

{|ξn − ξ| < ε}

=
∞⋂

k=1

∞⋃
m=1

∞⋂
n=m

{|ξn − ξ| < εk};

(2) {|ξn − ξm| → 0} =
∞⋂

ε>0

∞⋃
n=1

∞⋂
v=1

{|ξn+v − ξn| < ε}

=
∞⋂

k=1

∞⋃
n=1

∞⋂
v=1

{|ξn+v − ξn| < εk}.

Theorem 3.1 Suppose that ξ1, ξ2, ..., ξn, ... are uncer-
tain variables defined on the uncertainty space (X,F , Un).
Then {ξn} converges with uncertain measure 1 to 0 if and
only if ∀c ∈ (0,∞),

∞∑
k=1

Un(|ξk| ≥ c) < ∞.

Proof. By virtue of lemma 3.2,

lim
n→∞

ξn = 0 (Un− a.s.)

if and only if ∀c > 0,

Un{
∞⋂

n=1

⋃
k≥n

[|ξk| ≥ c]} = 0.

According to lemma 3.3, we know that theorem 3.1 holds.
Theorem 3.2 Suppose that ξ1, ξ2, ..., ξn, ... are

uncertain variables, then
(1) ξn → ξ (a.e.), if and only if

Un(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξn| ≥ ε} = 0, ∀ε > 0.

(2) |ξn − ξm| → 0 (a.e.), if and only if

Un(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ ε} = 0, ∀ε > 0.

Proof. (1) If
ξn → ξ (a.e.),

then ∀ε > 0, by virtue of lemma 3.4,

Un(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ ε}

≤ Un(
⋃
ε>0

∞⋂
n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ ε}

= Un({ξn → ξ}c) = 0.

On the other hand, if

Un(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ ε} = 0, ∀ε > 0,

then for any given εk > 0,

lim
k→∞

εk = 0,

it follows from lemma 3.4 that

Un({ξn → ξ}c) = Un(
∞⋃

k=1

∞⋂
n=1

∞⋃
v=1

{|ξn+v−ξ| ≥ εk})

≤
∞∑

k=1

Un(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ εk})] = 0,

that is
ξn → ξ (a.e.).

(2) In the similar way, we can prove the second conclusion.
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B. Truncation Method for Uncertain Variables

Definition 3.3 Suppose that ξ1, ξ2, ..., ξn, ... is a
sequence of uncertain variables, ξn, n = 1, 2, ..., have finite
expected values E[ξn]. Assume that

ξ̄n =
1
n

n∑
i=1

ξi,

if
lim

n→∞
(ξ̄n − E(ξ̄n)) = 0 (Un− a.s.),

then we say that {ξn} obeys the strong law of large numbers.
Theorem 3.3 (Truncation method) Let ξ1, ξ2, ..., ξn, ...

be a sequence of independent and identically distributed
uncertain variables whose distribution function is Φ(x),
ξn, n = 1, 2, ..., have the same expected values a ( a is
finite), and

ξ∗n = ξnχ{|ξn|<n}(ω), n = 1, 2, ...,

if ∞∑
n=1

Un{ξ∗n 6= ξn} < ∞,

then {ξ∗n} obeys the strong law of large numbers if and only
if {ξn} obeys the strong law of large numbers.

Proof. Let

ξ̄n =
1
n

n∑
i=1

ξi, ξ̄∗n =
1
n

n∑
i=1

ξ∗i , E(ξi) = a,

then

|ξ̄n − a| = |ξ̄n − ξ̄∗n + ξ̄∗n − E(ξ̄∗n) + E(ξ̄∗n)− a|

≤ |ξ̄n − ξ̄∗n|+ |ξ̄∗n − E(ξ̄∗n)|+ |E(ξ̄∗n)− a|

it follows from lemma 3.2, lemma 3.3 and
∞∑

n=1

Un{ξ∗n 6= ξn}) < ∞

that
lim

n→∞
|ξ̄n − ξ̄∗n| = 0 (Un− a.s.).

Since {ξ∗n} obeys the strong law of large numbers,

lim
n→∞

|ξ̄∗n − E(ξ̄∗n)| = 0 (Un− a.s.)

holds true. And

lim
n→∞

E(ξ∗n) = lim
n−→∞

∫
|x|<n

xdΦ(x) = E(ξn) = a.

When n →∞,

|E(ξ̄∗n)− a| = | 1
n

E(
n∑

i=1

ξ∗i )− a|

= | 1
n

n∑
i=1

E(ξ∗i )− a| −→ 0,

(If limn→∞ an = a, then 1
n

∑n
k=1 ak → a). Thus

lim
n→∞

|E(ξ̄∗n)− a| = 0 (Un− a.s.)

is valid. Finally, we conclude that

Un{ lim
n→∞

|ξ̄n − a| = 0} = 1.

Now we give the proof of the second part of the theorem.
Since

|ξ̄∗n − a| = |ξ̄∗n − ξ̄n + ξ̄n − E(ξ̄n) + E(ξ̄n)− a|

≤ |ξ̄∗n − ξ̄n|+ |ξ̄n − E(ξ̄n)|+ |E(ξ̄n)− a|,

from the proof above, one can see that

lim
n→∞

|ξ̄∗n − ξ̄n| = 0 (Un− a.s.).

Since {ξn} obeys the strong law of large numbers,

lim
n→∞

|ξ̄n − E(ξ̄n)| = 0 (Un− a.s.)

holds true. Noting that E(ξ̄n)− a = 0, we have

lim
n→∞

|E(ξ̄n)− a| = 0 (Un− a.s.).

Finally,
Un{ lim

n→∞
|ξ̄∗n − a| = 0} = 1,

that is, {ξ∗n} obeys the strong law of large numbers.
The proof of the theorem is complete.

IV. CONCLUSIONS

Convergence concepts and the truncation method are very
important in classical measure theory. This paper discussed
the convergence concepts of uncertain variables and the
truncation method for uncertain measure. First, the properties
of uncertain measure were further discussed. Second, some
relevant conclusions of convergence concepts for uncertain
measure were introduced. Finally, the truncation method
was given and proven on uncertainty space. These results
are extensions of the corresponding conclusions of classical
theory. All investigations helped to build important theo-
retical foundations for the systematic and comprehensive
development of uncertain measure theory.
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