
 

 

 

Abstract— Since random numbers are required in a large 

number of cryptographic applications, e.g. as session key, IV, 

ephemeral key, nonce, or challenges in zero knowledge 

protocols, etc., then its failure to fulfill the randomness 

property could be a potential weakness for the system which 

employed those cryptographic applications to deliver its 

security services. The previous researches on insertion attack 

toward random binary sequences produced by five PRNG 

algorithms have indicated that some postattack random 

sequences failed  to pass the statistical randomness tests.  As an 

addition, some postattack random sequences are potentially 

being distinguished from the preattack (target) sequence under 

advantage value ε = 0.00001 and ε = 0.0001 for statistical 

distance test and entropy different test respectively. This meant 

that the insertion attack is potential to change the distribution 

of each pattern occurs in the post attack binary sequence, that 

could cause the lost of randomness.  The effects is also vary for 

each algorithm. Based on those findings, then we extend the 

research to measure the effects of insertion attack on a random 

sequence theoretically by examining the occurrence probability 

of each m-bits pattern after the attack with non-overlapping 

(NOL) patterns and overlapping (OL) pattern approaches. The 

results showed that the insertion attack will cause the bias from 

uniformity in the postattack sequence when the insertion 

attack is not balance, the other hand the distribution each m-

bits pattern remains uniform that potentially keeps the 

randomness property of the target sequence.  

 

Index Terms—randomness, insertion attack, m-bit pattern, 

occurrence probability, NOL pattern, OL pattern. 

I. INTRODUCTION 

 N cryptographic application, randomness is a very 

important element that is used to ensure the security of the 

system. As Kerckhoff Principles said that the strength of a 

cryptographic algorithm entirely depends on the secrecy of 

the key, where the adversary is assumed has complete 

knowledge about the crypto algorithm except the secret key 

[1]. By using random variable for certain critical parameters 

such as key, seed, nonce, IV or others, it will strengthened 

the system where adversary will be forced to maximum 
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efforts in finding the secret values.  

 Some related researches in ([2], [3], [4]) mentioned that 

some lacks in generating random values will cause the 

security system failed. On 11 August 2013, BitCoin 

Foundation even announced that a certain component in 

Android that responsible to produce random sequences 

contained some bugs, which caused all Wallet Applications 

such as BitCoin Wallet is vulnerable against thieves. [5]. 

The fact confirmed that it is important that the random 

numbers produced by an RNG/a PRNG is ensured to be 

random.   

  The empirical studies of insertion attack effects on 

Mother of all random number generators [6] and AES-based 

pseudorandom number generator [7], have proved that the 

attack caused some samples failed to pass the randomness 

tests after the attack under significant level of  𝛼 =  0.01. 

Meanwhile [8] found the effects on four PRNGs ANSI 

X9.17, ANSI X9.31, Dragon, and Rabbit algorithm caused 

some postattack sequences failed the NIST randomness tests 

under level significant of  𝛼 =  0.001. Table I showed the 

different effects on the five algorithms. 

 
TABLE I 

NIST RANDOMNESS TEST RESULTS ON FIVE ALGORITHMS ON  𝛼 = 0.01 
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 Using statistical distance test, it is also indicated that the 

postattack random sequences from AES-based PRNG still 

could not be distinguished from the preattack random 

sequences under advantage 𝜀 =  0.01 [7]. The effects would 

be significant under 𝜀 =  0.00001  from further 

experiments. Moreover, from [9] and [10] it is found that the 

indistinguishability of four PRNGs are significant under 

advantage value 𝜀 =  0.00001  based on statistical distance 

tests and 𝜀 =  0.0001 based on entropy different tests, as is 

shown in Table II.   
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TABLE II 

TEST RESULTS OF DISTINGUISHED SEQUENCES FROM ORIGINAL (%) 
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 = 

0,0001 

1-bit 0 0 0 0 40 36 36 0 

2-bit 0 0 0 0 28 20 24 0 

3-bit 0 0 0 0 32 40 24 0 

 = 

0,00001 

1-bit 80 80 76 76 80 68 72 44 

2-bit 64 60 60 64 64 56 60 32 

3-bit 68 64 68 64 68 72 64 32 

 

Based on those results, the effects on five PRNG ANSI 

X9.17, X9.31, Rabbit, Dragon, and AES-based PRNG are 

quite similar against the insertion attack with random bits 

under statistical distance test meanwhile ANSI X9.31 is 

stronger against the attack under entropy different test.  This 

fact drives a curiosity to find out more about the effects of 

insertion attack on a random/pseudorandom sequence.    

 In the randomness test tools such as Five Basic Tests 

[11], NIST Randomness Tests [12] or Die Hard Tests [13], 

there are some tests that are measuring the randomness 

property by examining the occurrence of every bit-pattern in 

the sequences. E.g., Frequency test is used to measure the 

occurrence of bit 1 and 0 in the sequence. The sequence 

with length n-bits will pass the frequency test if the  total 

number of bit 0 and bit 1 is equal when n is even, or 

different at most 1 bit when n is odd. In other words, the 

expected probability of bit 0 and bit 1 to occur in the 

sequence is equal such that 𝑃(0) = 𝑃(1) ≈
1

2
.  Then Serial 

test is used to meassure the occurrence of 2-bits pattern 00, 

01, 10 and 11 in the sequence. Each 2-bits pattern is 

expected equally likely to occur in the sequence with 

probability close to 
1

4
.  Each 2-bits pattern is expected to 

occur in the sequence with probability close to 1/4.   In Runs 

test, the occurrence of n consecutive bits (which is called as 

“gap” for bit 0s or “block” for bit 1s) is expected equally 

likely in the sequence. Globally, on a random sequence, it is 

expected that every possible m-bits pattern, where m = 

1,2,…, n, occurred in the sequence with the same (or close) 

probability.  

 Under considerations above, we proceed to explore the 

insertion attack effects on a random/pseudorandom 

sequence by measuring the probability of each pattern 

occurred in the postattack sequence. The preattack binary 

sequence is assumed to be random or already pass the 

statistical test for randomness, where the distribution of the 

sequence is uniform based on [12]. In other words, every 

pattern in the sequence has the same (close) probability to 

occur or we define it as balance. To see all the possible 

effects, we examine all possible ways of insertion attack 

with non-overlapping (NOL) pattern and overlapping (OL) 

pattern approaches. The observations are conducted on the 

insertion attack with random bits and extreme bits. 

 The results showed that the effects of the insertion attack 

is depending on the way of the insertion take place, the 

position of the insertion, and also the balance of the inserted 

bits. From theoretical proofs we observed, globally there are 

four principle results:  

1) The insertion attack of balance m-bits pattern will 

definitely produce the balance of the m-bits pattern in 

the postattack sequence which potentially maintains the 

randomness property of the sequence. 

2) Contrary, the insertion attack of the unbalance m-bits 

pattern will cause the occurrence of the bits patterns in 

the postattack sequence is unbalance, indicating by the 

bias of the occurrence probability of an m-bits pattern 

from 
1

2𝑚 which leads the sequence to lose the 

randomness property. 

3) The bias of the attack effects with NOL pattern 

approaches on the position nm, n = 1,2,... can be 

generalized. Meanwhile the bias attack effects with 

NOL approach on position nm+t, n = 1,2,... and  t = 1,2, 

…, (m-1) or with OL approach cannot be generalized  

because the attack will produce the new different 

patterns for each case that depends on the bits after and 

before the insertion point.  

4) The insertion attack with extreme bits causes a 

significant bias of the attack effects that trivially defects 

the randomness property of the sequence. 

 

To make it clear, we divide this paper in 5 sections 

includes: Introduction, Background Theory, Insertion Attack 

Effects with Random Bits, Insertion attack effects with 

extreme bits, and Conclusion. Section 3 is divided into 4 

subsections i.e.: Notation, 1-bit insertion attack effect, m-bit 

insertion attack with NOL pattern approach, and m-bit 

insertion attack with OL pattern approach. 

II. BACKGROUND THEORY 

A. Randomness and unpredictability 

 A series of random bits could be interpreted as the result 

of flipping an unbiased “fair” coin with two sides that are 

labeled "0" and "1", in which each side has probability ½, 

with the provisions of each coin flip is independent and 

mutually disjoint. If these conditions are fulfilled then the 

coin flip n times will result unbiased random bit stream, 

where the value of "0" and "1" will be distributed randomly 

or uniformly distributed. [12].  

 There are two types of random numbers. First is a truly 

random number that is produced by a random number 

generator called as an RNG. RNG uses a non-deterministic 

source (i.e., the entropy source), along with some processing 

function (i.e., the entropy distillation process) to produce 

randomness. Second is a pseudorandom number which is 

produced by a pseudorandom number generator called as a 

PRNG. A PRNG uses one or more inputs (called “seed”) 

and generates multiple “pseudorandom” numbers. The 

outputs of a PRNG are typically deterministic functions of 

the seed which are based on mathematical formulations. 

This gives the output of the PRNG will be reproduced by 

using the same seed, contrary with the RNG that could not 

be reproduced. [14]. 

 Random and pseudo random numbers generated for 

cryptographic application should be unpredictable. On a 

PRNG, if the seed is unknown then the following numbers 

in the output sequence should be unpredictable for any 

knowledge of the previous bits. This property is called 

forward unpredictability. It is also required that based on the 
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knowledge of some values of the output bits, it should be 

difficult to determine the value of the seed, which is called 

as the backward nature of unpredictability. In this case there 

should be guaranteed no correlation between seed and 

output bits generated by the seed, where each element of the 

output bits should have probability ½. [12] 

 From [12], it is stated that the sequences to be tested is 

considered to meet the assumptions: 

 Uniformity: At any point in the generation of a 

sequence of random or pseudorandom bits, the 

occurrence of a zero or one is equally likely, i.e., the 

probability of each is exactly 1/2. The expected 

number of zeros (or ones) is n/2, where n = the 

sequence length. 

 Scalability: Any test applicable to a sequence can 

also be applied to subsequences extracted at random. 

If a sequence is random, then any such extracted 

subsequence should also be random. Hence, any 

extracted subsequence should pass any test for 

randomness. 

 Consistency: The behavior of a generator must be 

consistent across starting values (seeds).So that it is 

inadequate to test a PRNG based on the output from 

a single seed, or an RNG on the basis of an output 

produced from a single physical output. 

B. Probability Theory 

Definition 1[15] 

  Two events E and F are disjoint if there are no outcomes 

common to both E and F which is notated as  𝐸 ∩ 𝐹 = ∅. 

 

 𝐸 ∪ 𝐹 is the collections of all outcomes in either E or F so 

that the probability of 𝐸 ∪ 𝐹 is the sum of each probability E 

and F that is written as  

 

                  𝑃(𝐸 ∪ 𝐹) = 𝑃(𝐸0 + 𝑃(𝐹)                            (1) 

 

If E and F are not disjoint, then the probability of the event 

𝐸 ∪ 𝐹 is not the sum of P(E) and P(F), because the 

outcomes common to both E and F should not be counted 

twice which is formulated as  

 

      𝑃(𝐸 ∪ 𝐹) = 𝑃(𝐸) + 𝑃(𝐹) − 𝑃(𝐸 ∩ 𝐹)                    (2) 

 

Definition 2 [15] 

 Two events E and F are said to be independent if the 

probability of both occurrence are the product of their 

individual probability, notated as  

                  𝑃(𝐸 ∩ 𝐹) = 𝑃(𝐸)𝑃(𝐹)                                      (3) 

C. M-bits pattern  

Bit patterns can be defined as all possible forms of n bits. 

E.g., one bit represents two patterns, i.e., 1 and 0, 2-bits 

represents 4 patterns, i.e., 00, 01, 10, and 11, then 3 bits 

represents 8 patterns, i.e., 000,001, 010, 011, 100, 101, 110, 

and 111, and so on. Globally,  n-bits will represent 2
n
 

patterns. As mentioned above, a sequence is considered as 

random if all of possible patterns are equally likely to occur 

in the sequence. Generally, each m-bits pattern is expected 

has the same probability 1/2
m   

of occurrence.  

To examine the m-bits pattern that occurred in a random 

sequence with length n-bits and  m > 1, we use two different 

approaches, i.e., non-overlapping pattern (NOL) and 

overlapping pattern (OL). In NOL approach, the patterns are 

considered from the sequence without overlapping. 

Meanwhile, in OL approach, the patterns are considered 

from the sequence with overlapping.  

For example, from a random sequence of 24-bits 

011010001101001110, there are 6 forms of 3-bits pattern 

considered with NOL approach i.e. 011, 010, 001, 101, 001, 

and 110.  The other hand,  there are 24 patterns for cyclic 

overlapping approach i.e. 011, 110, 101, 010,…,110, or 22 

patterns for non-cyclic overlapping approach by omitting the 

last pattern. 

Generally, there are n/m forms of an m-bits pattern can be 

derived from an n-bits sequence with NOL pattern. 

Meanwhile with OL pattern there is n forms for cyclic OL 

and n-(m-1) forms for non-cyclic OL. 

In this research, we use NOL and cyclic-OL approach in 

examining the patterns, under consideration that a binary 

sequence produced by a PRNG is periodic. The occurrence 

probability of an m-bit pattern with NOL approach and 

cyclic-OL approach are proved to be the same as presented 

below. 

Let
miiin ...21

represents the m-bits pattern that occurs in a 

sequence with length n where 𝑖1𝑖2 … 𝑖𝑚 ∈ {0,1} so that the 

occurrence probability of 
miiin ...21

in the sequence notated as: 

 

      𝑃(𝑛𝑖1𝑖2…𝑖3
) =

𝑛𝑖1𝑖2…𝑖3

𝑁
                               

 (4) 

 

N is the total number of m-bits pattern in the sequence, for 

which, N = n/m for NOL pattern, N = n for cyclic-OL 

pattern, and N = n – (m-1) for non-cyclic OL pattern.  

 From probability principle we know the sum of all 

individual probability of each pattern is 1. Suppose that each 

pattern has the same probability 1/2
m
 to be occurred.  So the 

occurrence probability of each m-bits pattern in the 

sequence of length n with NOL pattern can be determined as 

in the Eq. 5. 

 

𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) =

𝑃(𝑛′
𝑖1𝑖2… 𝑖𝑚)𝑁

𝑁
  

≈
1

2𝑚(
𝑛

𝑚
)

𝑛

𝑚

=
1

2𝑚                                
(5)

 

The other hand, the occurrence probability of each m-bits 

pattern in the sequence with cyclic OL pattern can be 

determined as in the Eq. 6. 

 

𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) =

𝑃(𝑛′
𝑖1𝑖2… 𝑖𝑚)𝑁

𝑁
  

≈
1

2𝑚(𝑛)

𝑛
=

1

2𝑚                                     (6)  

 

From Eq. 5 and 6 above, we see that the occurrence 

probability of each m-bits pattern in a random sequence with 

length n has the same probability to occur i.e. 1/2
m
 for NOL 

pattern or cyclic OL pattern approach.  

 On the next sections we will show our proofs about the 

effects of insertion attack based on the occurrence 

probability of each m-bits pattern in a random sequence with 

length n-bits after the attack. The original sequence 

produced by an RNG/ a PRNG as a target sequence is 

defined as a preattack sequence where is assumed as 

IAENG International Journal of Applied Mathematics, 46:1, IJAM_46_1_06

(Advance online publication: 15 February 2016)

 
______________________________________________________________________________________ 



 

 

random. And the target sequence after insertion attack is 

defined as a postattack sequence. 

III. INSERTION ATTACK EFFECT WITH RANDOM BITS 

In this section we present the effect of insertion attack 

with random bits against a binary random sequence by 

measuring the occurrence probability of each m-bit pattern 

after the attack. It is assumed that the preattack sequence is 

random, which means that each pattern in the sequence has 

the same (close) probability to occur, which is defined as 

balance in this paper.  

There are two possible conditions of the bits are inserted 

into the sequence produced by an RNG/ a PRNG. First the 

bits inserted are balance, and second the bits inserted are not 

balance. The measurements of the attack effect are 

conducted under the two conditions. 

A. Notation 

 Some notations used in this paper are: 

𝑈 =  𝑢1𝑢2 … 𝑢𝑛 is the preattack sequence from RNG/PRNG 

𝑉 =  𝑣1𝑣2 … 𝑣𝑛 is the sequence of bits inserted into U. 
𝑛𝑖1𝑖2… 𝑖𝑚

 is the m-bit pattern in the preattack sequence U. 

𝑠𝑖1𝑖2… 𝑖𝑚
 is the m-bit pattern that is inserted into U. 

𝑛′𝑖1𝑖2… 𝑖𝑚 is the m-bit pattern in postattack sequence. 

𝑃(𝑛𝑖1𝑖2… 𝑖𝑚
) is the occurrence probability of 𝑛𝑖1𝑖2… 𝑖𝑚

 in the 

preattack sequence U. 
𝑃(𝑠𝑖1𝑖2… 𝑖𝑚

) is the probability of  𝑠𝑖1𝑖2… 𝑖𝑚
  in V to be 

inserted into U. 
𝑃(𝑛′𝑖1𝑖2… 𝑖𝑚

) is the occurrence probability of  𝑛𝑖1𝑖2… 𝑖𝑚
 in the 

postattack sequence. 

B. 1-bit insertion attack effect 

The insertion attack effects is considerend under two 

conditions. First, where the bits inserted are balance (Case 

1), and second, where the bits inserted are not balance (Case 

2 and 3). The sequence of bits inserted has length s and the 

target target sequence U has length n bits, so that the 

postattack sequence U+V has length n+s bits. 

 

Case 1: 

Suppose the bits that are inserted in the sequence are 

balance that means the probability of bit 0 and bit 1 are the 

same, i.e.  𝑃(𝑠0) = 𝑃(𝑠1) ≈
1

2
.  Since each event of 1-bit 

insertion attack are independent, so that the probability of 

bit 0 (or 1) to occur in the postattack sequence U+V can be 

defined as  

 

𝑃(𝑛′
0)      =  𝑃(𝑛0) + 𝑃(𝑠0) 

≈
1

2
𝑛+

1

2
𝑠

𝑛+𝑠
=

     𝑛+𝑠

2
.

1

𝑛+𝑠
 =

1

2
                (7) 

 

Case 2:  

Suppose that the probability of bit 0 to be inserted in a 

sequence is bigger than ½. Let  𝑃(𝑠0)  ≈
1

2
+  𝛿, 0 < 𝛿 < 1, 

such that 𝑃(𝑠1) <
1

2
  where  𝑃(𝑠0) + 𝑃(𝑠1) = 1. Then 

probability of bit 0 to occur in the postattack sequence can 

be defined as  

 

𝑃(𝑛′
0) =  𝑃(𝑛0) + 𝑃(𝑠0) ≈

1

2
𝑛+(

1

2
+)𝑠

𝑛+𝑠
   

=  
1

2
𝑛+

1

2
𝑠+𝛿𝑠

𝑛+𝑠
 =

1

2
(𝑛+𝑠)+𝑠

𝑛+𝑠
 

=  
1

2
+ 

𝑠

(𝑛+𝑠)
>

1

2
                                           (8) 

 

Case 3: 

In contrary with case 2, the probability of bit 0 for being 

inserted is less than bit 0. Let 𝑃(𝑠0)  ≈
1

2
−  𝛿,0 < 𝛿 < 1, 

such that 𝑃(𝑠1) >
1

2
 where 𝑃(𝑠0) + 𝑃(𝑠1) = 1. Then with 

the same way, we could define the occurrence probability of 

bit 0 in the postattack sequence as  

 

 P(𝑛′
0)   =  𝑃(𝑛0) + 𝑃(𝑠0) 

≈
1

2
𝑛+(

1

2
−)𝑠

𝑛+𝑠
 =

1

2
𝑛+

1

2
𝑠−𝛿𝑠

𝑛+𝑠
  

=
1

2
(𝑛+𝑠)−𝑠

𝑛+𝑠
 =  

1

2
− 

𝑠

(𝑛+𝑠)
                        (9) 

 

 From the result above we propose the Theorem 1 about   

1-bit insertion attack effects on a random sequence. 

 

Theorem 1 (1-bit insertion attack) 

Suppose 𝑈 =  𝑢1𝑢2 … 𝑢𝑛 is a random sequence from a 

RNG/PRNG with length n bits, and 𝑉 =  𝑣1𝑣2 … 𝑣𝑠 is a 

sequence of s bits to be inserted into U in any position. Then 

we found:  

1. The occurrence probability of bit 0 (or bit 1) in the 

postattack sequence is ≈
1

2
  if only if bit 0 and bit 1 in V 

has the same probability to be inserted into U.   

2. The probability of bit 0 (or bit 1) to occur in the 

postattack sequence will bias from 1/2 with error 


𝑠

(𝑛+𝑠)
 if only if the probability of bit 0 and probability 

of bit 1 to be inserted are not balance. The sign depends 

on the probability of bit 0 (or 1) to be inserted in U. 

 

Proofs: 

1. The proof of the right side is clear as shown in the 

equation (7). On the other hand, let assume the 

occurrence probability of bit 0 (or bit 1) after the attack 

is ≈
1

2
 and let the probability of bit 0 (or bit 1) to be 

inserted in the random sequence U is (
1

2
+ δ)  ≉

1

2
. 

Based on mutually exclusive property, then it is trivial 

that the probability of bit 0 (or 1) in the preattack 

sequence U will be (
1

2
−

𝛿

2𝑛
) ≉

1

2
. It is contradictive with 

the basic assumption that before the attack,  probability 

of bit 0 (or 1) in a random sequence U to be occur is 

≈
1

2
 . Therefore it is concluded that the probability of  bit 

0 (or 1) in U before attack will be ≈
1

2
  if only probability 

of bit 0 in V is ≈
1

2
 . It proved that the first condition 

holds. 

2. Let say that the probability of bit 0 (or bit 1) to be 

inserted is 
1

2
+ 𝛿 so that probability of bit 1 is less than 

1

2
 

(or vice versa).  The proof of the second condition for 

the right side is clearly shown in (8) and (9). On the 

other hand, the proof for the left side is taken by 

Contradiction. Let the probability of bit 0 to occur after 

the attack is (
1

2
+ 𝛿) >

1

2
 and let the probability of bit 0 
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to be inserted is ≈
1

2
 then based on mutually exclusive 

property we will have the probability of bit 0 to occur in 

the preattack sequence U is (
1

2
+

𝛿(𝑛+𝑠)

2𝑛
) ≉

1

2
. It is 

contradictive with the basic assumption that the 

preattack sequence U is random so that the occurrence 

probability of bit 0 and 1 is ≈ ½. Therefore it is 

concluded that the occurrence probability of bit 0 after 

the attack is ≉
1

2
  if only if  the occurrence probability of 

bit 0 to be inserted is ≉
1

2
.  It proved that the theorem 

point 2 holds. 

 

Corollary 1: 
The 1-bit insertion attack is potential to reduce or damage 

the randomness property of a random sequence if the 

probability of bit 1 and 0 to be inserted is not balance. 

 

As mentioned above for pattern m > 1, there are two 

approaches of constructing the pattern, i.e. with NOL and 

OL approach. The measurements of the attack effects for 

pattern m > 1 will be divided into two categories as 

described in sub section C and D.  

 

C. m-bit insertion attack with NOL pattern approach 

For m > 1 with NOL approach, there are two possible 

conditions. First, the insertion attack are conducted in the 

preattack sequence at the position of nm, n = 1,2,3,.... 

Second, is when the bits are inserted on position nm+t, n = 

1,2,3, ....;  t = 1,2, ..., (m-1). The illustration of the two 

conditions for pattern m = 2 bits can be seen in Fig 1 and 

Fig. 2.  

 

 

 

 

 

 
 
 

Fig 1.2-bits insertion attack on position nm with NOL approach 

 
 

 

 
 

 

 
 

 

 
 

Fig.2. 2-bits insertion attack on position n2+t with NOL approach 

1) On position nm, n = 1,2,3, ... 

First we discuss about the insertion attack effects on m = 

2 for NOL approach on the position nm, n = 1,2,3, ...  

From Fig. 1 we can see that the insertion on position nm, 

n = 1,2,3, ... does not change the patterns in target sequence 

before and after the insertion point, but  only changes the 

total number of some m-bits patterns in the postattack 

sequence based on the distribution of the m-bits  pattern in 

the inserted bits. The probability of each pattern to occur in 

the postattack sequence is measured in 3 possible conditions 

as discussed below. 

 

Case 1: 

Suppose each 2-bits pattern in sequence V has the same 

probability to be inserted into sequence U. Let 𝑃(𝑠00) =
𝑃(𝑠01) = 𝑃(𝑠10) = 𝑃(𝑠11) ≈ 1/4, then the probability of 

pattern bit 00 (or other pattern) to occur in the postattack 

sequence can be determined as 

 

𝑃(n′00) = 𝑃(𝑛00) + 𝑃(𝑠00) 

≈  
1

4
(

𝑛

2
)

𝑛+𝑠

2

+
1

4
(

𝑠

2
)

𝑛+𝑠

2

  

=
1

4
(

𝑛+𝑠

2
)

𝑛+𝑠

2

=
1

4
                                      (10) 

Case 2:  

Suppose the probability of an 2-bits pattern is bigger than 

the expected probability ¼. Let 𝑃(𝑠00) ≈
1

4
+  𝛿 such that 

𝑃(𝑠𝑐
00) <

3

4
 where 𝑃(𝑠𝑐

00) = 𝑃(𝑠01) + 𝑃(𝑠10) + 𝑃𝑠11) 

and 𝑃(𝑠00) + 𝑃(𝑠𝑐
00) = 1. Then the probability of pattern 

00 to occur in the postattack sequence is  

 

𝑃(n′
00

) = 𝑃(𝑛00) + 𝑃(𝑠00) 

≈  
1

4

𝑛

2
+(

1

4
+𝛿)

𝑠

2
𝑛+𝑠

2

  

=
𝑛

8
+

𝑠

8
+
𝑠

2
𝑛+𝑠

2

  =
𝑛+𝑠+4𝛽

4(𝑛+𝑠)
  

=
1

4
+  

𝛽

(𝑛+𝑠)
                                              (11) 

 

Case 3: 

In contrary with case 2, let 𝑃(𝑠00) ≈
1

4
−  𝛿 <

1

4
  so that 

𝑃(𝑠𝑐
00) >

3

4
 where 𝑃(𝑠𝑐

00) = 𝑃(𝑠01) + 𝑃(𝑠10) + 𝑃𝑠11) 

and 𝑃(𝑠00) + 𝑃(𝑠𝑐
00) = 1. Then the probability of pattern 

bit 00 to occur in the postattack sequence is : 

 

𝑃(n′
00

) = 𝑃(𝑛00) + 𝑃(𝑠00) 

≈  
1

4

𝑛

2
+(

1

4
−𝛿)

𝑠

2
𝑛+𝑠

2

  

=
𝑛

8
+

𝑠

8
−
𝑠

2
𝑛+𝑠

2

  =
𝑛+𝑠−4𝛽

4(𝑛+𝑠)
   

=
1

4
−  

𝛽

(𝑛+𝑠)
                                             (12) 

 

From the proofs of 2-bits pattern above, the attack on the 

preattack sequence on position even, does not change the 

distribution of 2-bits patterns in the postattack sequence 

when the bits inserted are balance. In this case the 

randomness property of the target sequence is possible to be 

kept.  

On the other hand, when the inserted bits are not balance, 

the attack will affect the distribution of each 2-bits pattern to 

occur in the postattack sequence. In other words, the attack 

can change the distribution of 2-bits patterns in  the 

postattack sequence that potential to reduce or damage the 

randomness property of the target sequence. Those results 

are the same with the case in 1-bit insertion attack. 

With the same way it can be proved that the condition 

above can be generalized for m-bits pattern as is described 

below. 
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Case1: 

For 𝑃(𝑠𝑖1𝑖2…𝑖𝑚
) = 1/2

m
 and   𝑖1𝑖2 … 𝑖𝑚𝜖 {0,1} then the 

probability of pattern  𝑛′𝑖1𝑖2…𝑖𝑚
 in the postattack sequence 

can be defined as  

 

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑚

) =  𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) + 𝑃(𝑠𝑖1𝑖2…𝑖𝑚

) 

≈

1

2𝑚

𝑛

𝑚
+

1

2𝑚

𝑠

𝑚
𝑛+𝑠

𝑚

 

=
1

2𝑚(
𝑛+𝑠

𝑚
)

𝑛+𝑠

𝑚

=
1

2𝑚                                 (13) 

 

Case 2: 

For 𝑃(𝑠𝑖1𝑖2…𝑖𝑚
)> 1/2

m 
where 𝑃(𝑠𝑖1𝑖2…𝑖𝑚

) ≈
1

2𝑚 +   and   

𝑖1𝑖2 … 𝑖𝑚 𝜖 {0,1},  then the probability of pattern  𝑛′𝑖1𝑖2…𝑖𝑚
 in 

the postattack sequence can be defined as 

 

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑚

) =  𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) + 𝑃(𝑠𝑖1𝑖2…𝑖𝑚

) 

≈

1

2𝑚  .
𝑛

𝑚
+ (

1

2𝑚 + 𝛿)
𝑠

𝑚
𝑛+𝑠

𝑚

 

=
(𝑛+𝑠)+2𝑚(𝛿𝑠)

2𝑚(𝑛+𝑠)
  

= [
1

2𝑚 +
𝑠

(𝑛+𝑠)
]                                        (14) 

 

Case 3: 

For 𝑃(𝑠𝑖1𝑖2…𝑖𝑚
) < 1/2

m
 where 𝑃(𝑠𝑖1𝑖2…𝑖𝑚

) ≈
1

2𝑚 −  and   

𝑖1𝑖2 … 𝑖𝑚 𝜖 {0,1},  then the probability of pattern𝑛′𝑖1𝑖2…𝑖𝑚
 in 

the postattack sequence can be defined as 

 

𝑃(𝑛′ ′′
𝑖1𝑖2…𝑖𝑚

) =  𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) + 𝑃(𝑠𝑖1𝑖2…𝑖𝑚

) 

≈

1

2𝑚  .
𝑛

𝑚
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1
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𝑠

𝑚
𝑛+𝑠

𝑚

 

=
(𝑛+𝑠)−2𝑚(𝛿𝑠)

2𝑚(𝑛+𝑠)
  

= [
1

2𝑚 −
𝑠

(𝑛+𝑠)
]                              (15) 

 

The generalization is proved to be valid using 

mathematical induction. 

 

1. From (13) it is defined that  

𝑃(𝑛′′
𝑖1𝑖2…𝑖𝑚

)  = 𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) + 𝑃(𝑠𝑖1𝑖2…𝑖𝑚

) 

≈
1

2𝑚
𝑛

𝑚
+

1

2𝑚
𝑠

𝑚
𝑛+𝑠

𝑚

  =
1

2𝑚 

 

a. If m = 1 then it was already proved in  (7)  

b. If m = k then we will have  

 

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑘

)  = 𝑃(𝑛𝑖1𝑖2…𝑖𝑘
) + 𝑃(𝑠𝑖1𝑖2…𝑖𝑘
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𝑘
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1
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c. Suppose for the case m = k holds 𝑃(𝑛′
𝑖1𝑖2…𝑖𝑚

) =  
1

2𝑘  

then for m = k+1 we have 

 

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑚

) = 𝑃(𝑛′
𝑖1𝑖2…𝑖𝑘

) + 𝑃(𝑛′
𝑖1
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𝑘
)
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𝑘
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(

1

2
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)
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2
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(

1
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1

2
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(𝑛+𝑠)

𝑘
+

(𝑛+𝑠)

2
)

(𝑛+𝑠)

𝑘
+

(𝑛+𝑠)

2
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1
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It is proved that the condition 1 holds for m = k+1. So it can 

be concluded that the theorem point 1 holds. 

 

2. From (14) we have  

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑚

)  =  𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) + 𝑃(𝑠𝑖1𝑖2…𝑖𝑚

) 

 ≈
(𝑛+𝑠)+2𝑚(𝛿𝑠)

2𝑚(𝑛+𝑠)
  

 = [
1

2𝑚
+

𝑠

(𝑛 + 𝑠)
] 

 

a. If m = 1 then it was proved by (8) that the 

  𝑃(𝑛′
𝑖
) =  [

1

2
+

𝑠

(𝑛+𝑠)
]  for 𝑖 𝜖 {0,1} 

 

b. If m = k then we have  

 

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑘

) =  𝑃(𝑛𝑖1𝑖2…𝑖𝑘
) + 𝑃(𝑠𝑖1𝑖2…𝑖𝑘

)  

 

≈

1

2𝑘 .
𝑛

𝑘
+(

1
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𝑠

𝑘
𝑛+𝑠

𝑘

  

=
(𝑛+𝑠)+2𝑘(𝛿𝑠)

2𝑘(𝑛+𝑠)
  

= [
1

2𝑘 +
𝑠

(𝑛+𝑠)
]  

 

c. Let 𝑚 =  𝑘 holds then for  𝑚 =  𝑘 + 1  we will have 

 

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑚

)  =  𝑃(𝑛′𝑖1𝑖2…𝑖𝑘
) + 𝑃(𝑛′𝑖1

)  

≈ (

1

2𝑘 .
𝑛

𝑘
𝑛+𝑠

𝑘

+  
(

1

2𝑘+𝛿)
𝑠

𝑘
𝑛+𝑠

𝑘

) + (
(

1

2
𝑛)

𝑛+𝑠

2
)

+
(

1

2
+𝛿)s

𝑛+𝑠

2

)  

=
(𝑛+𝑠)+2𝑘(𝛿𝑠)

2𝑘(𝑛+𝑠)
+  

(𝑛+𝑠)+2𝛿𝑠

2(𝑛+𝑠)
  

≈ [
1

2𝑘 +
𝑠

(𝑛+𝑠)
] + [

1

2
+

𝛿𝑠

(𝑛+𝑠)
]  

= (
1

2𝑘 +
1

2
) +

2𝛿𝑠

𝑛+𝑠
  

≈
1

2𝑘+1 +
𝛿𝑠

𝑛+𝑠
  

 

Since the value of 2 is positive and relatively small then 

we can consider it as another constant defined as δ. 

Therefore the formulation also holds for 𝑚 = 𝑘 + 1. This 

proof also holds for the formulation (15).  

 Based on the general proofs above for m-bits pattern, then 

we propose the second Theorem.  

 

Theorem 2:  m-bit insertion attack with random bits. 
Suppose U is a random sequence with n bits length. And 

V is a sequence of bits with length s to be inserted into 

sequence U. Then the effects of insertion attack on position 

nm, m > 2, n = 1,2,3,... with non-overlapping pattern will 

have two results:  
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1. The target sequence will have uniform distribution after 

the attack with probability of each pattern is 
1

2𝑚
  if only 

if the distribution of each m-bit pattern in V is also 

uniform.  

2. If the probability of an m-bit pattern in sequence V to be 

inserted is not balance, then  the probability of an m-bit 

pattern to occur after the attack will bias from 
1

2𝑚 with an 

error ±
𝑠

(𝑛+𝑠)
., depends on the sign of the bias in V. 

 

Corollary 2:  
The m-bit insertion attack on position nm, n = 1,2,3,... 

potential to reduce or damage the randomness property of 

the random sequence U after the attack, if the probability of 

each m-bit pattern in  V to be inserted into U are not balance. 

 

Next sub section discusses the proofs of insertion attack 

effect with random bits on position instead of nm which is 

notated as position on nm+t, n = 1,2,3, ... , t = 1,2, ..., (m-1). 

 

2) On position nm+t, n = 1,2,3, ... , t = 1,2, ..., (m-1) 

Insertion attack on position nm+t, n = 1,2,3,..., t = 1,2,..., 

(m-1) gave different effects on the distribution of an m-bits 

pattern in the posattack sequence. As can be seen from Fig.2 

the bits before and after insertion point are forming 2 new 

patterns depend on the inserted bits.  

For pattern m = 2 bits, each possible insertion attack on 

position odd will create 2 new patterns such that the 

probability of creating a new pattern on an insertion attack 

event is ≈
1

2
. Since there are 4 possible insertion events that 

are independent each other, then from probability theory we 

could say that probability of creating a new pattern on an 

insertion event is ½ x ¼ = 1/8.  Statistically, the problem of 

creating new pattern can be formulated as follow:  

Suppose E is an event of creating a new pattern by 

inserting a pattern a on an insertion attack event. Since each 

insertion event E creates two new patterns then the event E 

is defined as 𝐸 = {𝐺1, 𝐺2}, where 𝑃(𝐸 = 𝐺1) =

𝑃(𝐸 = 𝐺2) ≈
1

2
. 

From Fig 3, there are 4 possible ways to insert a 2-bits 

pattern a between two consecutive bits. Suppose F is an 

insertion event of a certain 2-bits pattern a into a certain 

possible 2-bits pattern b. Since there are 4 possible patterns 

of b then we can write the event   𝐹 = {𝐹1, 𝐹2, 𝐹3, 𝐹4}. Let   

𝐹𝑖 has the same probability to occur, then 𝑃(𝐹𝑖) ≈
1

4
  for 

 𝑖 = 1,2,3,4.  

Events 𝐸 and 𝐹 are independent, then the probability of 

creating a new pattern E on insertion event F can be defined 

as 𝑃(𝐸 ∩ 𝐹) = 𝑃(𝐸)𝑥 𝑃(𝐹) ≈
1

2
 𝑥

1

4
=

1

8
.  Fig. 3 shows all 

possible new patterns that will be created by inserting 

pattern 11 into 4 possible patterns 00, 01, 10 and 11. 

 

 

 

 

 

 

 
Fig. 3 All possible created patterns from inserting pattern 11  

Suppose we want to count the probability of creating new 

pattern 11 by inserting pattern 11 on each possible insertion 

attack event. From Fig 3 we get 𝐸1 =  {01,10}, 𝐸2 =
 {01,11}, 𝐸3 = {11,10}  𝑎𝑛𝑑 𝐸4 =  {11,11},  so that we 

found 𝑃(𝐸1 = 11) = 0, 𝑃(𝐸2 = 11) =
1

2
, 𝑃(𝐸3 = 11) =

1

2
,

and 𝑃(𝐸4 = 11) = 1. 
Because  𝐸𝑖  is disjoint for every i, then the probability of 

creating pattern 11 by inserting pattern 11 on each possible 

event, notated  as 𝑃(𝐸𝑖 = 1111), can be determined as  

 

𝑃(𝐸 = 1111)   = 𝑃(𝐸1). 𝑃(𝐹) + 𝑃(𝐸2). 𝑃(𝐹)
+ 𝑃(𝐸3). 𝑃(𝐹) + 𝑃(𝐸4). 𝑃(𝐹)

≈   0 +
1

2
.
1

4
+

1

2
+

1

4
+ 1.

1

4
=

4

8
 

 

The probability value 4/8 above is based on assumption 

that the insertion attack took place on all possible patterns 

00, 01, 10, and 11. Or in other words the insertion attack 

events are balance for all possible patterns.  

With the same way, we could also count the probability of 

creating new pattern 11 by inserting another pattern 10, 01, 

and 00 in all possible patterns as described below:  

 𝑃(𝐸 = 1110) ≈
2

8
 

 𝑃(𝐸 = 1101) ≈
2

8
 

 𝑃(𝐸 = 1100) ≈ 0  
 

All the probability of creating pattern 11 by inserting all 

possible 2-bits patterns in four possible insertion events can 

be seen in Fig 4.  

 

  

 

 

 

 

 

 

 

 

  

 
Fig. 4 Distribution of creating pattern 11 for all possible insertion events 

 

We could do the same rule to determine the occurrence 

probability of all other possible patterns on all possible 

insertion attack events as shown on Fig. 5 to Fig. 7. 

 

  

 

 

 

 

 

 

 

 

 
 

 
 

 

Fig. 5 Distribution of creating pattern 00 for all possible insertion events 
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Pr'(11) 

     

  

Insertion event 

 

 

  00 01 10 11 Total 
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b
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00 0 0 0 0 0 

01 0 1 0 1 2 

10 0 0 1 1 2 

11 0 1 1 2 4 

 

Total 0 2 2 4 8 

        

  Pr'(00) 
     

  

Insertion events 

 

 

  00 01 10 11 Total 

In
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rt
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00 2 1 1 0 4 

01 1 1 0 0 2 

10 1 0 1 0 2 

11 0 0 0 0 0 

 

Total 4 2 2 0 8 
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Fig. 6 Distribution of creating pattern 01 for all possible insertion events 

 

 

 

 

 

 

 

 

 
 
 

 

 
 

Fig. 7 Distribution of creating pattern 10 for all possible insertion events 

 

Based on the phenomenon as is described above,  then the  

2-bit insertion attack on position odd will have different 

probability for each possible pattern on each possible event. 

This condition leads to a conclusion that the probability of 

an 2-bits pattern after the attack on position odd using NOL 

approach cannot be generalized. We only can limit the 

formulation for each case. 

For example,   the occurrence probability of pattern 11 by 

inserting pattern 11 on position odd with NOL approach can 

be defined as  

 

𝑃(𝑛′
11) = 𝑃(𝑛11) + 𝑃(𝐸 = 1111) 

≈   

1

4

𝑛

2
+

4

8

𝑠

2
𝑛+𝑠

2

 

=
𝑛 + 2𝑠

4(𝑛 + 𝑠)
 =

𝑛 + 𝑠 + 𝑠

4(𝑛 + 𝑠)
 

=
1

4
+

𝑠

4(𝑛 + 𝑠)
 

 

Meanwhile the occurrence probability of pattern 11 by 

inserting another pattern 10, 01, and 00 on position odd with 

NOL approach are defined as  

 

 𝑃(𝑛′
11) = 𝑃(𝑛11) + 𝑃(𝐸 = 1110) 

≈   
1

4

𝑛

2
+

2

8

𝑠

 2
𝑛+𝑠

2

=  
𝑛+𝑠

4(𝑛+𝑠)
=

1

4
   

 

 𝑃(𝑛′
10) = 𝑃(𝑛10) + 𝑃(𝐸 = 1100) 

≈   
1

4

𝑛

2
+

2

8

𝑠

2 
𝑛+𝑠

2

=
𝑛+𝑠

4(𝑛+𝑠)
=

1

4
  

 

 𝑃(𝑛′
11) = 𝑃(𝑛11) + 𝑃(𝐸 = 1100) 

≈   
1

4

𝑛

2
+0.

𝑠

2
𝑛+𝑠

2

 =  
𝑛

4(𝑛+𝑠)
=

𝑛+𝑠−𝑠

4(𝑛+𝑠)
  

=
1

4
− 

𝑠

4(𝑛+𝑠)
  

 

From the examples above we see the occurrence 

probability of pattern 11 by inserting pattern bit 10 and 01 

where 𝑃(𝐸 = 1101) = 𝑃(𝐸 = 1110) = 2/8 is the same i.e 

1/4, meanwhile the occurrence probability of pattern 11 to 

occur by inserting pattern 11, where the 𝑃(𝐸 = 1111) = 

4/8, is 
1

4
+

𝑠

4(𝑛+𝑠)
 contradictive with the case of inserting 

pattern 00 with 𝑃(𝐸 = 1100)= 0  that produced the 

probability 
1

4
− 

𝑠

4(𝑛+𝑠)
 for pattern 11 to occur after the 

attack. 

From the results above, the occurrence probability of       

2-bits pattern after insertion attack on position odd with 

NOL approach is vary based on the pattern of inserted bits 

and also the pattern of bits where the insertion took place. 

Generally, the occurrence probability of 2-bits pattern  after 

the attack is really depend on 𝑃(𝐸).  
This conditions also hold for insertion attack with m > 2, 

on position nm+t, n = 1,2,3,...; t = 1,2,..., (m-1). For example 

for m = 3, we can find two new patterns created on each 

insertion attack event, where the total number of new 

patterns space is 16 that taken from 2 (two) possible 

positions 3n+1 and 3n+2 for n = 1,2,3,... The example of 

occurrence probability of pattern 000 after inserted 3-bits 

pattern on position 3n+1 and 3n+2 can be seen in Table 3. 

 
TABLE III  

FREQUENCY OF PATTERN 000 CREATED AFTER INSERTED 3-BITS  

ON POSITION 3N+1 AND 3N+2.  

Pos’n 
3n+1 
000 

 

Pattern 
created 

Freq 
of 

000 

Pos’n 
3n+2 
000 

Pattern  
created 

Freq 
of 

000 
 

0 00 000  000 2 00 0 000  000 2 

0 01 000  001 1 00 1 000  001 1 

0 10 000  010 1 01 0 010  000 1 

0 11 000  011 1 01 1 010  001  

1 00 100   000 1 10 0 100  000 1 

1 01 100   001  10 1 100  001  

1 10 100   010  11 0 110  000 1 

1 11 100   011  11 1 110  001  

8 16 6 8 16 6 

Based on the two cases on m =2 and m =3 the occurance 

probability of an m-bits pattern after the attack is different 

for each pattern depends on the value of P(E).  Therefore  in 

this case, the occurrence probability of an m-bits pattern 

after insertion attack with random bits on position nm+t, n = 

1,2,3,...; t = 1,2,..., (m-1), depends on the probability of 

creating new m-bits patterns based on all 2
m
 possible 

insertion of m-bits pattern in all 2
m
 possible insertion events. 

By assuming that P(E) is the probability of creating an m-

bits pattern 𝑛′𝑖1𝑖2…𝑖𝑚
 by inserting a certain m-bits pattern 

𝑠𝑖1𝑖2…𝑖𝑚
on all possible insertion events ℎ𝑖1𝑖2…𝑖𝑚

, on 

position nm+t, n = 1,2,3,... , t = 1,2,3,...,(m-1),  the 

occurrence probability of an m-bits pattern after the attack 

with NOL approach can be defined as: 

 

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑚

) =  𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) + 𝑃(𝐸) 

 
Pr'(01) 

     

  

Insertion events 

 

 

  00 01 10 11 Total 

In
se

rt
ed

 b
it

s 

00 0 0 1 1 2 

01 1 0 2 1 4 

10 0 0 0 0 0 

11 1 0 1 0 2 

 

Total 2 0 4 2 8 

 

 
Pr'(10)    

     

  

Insertion event 

 

 

  00 01 10 11 Total 

In
se

rt
ed

 b
it

s 

00 0 1 0 1 2 

01 0 0 0 0 0 

10 1 2 0 1 4 

11 1 1 0 0 2 

 

Total 2 4 0 2 8 
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=
𝑃(𝑛𝑖1𝑖2… 𝑖𝑚

)
𝑛

𝑚
+ 𝑃(𝑛′𝑖1𝑖2… 𝑖𝑚

𝑠𝑖1𝑖2… 𝑖𝑚
)

𝑠

𝑚

(𝑛 + 𝑠)/𝑚
 

where  𝑖1𝑖2 … 𝑖𝑚 {0,1}𝑚.                                        (16) 

  

The next subsection will discuss about the insertion attack 

effects with OL pattern approach. 

D. M-bit insertion attack with OL pattern approach 

The insertion attack with OL approach also indicates the 

same problem as happened on the insertion attack with NOL 

approach on position nm+t, n = 1,2,3,...; t = 1,2,..., (m-1).  

The different is only on the number of patterns created on 

each insertion attack event. For example on 2-bits insertion 

attack with OL approach, there are 3 new patterns created 

for each insertion attack event, instead of 2 patterns as in 

NOL approach on position odd, so that the total number of 

new patterns is 12 patterns as is shown in Fig. 8.  

 

 

 

 

 

 

 

 

Fig.8 2-bits insertion attack with OL on even position  

 

The patterns that are created after the insertion attack with 

OL approach are depending on the pattern of bits inserted 

and the value of bits before and after the insertion point.   

Based on probability principles, the probability of 

creating a pattern 00 by inserting pattern 01 in all 4 possible 

events, notated as 𝑃(𝐸 = 0001) can be counted as  

 

𝑃(𝐸 = 0001)  =  𝑃(𝐸1). 𝑃(𝐹1) + 𝑃(𝐸2). 𝑃(𝐹2) + 

𝑃(𝐸3). 𝑃(𝐹3) + 𝑃(𝐸4). 𝑃(𝐹4) 

≈ 1.
1

4
+

1

3
.

1

4
+

1

3
.

1

4
+ 0 =

5

12
  

 

With the same rules, the probability of creating pattern 00 

by inserting all possible patterns 01, 10, 11, and 00, in 4 

possible ways, can be determined as is shown in Fig 9.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Distribution of new patterns 00 for 2-bits insertion with OL approach 

 

Based on Fig 9, the occurrence probability of pattern 00 

in postattack sequence after inserting pattern 01 with OL 

approach can be defined as 

 

𝑃(𝑛′
00) = 𝑃(𝑛00) + 𝑃(𝐸 = 0001)  

≈   
1

4
𝑛+

5

12
𝑠

𝑛+𝑠
=  

3𝑛+5𝑠

12(𝑛+𝑠)
  

=
3𝑛+3𝑠+2𝑠

12(𝑛+𝑠)
 =

3(𝑛+𝑠)+2𝑠

12(𝑛+𝑠)
 =

1

4
+ 

𝑠

6(𝑛+𝑠)
  

Meanwhile the occurrence probability of pattern 00, by 

inserting pattern 10, 01, and 00, with OL approach can be 

defined as 

 𝑃(𝑛′
00) = 𝑃(𝑛00) + 𝑃(𝐸 = 0010) 

≈   
1

4
𝑛+

3

12
𝑠

𝑛+𝑠
 =  

3𝑛+3𝑠

12(𝑛+𝑠)
=

1

4
  

 

 𝑃(𝑛′
00) = 𝑃(𝑛00) + 𝑃(𝐸 = 0001) 

≈   
1

4
𝑛+

3

12
𝑠

𝑛+𝑠
  =  

3𝑛+3𝑠

12(𝑛+𝑠)
=

1

4
  

  

 𝑃(𝑛′
00) = 𝑃(𝑛00) + 𝑃(𝐸 = 0000) 

≈   
1

4
𝑛+0

𝑛+𝑠
 =  

𝑛+𝑠−𝑠

4(𝑛+𝑠)
 =

1

4
−  

𝑠

4(𝑛+𝑠)
  

 

From the results above, the occurrence probability of 

pattern 00 in postattack sequence is vary and really depends 

on the 𝑃(𝐸). With the same way we could count the 

occurrence probability of other pattern 01, 10, and 11 by 

inserting all possible patterns 00, 01, 10, and 11 in all 4 

possible ways of insertion attack as are shown in Fig 10 to 

Fig 12. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10 Distribution of patterns 01 for 2-bits insertion with OL approach 

 
 

 

 
 

 

 
 

 

 

 

 

 

 
Fig. 11 Distribution of patterns 10 for 2-bits insertion with OL approach 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

Fig.12. Distribution of patterns 11 for 2-bits insertion with OL approach 

 

          10       11 

 

            0101   111000   1001    

01 10 0111 10 0111 11 10 00 000111 1110 00 01  

 

  Pr' (00) 
     

  

Insertion event 

 

 

  00 01 10 11 

In
se

rt
ed

 b
it

s 00 3 1 1 0 5 

01 2 1 0 0 3 

10 2 0 1 0 3 

11 1 0 0 0 0 

 
 8 2 2 0 12 

 

 

 Pr'(01)      

  

Insertion events 

 
 

  00 01 10 11 Total 

In
se

rt
ed

 b
it

s 

00 0 1 1 1 3 

01 1 1 2 1 5 

10 0 1 0 0 1 

11 0 1 0 2 3 

 
Total 1 4 3 4 12 

        

 
Pr'(10) 

     

  

Insertion events 

 

 

  00 01 10 11 Total 

In
se

rt
ed

 b
it

s 

00 0 1 1 1 3 

01 0 0 1 0 1 

10 1 2 1 1 5 

11 1 1 1 0 3 

 

Total 2 4 4 2 12 

 

 

 
Pr'(11) 

     

  

Insertion events 

 

 

  00 01 10 11 Total 

In
se

rt
ed

 b
it

s 

00 0 0 0 1 1 

01 0 1 0 2 3 

10 0 0 1 2 3 

11 0 1 1 3 5 

 

Total 0 2 2 8 12 
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The same condition also holds for m > 2. Based on this 

facts, the occurrence probability of an m-bits pattern after 

the insertion attack with OL approach cannot be generalized 

but can only limited on probability of P(E) such as 

formulated in (17).  

For a sequence with length n-bits, the total cyclic 

overlapping pattern is n pattern, so that the occurrence 

probability of a pattern 𝑛′
𝑖1𝑖2…𝑖𝑚

 in postattack sequence can 

be defined as 

 

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑚

)  =  𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) + 𝑃(𝐸)  

=
𝑃(𝑛𝑖1𝑖2… 𝑖𝑚)𝑛+𝑃(𝑛′𝑖1𝑖2… 𝑖𝑚 𝑠𝑖1𝑖2… 𝑖𝑚)𝑠

(𝑛+𝑠)
  

where   𝑖1𝑖2 … 𝑖𝑚{0,1}𝑚.                                               (17) 

 

 Based on the proofs above, the insertion attack effect is 

vary depends on how the attack is conducted. The attack 

potentialy changes the distribution of the probability of each 

pattern to occur in the postattack sequence that could cause 

the damage of the randomness property of the target 

sequence. Tabel IV showed the attack effects based on the 

occurance probability of an m-bits pattern in the postattack 

sequence. 

The next section presents the effects of the insertion 

attack with extreme bits (i.e. the same bits occured 

consecutively) that intuitively must destroy the randomness 

property of the target sequence. 

 
TABLE IV 

THE INSERTION ATTACK EFFECTS WITH RANDOM BITS 

 

 

Position 

 

Assumption 𝑃(𝑛′𝑖1𝑖2…𝑖𝑚
) 

 

 
 

 

N 

O 

L 
 

 

mn 

n= 1,2,3, … 

𝑃(𝑠𝑖1𝑖2…𝑖𝑚
) =

1

2𝑚
 

1

2𝑚
 

𝑃(𝑠𝑖1𝑖2…𝑖𝑚
) >

1

2𝑚
 

1

2𝑚
+

𝑚𝛿

(𝑛 + 𝑠)
 

𝑃(𝑠𝑖1𝑖2…𝑖𝑚
) <

1

2𝑚
 

1

2𝑚
−

𝑚𝛿

𝑛 + 𝑠
 

mn+t 
t = ,1,2,...,m-1 

n= 1,2,3,... 

P(E) depend on bits 
before and after 

insertion point 

𝑛𝑖1𝑖2… 𝑖𝑚
+ 𝑃(𝐸)

(𝑛 + 𝑠)/𝑚
 

O 
L 

        - 

P(E) depend on bits 

before and after 

insertion point 

𝑛𝑖1𝑖2… 𝑖𝑚
+ 𝑃(𝐸)

(𝑛 + 𝑠)
 

IV. INSERTION ATTACK EFFECTS WITH EXTREME BITS 

The insertion attack with extreme bits is conducted by 

inserting an extreme patterns i.e. 1111...1 or 0000...0 or 

10101010...10 or other forms into the target sequence U.  

Intuitively the sequence should be not random after the 

attack. Because the s-bits pattern in V that will be inserted in 

sequence U are constant values where 𝑃(𝑆𝑖1,𝑖2,…,𝑖𝑚
) = 1 so 

that the expected value of 𝑆𝑖1,𝑖2,…,𝑖𝑚
 will be 

𝑃(𝑆𝑖1,𝑖2,…,𝑖𝑚
). 𝑠 = 1. 𝑠 = 𝑠.  

On the attack with extreme bits  also holds the same cases 

where the attack effects can only be generalized when the 

attack took place on position nm with NOL pattern 

approach. The occurrence probability of  bit 1 (or 0) after 1-

bit pattern attack is indicated in (18).   

             𝑃(𝑛′
𝑖1

)   =  𝑃(𝑛𝑖1
) + 𝑃(𝑠𝑖1

) ≈  
1

2
𝑛+ 1.𝑠

𝑛+𝑠
                 

=  
𝑛+2𝑠

2(𝑛+𝑠)
=  

(𝑛+𝑠)+𝑠

2(𝑛+𝑠)
  

=
1

2
+

𝑠

2(𝑛+𝑠)
                                (18) 

 

Noted, 𝑛′
𝑖1

 is the bit inserted. In the case that the extreme 

bits inserted is 1111...1 then the occurence of the 

complement bit 0 will remain 
𝑛

2
  as in the preattack sequence  

U. The occurance probability of bit 0 in the postattack 

sequence U+V is defined as 

 
1

2
(𝑛)+0

𝑛+𝑠
=

𝑛

2(𝑛+𝑠)
                                            (19) 

 

For 2-bits extreme pattern attack for e.g., 10101010...10, 

the occurrence probability of pattern 10  in the postattack 

sequence can be determined as  

 

𝑃(𝑛′
𝑖1𝑖2

)   =    
1

4
+  

3𝑠

4(𝑛+𝑠)
                          (20) 

 

where 𝑛′
𝑖1𝑖2

  is the inserted 2-bits pattern. Meanwhile the 

occurance probability of other 2-bits patterns notated as 

𝑃(~𝑛′
𝑖1𝑖2

)  after the attack are remain the same as in the 

preattack sequence which is defined in (21). 

 

𝑃(~𝑛′
𝑖1𝑖2

)  =  
1

4
(

𝑛

2
)+0

(𝑛+𝑠)

2

=
𝑛

4(𝑛+𝑠)
                  (21) 

  With the same way for 3-bits extreme pattern attack, the 

probability of  𝑛′
𝑖1𝑖2,𝑖3  and ~𝑛′

𝑖1𝑖2,𝑖3  respectively  are 

defined in (22) and (23). 

 

𝑃(𝑛′
𝑖1𝑖2,𝑖3 )   =    

1

8
+   

7𝑠

8(𝑛+𝑠)
                            (22) 

𝑃(~𝑛′
𝑖1𝑖2,𝑖3 )   =      

𝑛

8(𝑛+𝑠)
                                (23) 

 

From the formulation in (18) to (23) it is showed that the 

attack effects can be generalized for m-bits pattern i.e.: 

 

𝑃(𝑛′
𝑖1𝑖2,…,𝑖m )   =  

1

2𝑚 (
𝑛

𝑚
) +

𝑠

𝑚
𝑛+𝑠

𝑚

  

=
𝑛+2𝑚𝑠

2𝑚(𝑛+𝑠)
=

1

2𝑚 +  
(2𝑚−1)𝑠

2𝑚(𝑛+𝑠)
           (24)  

 

𝑃(~𝑛′
𝑖1𝑖2,…,𝑖m ) =  

1

2𝑚 (
𝑛

𝑚
)+0

𝑛+𝑠

𝑚

  =   
𝑛

2𝑚(𝑛+𝑠)
              (25) 

where the 𝑛′
𝑖1𝑖2,…,𝑖𝑚  is the inserted m-bits pattern and 

~𝑛′
𝑖1𝑖2,…,𝑖𝑚 is another m-bits patterns. 

 

Using mathematical induction, it can be proved that the 

generalization holds. For the case, we propose Theorem 3 

about insertion attack effects with extreme bits with NOL 

approach on position nm. 

Theorem 3 (Insertion attack effects with extreme bits on 

position nm using NOL approach) 

Suppose a sequence U with periodic p, 𝑈 = 𝑢1𝑢2𝑢3 … 𝑢𝑝, 

and let U is random and uniform so that 𝑃(𝑛𝑖1𝑖2 …𝑖𝑚
) =

1

2𝑚  

for  𝑖1𝑖2 … 𝑖𝑚{0,1},  and m  1. Let a sequence V with 

length s-bits contains extreme m-bits patterns will be 
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inserted in U on position nm, for n = 1,2,3, … using NOL 

approach. Then after the attack: 

1. The occurrence probability of inserted  m-bits pattern 

will be  𝑃(𝑛𝑖1𝑖2 …𝑖𝑚
) ≈

1

2𝑚 +
(2𝑚−1)𝑠

2𝑚(𝑛+𝑠)
  with bias 

(2𝑚−1)𝑠

2𝑚(𝑛+𝑠)
 

from 
1

2𝑚. 

2. The occurrence probability of other m-bits patterns will 

be  𝑃(~𝑛𝑖1𝑖2 …𝑖𝑚
) ≈

𝑛

2𝑚(𝑛+𝑠)
  which remains the same 

as in  the preattack sequence. 

 

The bias of occurrence probability of an m-bits pattern for 

the attack with NOL approach on position 𝑛𝑚 + 𝑡, 𝑛 =
 1,2, . . . ;  𝑡 =  1,2, . . . , (𝑚 − 1) or with OL approach cannot 

be generalized, because the probability of new patterns 

created after the attack depends on the bits before and after 

the insertion point notated as 𝑃(𝐸).  

For example, on 2-bits pattern 11 attack,  𝑃(𝐸) is limited 

on the insertion of pattern 11 on four possible patterns 00, 

01, 10, and 11. As is defined  on Fig 4 for NOL approach on 

position mn+t and Fig 12 for OL approach, the occurrence 

probability of pattern 11 are 
4

8
 and 

8

12
  respectively,  which is 

higher than other patterns. So it proved that the postattack 

sequence will be no longer balance that is potential to loose 

the randomness property. Entirely, the effects of insertion 

attack with extreme bits can be seen in Table V. 

 
TABLE V 

 THE INSERTION ATTACK EFFECTS WITH EXTREME BITS 

 

 

 

POSITION ASSUMPTION 𝑃(𝑛′𝑖1𝑖2…𝑖𝑚
) 

N 
O 

L 

MN 

N= 1,2,3, … 
𝑃(𝑠𝑖1𝑖2…𝑖𝑚

) = 1 
1

2𝑚
+

(2𝑚 − 1)𝑠

2𝑚(𝑛 + 𝑠)
 

 
MN+T 

T = 1,2,…,M-1 

N= 1,2,3, … 

 

𝑃(𝑠𝑖1𝑖2…𝑖𝑚
) = 1 

𝑛𝑖1𝑖2… 𝑖𝑚
+ 𝑃(𝐸)

(𝑛 + 𝑠)/𝑚
 

O 

L 
- 𝑃(𝑠𝑖1𝑖2…𝑖𝑚

) = 1 
𝑛𝑖1𝑖2… 𝑖𝑚

+ 𝑃(𝐸)

(𝑛 + 𝑠)
 

 

From Table V it can be seen that the insertion attack with 

extreme bits positively causes the bias for the occurence 

probability of m-bits pattern after the attack. And as the 

conclusion of the insertion attack with NOL approach on 

position nm+t and OL approach, we proposed the last 

theorem.  

 

Theorem 4 (Insertion attack effects with NOL approach on 

position 𝑛𝑚 + 𝑡, 𝑛 =  1,2, . . . ;  𝑡 =  1,2, . . . , (𝑚 − 1) and 

OL approach). 

Suppose a sequence U with periodic p,𝑈 = 𝑢1𝑢2𝑢3 … 𝑢𝑝, 

and let U is random and uniform so that 𝑃(𝑛𝑖1𝑖2 …𝑖𝑚
) =

1

2𝑚  

for  𝑖1𝑖2 … 𝑖𝑚{0,1},  and m  1. Let a sequence V with 

length s-bit will be inserted in sequence U then: 

1. The occurrence probability of m-bit after the attack on 

position 𝑛𝑚 + 𝑡, 𝑛 =  1,2, . . . ;  𝑡 =  1,2, . . . , (𝑚 − 1) 

with NOL approach is : 

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑚

) =  𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) + 𝑃(𝐸) 

  

=
𝑃(𝑛𝑖1𝑖2… 𝑖𝑚

)𝑛 + 𝑃(𝑛′
𝑖1𝑖2… 𝑖𝑚

𝑠𝑖1𝑖2… 𝑖𝑚
)

𝑠

𝑚
  

(𝑛 + 𝑠)/𝑚
 

where 𝑖1𝑖2 … 𝑖𝑚{0,1}𝑚.                                        

2. The occurrence probability of m-bit after the attack 

with OL approach is : 

 

𝑃(𝑛′
𝑖1𝑖2…𝑖𝑚

) =  𝑃(𝑛𝑖1𝑖2…𝑖𝑚
) + 𝑃(𝐸) 

 =
𝑃(𝑛𝑖1𝑖2… 𝑖𝑚

)𝑛 + 𝑃(𝑛′
𝑖1𝑖2… 𝑖𝑚

𝑠𝑖1𝑖2… 𝑖𝑚
)𝑠

(𝑛 + 𝑠)
 

where 𝑖1𝑖2 … 𝑖𝑚{0,1}𝑚.                                        

3. The conditional probability in point 1 and point 2 each 

holds for insertion attack with random bits or with 

extreme bits. 

 

Theorem 3 and 4 have proved that the insertion attack 

with extreme bits in all possible ways will postively cause 

the postattack sequences no longer uniform so that is 

potential to loose the randomness property. Meanwhile 

Theorem 1, 2 and 4 have proved that the insertion attack 

with random bits is potential to reduce the randomness 

property of the target sequence if the insertion attack is not 

balance. Otherwise, when the insertion attack is balance, the 

postattack sequences remains uniform that potential to 

maintain the randomness property. 

In practice, this kind of attack is possible to conduct on 

the output sequence of an RNG (or a PRNG) using software 

approach or hardware approach (see Fig.13).  

 
Fig. 13 Insertion attack on RNG/PRNG 

 

For example the attack can be conducted by injecting a 

Trojan into a security system that is designed to attack the 

output sequence of an RNG (or a PRNG) inside the system 

while producing the random sequences. The goal is to make 

the output sequence bias. From the empirical studies in 

previous reseach and also the proofs discussed in this paper, 

the insertion attack potentially reduces or damages the 

randomness property of the target sequence.  

Some other researches showed that this kind of attack 

practically fisible to implement. For eample in [16], 

Markettos and More proved that the randomness property of 

an RNG in EMV payment card are destroyed by injecting 

the signal into the EMV card in such a way. By little 

modification on the device, this attack significantly could 

reduce the possibility of key spaces from 2
32 

into only 2
8
 that 

make it possible to masquarade the transactions. Another 

related research in [17], Becker, et.al., showed that Dopant-

based Trojan they proposed could compromised the RNG 

used in processor Ivy Bridge from Intel so that the security 

of random sequences produced is reduced from 2
128

 into 2
n
 

for n < 128 where n is chosen by the attacker.  

This two researches proved that the insertion attacked 

proposed in this paper is also possible to conduct in practice.   
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V. CONCLUSION 

The insertion attack with random bits or with extreme bits 

are potential to change the distribution of occurance 

probability of an m-bits pattern in postattack sequence. The 

measurements of the effects based on the occurrence 

probability of an m-bits pattern in the postattack sequence 

gave four fundamental results:  

1. The balance of insertion attacks will keep the uniformity 

of each m-bit pattern with probability 1/2
m

  in the 

postattack sequence that could potentially keep the 

randomness property of the sequence; 

2. If the attack is not balance, it will cause the distribution 

of m-bit patterns is not uniform with bias:   ± 
𝑚𝛿

𝑛+𝑠
 for 

insertion attack with random bits and  + 
(2𝑚−1)

2𝑚(𝑛+𝑠)
  on 

insertion attack with extreme bits. The generalization of 

bias above only holds for the attacks on position nm  

with NOL approach.  

3. Insertion attack with NOL approach on position instead 

of nm and with OL approach cause the  occurance 

probability of each m-bits pattern conditionally depends 

on the bits before and after the attack point.  The 

conditional probability P(E) is vary for each possible 

insertion event and potential to cause the loss of  

randomness property of the target sequence.  The bias 

occured can not be generalized. 

4. In the case of attack with extreme bits, the occurence  

probability of the inserted m-bits pattern will 

significantly higher than other m-bits patterns that causes 

the postattack sequence to lose the randomness property.  

 

From theoretical proofs above, we could conclude that the 

insertion attacks might cause the loss of randomness 

property of a random (or pseudorandom) sequence that 

should be considered carefully, especially in cryptographic 

applications or other applications that need a random 

sequence as a critical input. 

Finally, it is important to find a way how to  detect that 

such attack exists in the security system and how to 

anticipate the attack so that the system could manage to 

deliver its security services properly.  
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