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Abstract—In this paper, two mathematical models for 

simulating water pollutant level and pollution control in a 

connected reservoir system are proposed. The reservoir system is 

consisted of two ponds connected by a narrow channel. One pond 

allows water in from a canal through an entrance gate while the 

other pond lets the water flow out through an exit gate. The pond 

water is contaminated with wastewater released from several 

industrial plants located near the pond. One of the proposed 

models is a steady-state dispersion model simulating the pollutant 

level in the connected ponds. The other model is a pollution 

control model that determines the maximum pollutant level 

allowed in the wastewater released from each plant in order to 

achieve a specified pollution level in the ponds as well as to incur 

a minimum water pre-treatment cost to each plant. The 

simulation results of these models show that the maximum 

pollutant level in the two ponds could be effectively controlled at 

a minimum cost to each plant by optimally limiting the pollutant 

level in the wastewater it releases.  

Index Terms— Water pollution control, Optimization, 

hydrodynamic model, dispersion model. 

I. INTRODUCTION 

OWADAYS, it is believed that such pollutions as air 

pollution and water pollution are rather serious and that 

permanent solutions must be taken into account. Being able to 

measure the level of pollution, field sampling as well as 

working in a laboratory is mostly carried out; however, it is 

impossible to access some important parts within the sight, 

failing to analyse the very areas. Mathematics, therefore, plays 

a very crucial role as applied in solving the environmental 

problem. That is, the problem is replicated into a governing 

equation, then with a numerical method it is solved, resulting in  

a plausible finding as it would later explain the issue. In [8], 

mathematical model is used to air flow and pollutant dispersion  

in an Urban Street Canyon with fluctuating wind boundary 

condition (FWBC) and 3D numerical simulations are 

performed using Large Eddy Simulation (LES). In [10],  

 

 
Manuscript received June 03, 2015; revised October 05, 2015. 

Witsarut Kraychang and Nopparat Pochai are with Department of 
Mathematics, Faculty of Science, King Mongkut’s Institute of Technology 

Ladkrabang, Bangkok 10520, Thailand and Centre of Excellence in 

Mathematics, Commission on Higher Education (CHE), Si Ayutthaya Road, 
Bangkok 10400, Thailand. Email: witsarut_popmath@hotmail.com and 

nop_math@yahoo.com.   

 

pollution assessment in Campania region of Southern Italy, 

analysis air quality by using the Gaussian model ISC. In [9], 

Large Eddy Simulation (LES) model is utilized to analyze 3D 

two-phase flow of gas and liquid. Determination of steady-state 

pollutant levels in a water reservoir causing by wastewater 

discharge from industrial plants and other external sources can 

be done accurately by field sampling of the water. However, it 

is difficult to get samples from every spot in the reservoir and 

very costly to analyze all of the samples collected. 

Mathematical simulation is a valuable tool that can be used to 

simulate the pollutant levels of the water at every spot of the 

whole reservoir from a relatively small set of collected samples, 

greatly reducing the total analytical cost. In [1], the authors 

proposed a mathematical simulation to deal with a lake water 

quality problem in China. They reported a good match between 

their calculated and measured pollutant levels. In [2], the 

authors presented a mathematical model for analyzing the 

hydrodynamics of and pollutant dispersion in river-type 

systems. They were able to report changes in the pollutant 

concentration in the river with time. In a mathematical 

modeling study of water-quality in Rama-nine reservoir, 

Pathumthani District, Thailand [3], two mathematical models 

were used to simulate its pollutant level. The first model was a 

hydrodynamic model that used the Lax-Wendroff method to 

provide the velocity vector of water flow and its elevation. The 

second model was a dispersion model that used a forward-in-

time and central-space finite difference scheme to calculate the 

pollutant concentration. The resultant water velocity vector 

field, elevation, and pollutant concentration were reported in 

contour graphs. In [4], two-dimensional hydraulic and pollution 

models were used to simulate the transport of the pollutant. 
After the pollutant level at every location has been 

mathematically determined, it can be input into an optimization 

model to find the minimum cost that an industrial plant has to 

expend to initially treat its wastewater to an acceptably low 

pollutant level before discharging it into a reservoir. Simplex 

optimization method is a good mathematical model for 

determining minimum cost. In [5], a mathematical model was 

proposed for optimally controlling pollutant level in wastewater 

discharge that would reduce initial water treatment cost to a 

minimum. In [6], the authors proposed mathematical models 

and optimal control techniques for solving some problems in 

environmental engineering. 

In this study, two mathematical models are proposed: a 

hydrodynamic model and a steady-state pollutant dispersion 
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model. They were used to calculate the pollutant level in a 

connected-pond reservoir system that had an entrance and an 

exit gate to open water of a canal and to determine the optimal 

pollutant levels in the wastewaters discharged from nearby 

industrial plants that would cost the plants minimally to pre-

treat. 

This paper is divided into 8 sections: the first section is the 

introduction; the second section describes the unsteady-state 

hydrodynamic model; the third section describes the steady-

state dispersion model; the fourth section describes the finite 

difference numerical method for solving the steady-state 

dispersion model; the fifth section shows an example of the 

detailed numerical calculation procedure; the sixth section 

describes the results of steady state dispersion calculation; the 

seventh section describes the pollution control and cost 

optimization calculation and their results; and the last section is 

the discussion and conclusion. 

II. UNSTEADY STATE HYDRODYNAMIC MODEL 

In this section, two mathematical models are described. They 

were used to simulate time-varying pollutant levels causing by 

wastewater discharges from several plants into a connected 

reservoir system. The first model is a hydrodynamic model that 

determined the velocity and elevation of the water at any 

locations in the two connected ponds of the reservoir system, 

while the second model is a pollutant dispersion model that 

determined the pollutant level at any points in the ponds. 

 

 

 

  

 

 

 

 

 

 

 

 

 
Fig. 1. Vertical cross-section of the water in the ponds. 

 

The two-dimensional unsteady flow of water into and out of the 

ponds of the connected reservoir system can be determined by 

a system of shallow water equations that takes into account 

mass and momentum conservation. This system of equations 

can be derived by depth-averaging the Navier-Stokes equations 

in the vertical direction, neglecting the diffusion of momentum 

due to turbulence and discarding the terms expressing the 

effects of friction and wind. The continuity equation [7] is then 

expressed as follows: 

 

( ) ( )
0,

h u h v

t x y

      
  

  
   (1)

          

and the momentum equations [5] are expressed as below: 

 

0,
v v v

u v fu g
t x y y

   
    

   
 (2)                       

0,
u u u

u v fv g
t x y x

   
    

   
                                        (3) 

 

 Where       is the depth measured from the mean surface     

          water level to the bed of the pond (m), 

                   is the elevation of water surface level from the  

          mean water level (m),  

                   is acceleration due to gravity (m/s2),  

             ,u v
  

are velocity components (m/s), and 

             f      is Coriolis factor. 
     

 

For our problem, the following terms in the equations above 

were discarded–Coriolis factor, surface wind, and shearing 

stresses at the pond’s bed–and the elevation of the water surface 

level was assumed to be much smaller than the depth of the 

pond: h   or :h h   , where h is a constant representing 

flat pond bottom. Consequently, the governing equations for 

our study were as follows: 

 

0,
u v

h h
t x y

  
  

  
  (4)                       

0,
v v v

u v
t x y

  
  

  
 (5) 

0.
u u u

u v
t x y

  
  

  
 (6)

       

By linearly transforming Eqs. (4)-(6) via the following 

transformations: / , / , / , / ,U u gh V v gh X x l Y y l     

/ ,Z h and /T t gh l , as described in [3], our governing 

equations became non-dimensional as expressed below:  

 

0,
Z U V

t X Y

  
  

  
 (7) 

0,
U Z

T X

 
 

 
 (8)          

0,
V Z

T Y

 
 

 
              (9) 

 

The initial conditions for our problem were as follows: the x 

and y-velocity components were zero as well as the water 

elevation: 0, 0,u v  and 0z  , while the boundary 

conditions were as follows: (i) 0, 0, 0
v

u z
y


  


 for the 

horizontal edges of the rectangular pond; (ii) 

0, 0, 0
u

v z
x


  


 for the vertical edges; and (iii) ( , )z f x y

for the water flows into the entrance gate, similar to those 

reported in
 
[3]. 

h



g

( , )z h x y 

( , , )z x y t

( , , ) ( , )x y t h x y 

Bottom topography 

Free surface 

x

y
z
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III. STEADY STATE DISPERSION MODEL 

A. Governing equation 

The steady-state advection-diffusion equation of the pollutant 

level in the ponds is below, 

 
2 2

2 2
,

C C C C
u v D

x y x y

    
   

    
  (10) 

       

for all 2( , )x y  where  ,u v   are the average velocities 

(m/s) in the x and y directions, respectively, determined by the 

hydrodynamic model in the first section and previously 

reported in [3]. 

 

B. Boundary conditions 

Three boundary conditions were used for determining the 

steady-state dispersion: 

       a) the rate of change of pollutant level at the edge of 

the reservoir system was zero, i.e.,   

0.
C

n





; (11)         

 b) the rate of change of pollutant concentration coming 

in at the entrance gate with respect to x-coordinate was constant,  

1,
C

c
x





                                                                                  (12)    

     and the rate of change of pollutant concentration 

going out at the exit gate with respect to y-coordinate was 

constant, 

2 .
C

c
y


 


; (13)                   

             c) the pollutant level in the wastewater discharge from 

each industrial plant at the edge of the ponds was as follows,    

              iC d    (14)                                   

for all 1,2,3,...,i P  where P  is number of industrial plants 

and id  is a constant. 

IV. FINITE DIFFERENCE METHOD OF THE STEADY STATE 

DISPERSION MODEL 

To discretize the steady-state dispersion Eq. (10), the 2  
of x and y-coordinates was divided into M and N steps such 

that xM x L   where xL
 

is the maximum length of   in the 

x- coordinate and 
yN y L   where 

yL  is the maximum length 

of   in y-coordinate. We could then approximate a ( , )l mC x y  

value by the 
,l mC value of the difference approximation of 

( , )C x y
 

at the points l x and m y , where 0 l M  and 

0 m N  . The grid-points ( , )l mx y

 

were the points at which 

lx l x 
 

for all 0,1,2,...,l M  and my m y   for all 

0,1,2,...,m N , where M and N are positive integer. Three 

schemes of Taylor’s series expansion for approximating terms 

in Eq. (10) were used to check whether the backward and 

forward difference schemes for the first-order derivatives 

yielded different results than the widely-used central difference 

scheme or not. These schemes are described below.  

 

A. Backward-in-space finite difference scheme 

Applying the backward-in-space technique to the first-order 

derivatives and the central-in-space technique to the second-

order derivatives of Eq. (10), we get the following discretized 

equations: 

 

, 1,
,

l m l mC CC

x x




 
  (15)  

, , 1
,

l m l mC CC

y y




 
 (16)    

2
1, , 1,

2 2

2
,

l m l m l mC C CC

x x

  


 
 (17)                      

2
, 1 , , 1

2 2

2
.

l m l m l mC C CC

y y

  


 
    (18)

                       

Substituting Eqs. (15)-(18) into Eq. (10), we have 

 

, 1, , , 1

1, , , 1 , 1 , , 1

2 2

2 2
.

l m l m l m l m

l m l m l m l m l m l m

C C C C
u v

x y

C C C C C C
D

x y

 

   

    
    

    

    
 

  
             

(19) 

 

A simple form of Eq. (19) is expressed below,  

 

, 1 1, 2 , 1 3 1, 4 , 1 0B B B B

l m l m l m l m l mC S C S C S C S C       
        

(20) 

 

where  

 

1 2 2 2

2 2
,B u D u v D D

S
x x yx x y

  
             

                     (21) 

2 2 2 2

2 2
,B v D u v D D

S
y x yy x y

   
       

       
          (22) 

3 2 2 2

2 2
,B D u v D D

S
x yx x y

  
            

   (23) 

4 2 2 2

2 2
.B D u v D D

S
x yy x y

   
      

      
       (24) 

        

If 
,l mC

 

lies at the boundary of the pond, it is calculated by 

applying the backward difference scheme to Eqs. (11)-(13) to 

approximate the boundary conditions,  

 

, 1,
,

i j i jC CC

x x




 
  (25)        

, , 1
.

i j i jC CC

y y




 
  (26)      

                                

B. Forward-in-space finite difference scheme 

Applying the forward-in-space technique to the first-order 

derivatives and the central-in-space technique to the second-
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order derivatives of Eq. (10), we get the following discretized 

equations: 

 

1, ,
,

l m l mC CC

x x

 


 
  (27)                              

, 1 ,
,

l m l mC CC

y y

 


 
 (28)                              

2
1, , 1,

2 2

2
,

l m l m l mC C CC

x x

  


 
 (29)                            

2
, 1 , , 1

2 2

2
.

l m l m l mC C CC

y y

  


 
 (30)

           
Substituting Eqs. (27)-(30) into Eq. (10), we have 

 

1, , , 1 ,

1, , , 1 , 1 , , 1

2 2

2 2
.

l m l m l m l m

l m l m l m l m l m l m

C C C C
u v

x y

C C C C C C
D

x y

 

   

    
    

    

    
 

  
               

(31) 

 

A simple form of Eq. (31) is expressed below,  

 

, 1 1, 2 , 1 3 1, 4 , 1 0F F F F

l m l m l m l m l mC S C S C S C S C       
           

(32) 

 

where 

 

1 2 2 2

2 2
,F D u v D D

S
x yx x y

  
             

                          (33)             

2 2 2 2

2 2
,F D u v D D

S
x yy x y

   
       

      
                      (34)      

3 2 2 2

2 2
,F u D u v D D

S
x x yx x y

  
               

          (35)        

4 2 2 2

2 2
.F v D u v D D

S
y x yy x y

   
         

       
           (36)       

 

If 
,l mC

 

lies at the boundary of the pond, it is calculated by 

applying the forward difference scheme to Eqs. (11)-(13) to 

approximate the boundary conditions,  

 

1, ,
,

i j i jC CC

x x

 


 
  (37)        

, 1 ,
.

i j i jC CC

y y

 


 
  (38)        

 

C. Central-in-space finite difference scheme 

Applying the central-in-space technique to both the first-order 

derivatives and the second-order derivatives of Eq. (10), we get 

the following discretized equations: 

 

1, 1,
,

2

l m l mC CC

x x

 


 
  (39)        

, 1 , 1
,

2

l m l mC CC

y y

 


 
 (40) 

2
1, , 1,

2 2

2
,

l m l m l mC C CC

x x

  


 
 (41) 

2
, 1 , , 1

2 2

2
.

l m l m l mC C CC

y y

  


 
 (42) 

                   

Substituting Eqs. (39)-(42) into Eq. (10), we have 

 

1, 1, , 1 , 1

1, , , 1 , 1 , , 1

2 2

2 2

2 2
.

l m l m l m l m

l m l m l m l m l m l m

C C C C
u v

x y

C C C C C C
D

x y

   

   

    
    

    

    
 

  
            

(43) 

 

A simple form of Eq. (44) is expressed below,  

 

, 1 1, 2 , 1 3 1, 4 , 1 0C C C C

l m l m l m l m l mC S C S C S C S C       
        

(44) 

 

where  

 

1 2 2 2

2 2
,

2

C u D D D
S

x x x y

  
          

  (45)                              

2 2 2 2

2 2
,

2

C v D D D
S

y y x y

   
     

      
 (46)           

3 2 2 2

2 2
,

2

C u D D D
S

x x x y

  
           

 (47)           

4 2 2 2

2 2
.

2

C v D D D
S

y y x y

   
      

      
 (48)                              

 

If 
,l mC

 

lies on the boundary of the pond, it is calculated by 

applying the central difference scheme to Eqs. (11)-(13) to 

approximate the boundary conditions,  

 

1, 1,
,

2

i j i jC CC

x x

 


 
  (49)        

, 1 , 1
.

2

i j i jC CC

y y

 


 
  (50)      

V. MATRIX-FORM OF THE INTERMEDIATE RESULTS OF AN 

EXAMPLE DISPERSION PROBLEM 

Consider an example with a simple square domain 

[0,1] [0,1]   shown in Fig. 2. The boundary conditions of 

this domain were set to be as follows: a non-absorbing 

boundary 0
C

n





; a pollutant level discharged from each plant 

of 1C C (kg/m3); and velocities of water flow in the x and y-

direction of 0.025u    (m/s) and 0.025v    (m/s), 

respectively. The gridding size is taken to be 0.25x y    . 
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 0,0 1,0 2,0 3,0 4,0 0,1 1,1 2,1 3,1 4,1 0,2 1,2 2,2 3,2 4,2 0,3 1,3 2,3 3,3 4,3 0,4 1,4 2,4 3,4 4,4

T

c c c c c c c c c c c c c c c c c c c c c c c c c

 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.  2.  The simple domain of our example. 
 

 

 

Numerically solving the governing Eqs. (20), (32), and (44) 

with these simple boundary conditions, we obtain intermediate 

results in the form of matrices. These matrix forms are 

employed as described in the cost optimization model in the 

seventh section. Each matrix of our example in the matrix 

equation of the optimization model, expressed as Eq. (51), 

 

    ,A C B   (51)

  
is in the form below: 

 
                       

 

 

 

 

 

 

 

 

     A   

 

 

 
 

 

 

 

 

 

 

VI. RESULTS OF STEADY STATE DISPERSION CALCULATION 

In this section, various results are reported in a table, several 

surface and contour plots, and a comparison graph. Simulation 

runs of the dispersion model were performed with these 

following settings: five plants– 1 2 3 4, , ,F F F F , and 5F –at 

locations shown in Fig. 4(b). discharging wastewater at various 

pollutant levels shown in Table 1; rate of change of incoming 

pollutant level with respect to x-coordinate at the entrance gate 

of 1c  (kg/m4); rate of change of outgoing pollutant level with 

respect to y-coordinate at the exit gate of 2c
 
(kg/m4); the same 

average water velocities in x and y-directions of 0.025  (m/s), 

which was also employed in [3]; and diffusion coefficient of 

 

 

 

 

10D  (m2/s). A further explanation of 1c  and 2c  is due here. 

Pollutant was assumed to be coming from 2 sources: 1) in the 

incoming water from the canal through the entrance gate 

located at the northeast of the upper pond, as shown in Fig. 3. , 

and 2) in the wastewater from the 5 nearby industrial plants, 

each plant releasing its wastewater at a wastewater release 

point. Concurrently, the outgoing water out of the lower pond 

into the  
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TABLE I. Pollutant concentration in discharged wastewater from five plants. 

 

canal through the exit gate, as shown in Fig. 3. , was also 

polluted at a certain concentration.  
1c  and 

2c  were the rate of 

change of incoming pollutant concentration with respect to x-

coordinate ( 1

C
c

x





(kg/m4)) and the rate of change of outgoing 

pollutant concentration with respect to y-coordinate ( 2

C
c

y


 


 

(kg/m4)), respectively. Another point of note is that, in our 

simulation, around 90 points were selected to be ‘observation 

points’, covering the 2 ponds evenly. The pollutant 

concentrations at these points were determined at completion of 

the simulation. Among the observation points, around 20 points 

were selected to be ‘scheme-comparing points’, shown in Fig. 

4b. , the main purpose of these points being for comparing the 

pollutant concentrations calculated by the 3 different schemes 

described in the fourth section. 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 
 

Fig.  3.  The connected-pond reservoir with openings to a canal. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig.  4. The domain of the steady-state dispersion model (a); the observation points, the scheme-comparing points, and the wastewater release points (b). 
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Fig.  5.   Pollutant concentration (kg/m3) in the connected reservoir 0.015625, 0.015625x y     (Case 1 in table 1)  (a) Contour plot and (b) Surface plot. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

Fig.  6.   Pollutant concentration (kg/m3) in the connected reservoir 0.015625, 0.015625x y     (Case 4 in table 1) (a) Contour plot and (b) Surface plot. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Fig.  7.   Pollutant concentration (kg/m3) in the connected reservoir 0.015625, 0.015625x y    (Case 7 in table 1) (a) Contour plot and (b) Surface plot. 
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Table II shows the average pollutant concentrations in the upper 

pond (pond 1) and lower pond (pond 2) for 9 different 

combinations of c1, c2, F1, F2, F3, F4, and F5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.  8.  Pollutant concentration at the scheme-comparing points calculated by 
the backward, forward, and central difference techniques. 

VII. POLLUTION CONTROL AND COST OPTIMIZATION 

In this section, the method of calculation of optimal cost is 

described. A plant had to incur a cost to pretreat its wastewater 

before releasing it into the pond, in order to keep the pollutant 

level in its wastewater discharge to stay below a certain level. 

The more extensive the pre-treatment, the higher the treatment 

cost. The criterion for acceptable level of pollutant in the 

released wastewater was that the pollutant levels in the pond 

water at all of the observation points had to be lower than a 

specified standard level. The higher the pollutant level in the 

pond water than the standard level was, the more extensive pre-

treatment was, and consequently, the higher the cost to the plant 

was. Let x be the observation points and r be the reduction 

of pollutant concentration in the wastewater at its release points. 

It follows that C r  is the pollutant concentration after pre-

treatment (or partial purification) at the release points. From Eq. 

(51), we have  

 

    ,A C B  (52)

                  

which can be expressed as,  

   

     
1

.C A B


   (53)

                      
Let     

 

    C D B
     (54)

                      
 

where      

 

 
   

1
.A D


  (55)

       

Let C
 be the pollutant concentration at an observation point

x . Let r be the reduction of pollutant concentration at the 

wastewater release points; then, Eq. (54) becomes,  

 

1 1 ( ) N NC d b d b r d b            (56)

                                              
or     
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i j j

m n

i i

i j

C d b d b r    
 

     (57)

                        
where m is the number of observation points and n is the 

number of wastewater release points  .N m n   Let 
STC

 
be 

the standard allowable pollutant level in the pond water. C  
must be at or below this level, i.e.,  

 

.STC C    (58)

                      

The objective function J is the cost of wastewater pre-

treatment, so 

 

1

( ) ,
j

m

j

j

J x r


   (59)

         

where 
j
 
is the cost of wastewater pre-treatment for the required 

reduction of pollutant concentration. The constraints are  
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The upper bound and lower bounds of the controls are, 

 

j j j
l r u      (61)

                        

and the controls are non-negative 

 

0,
j

r    (62)
        

 

where ,
j j

l u 
are the lower and upper bounds, respectively, of 

the reduction of pollutant level in the wastewater, specifying the 

minimum and maximum reduction of pollutant level in the 

wastewater that a plant can reduce by pre-treatment. This 

optimal control problem was solved by Simplex method. There 

were 5 water treatment plants that discharged wastewater into 

the connected ponds. Plant 1 to Plant 5 had the ability to purify 

its wastewater such that the maximum reductions in their 

pollutant concentration were 1.0, 1.0, 1.5, 1.5 and 1.0 (kg/m3), 

respectively, while the minimum reduction specified by the law 

was 0.5 (kg/m3). The physical parameters settings were the 

following: diffusion coefficient of 10.0D  (m2/s) and the same 

velocities in the X and Y directions of 0.025 (m/s). The 

Scheme-comparing points 

C
o
n

ce
n
tr

at
io

n
 o

f 
p

o
ll

u
ti

o
n
 

Forward Different 
Backward Different 
Central Different 

0 

5.20 

5.15 

5.25 

5.30 

5.35 

5.40 

5.45 

10 20 30 40 50 60 

IAENG International Journal of Applied Mathematics, 46:1, IJAM_46_1_07

(Advance online publication: 15 February 2016)

 
______________________________________________________________________________________ 



standard allowable pollutant level in the pond water was 4.2

(kg/m3). Therefore, all constraints were as follows:  

 

4.2,STC   (63) 

1
0.5 1.0,r   (64) 

2
0.5 1.0,r   (65) 

3
0.5 1.5,r   (66) 

4
0.5 1.5,r   (67) 

5
0.5 1.0.r   (68) 

 

Column 3 in Table III shows pollutant concentrations at 

observation and wastewater release points before the  

wastewaters were pre-treated by the plants. They were higher 

than the standard, CST. After pre-treatment, the concentrations 

at these points were lower than CST, as shown in column 5.   
In Table IV, column 3 and column 6 show the extents of 

pollutant reduction in terms of concentration. The Non-optimal 

reduction was for achieving 4.2 kg/m3 pollutant level, CST, in 

the wastewater at the release points of all 5 plants, while the 

optimal reduction was for achieving a CST pollutant level or 

lower in the pond water. These reductions multiplied by the 

corresponding cost of treatment to each plant (column 4) gave 

the Non-optimal cost of reduction (column 7) and the optimal 

cost of reduction (column 5). It can be seen that the total cost of 

optimal wastewater treatment was 150,915.50 USD, 

significantly lower than 162,400.0 0 USD of the Non-optimal 

treatment. Fig. 9 shows the comparison of the cost among five 

plants in case of optimal cost and non-optimal cost.

 

TABLE II. Average pollutant concentration pond 1 and pond 2 for 9 combinations of parameter settings.  

 
   Case                c1 (kg/m4)            c2 (kg/m4)        Concentration in discharge (kg/m3) from plant       Average concentration in pond (kg/m3) 

                                                                                               F1                F2            F3            F4           F5                                     Pond 1                Pond 2 

  
 1 0.0100 0.0100 5.0000 5.1500 5.2000 5.6000 5.3400 5.4222 5.1850 

 2 0.0100 0.0500 5.0000 5.1500 5.2000 5.6000 5.3400 5.4191 5.1844 

 3 0.0100 0.1000 5.0000 5.1500 5.2000 5.6000 5.3400 5.4152 5.1837 
 4 0.0100 0.0050 5.0000 5.1500 5.2000 5.6000 5.3400 5.4226 5.1851 

 5 0.0100 0.0100 4.5000 4.6500 4.7000 5.1000 4.8400 4.9222 4.6850 

 6 0.1000 0.0500 4.5000 4.6500 4.7000 5.1000 4.8400 4.9191 4.6844 
 7 0.0100 0.1000 4.5000 4.6500 4.7000 5.1000 4.8400 4.9152 4.6837 

 8 0.0100 0.0050 4.5000 4.6500 4.7000 5.1000 4.8400 4.9226 4.6851 

 9 0.0100 1.0000 4.5000 4.6500 4.7000 5.1000 4.8400 4.8454 4.6706 
       

 

 
TABLE III. Pollutant concentration at 5 observation points and 5 wastewater release points. 

  
                                                                                                                Pollutant concentration 
                                         Points Untreated Inflow              Observations      Pre-treated Inflow         Observations   

               

 A1  5.4236  4.1160 
 A2  5.3689                 4.1528 

 A3         5.3944  4.1276 

 A4  5.1723  4.0759 
 A5  5.1465  4.1825 

 F1 5.0000 5.0000 4.5000 4.5000 

 F2 5.1500 5.1500 4.2179 4.2179 
 F3 5.2000 5.2000 3.7150 3.7150 

 F4   5.6000 5.6000 4.1000 4.1000 

 F5 5.3400 5.3400 4.3400 4.3400 
 

 

 
TABLE IV. Optimal cost of wastewater treatment. 

 
Treatment             Location  Optimal Reduction  Cost of Treatment  Optimal Cost        Non-optimal Reduction          Non-optimal 

   Factory                                                    of Pollutant (kg/m3)    for Reduction by  of Reduction           of Pollutant (kg/m3)           Cost of Reduction 

     Concentration        1 (kg/m3)       (USD)  Concentration              (USD) 

 
Factory1   F1          0.5000          40,000    20,000.00       0.8000           32,000.00 

Factory2   F2          0.9321          20,000    18,642.00       0.9500           19,000.00 

Factory3   F3          1.4849          15,000    22,273.50       1.0000           15,000.00 
Factory4   F4          1.5000          20,000    30,000.00       1.4000           28,000.00 

Factory5   F5          1.0000          60,000    60,000.00       1.1400           68,400.00 

 
Total Cost                          150,915.50           162,400.00 
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Fig.  9.  Compare costs of water treatment of five plants between the optimal 
cost and non-optimal cost. 

VIII. DISCUSSION 

In this study, mathematical models were proposed for 

determining pollution levels in the water of a connected-pond 

reservoir, with openings to a canal, polluted by wastewater 

discharged from nearby industrial plants. In the equations of the 

models, the parameters affecting the dispersion of pollution 

were water velocity and diffusion coefficient, but they did not 

have a significant effect in this study. More influential was the 

initial pollutant level in the wastewater discharged from 

industrial plants, as shown in Table 2. In Case 3, its 2c  was 10 

times higher than that of Case 1, thus, making the average 

pollutant level in the pond water slightly but significantly 

lower. In Case 1 and Case 7, their 2c were the same, but the 

initial pollutant level in Case 7 was reduced by 0.5 kg/m3. It can 

be seen that the average pollutant level in the pond water in this 

case was 5 times lower than the reduced level in Case 3. Fig. 5 

-7 show contour and surface plots of pollutant level versus two 

spatial coordinates of Case (1), (4), and (7). The contour plots 

show different patterns of pollutant dispersion of the three 

cases, while the surface plots better show the different pollutant 

levels at various locations. Fig. 8. shows plots of pollutant 

levels at scheme-comparing points calculated by 3 different 

finite difference schemes—backward, forward, and central. 

The curves of the 3 plots matched perfectly, indicating that all 

3 schemes were equally valid. 

Concerning the costs to the industrial plants, they were 

optimized with respect to the pollutant level in their wastewater 

discharge under the condition that the pollutant level in the 

pond water not exceeds the acceptable standard. If every plant 

can control the pollutant level in its wastewater discharge to 

match its corresponding optimal level shown in Table 4, they 

can save 11,484.50 USD of their wastewater pre-treatment cost 

in a year. 

IX. CONCLUSION 

In this paper, we proposed a numerical simulation of water-

quality control using a couple of an optimization method and an 

implicit finite difference technique in the two ponds with an 

entrance and an exit gate to open water of a canal. The 

simulation results of these models showed that the maximum 

pollutant level in the two ponds could be effectively controlled 

at a minimum cost to each plant by optimally limiting the 

pollutant level in the wastewater it released. The mathematical 

model in this paper could also be used in irregular boundary 

with open-connected reservoir. In order to have an effective 

calculation of pollutant concentration, it is advised that the 

bottom topography function in hydrodynamic model must be 

improved realistic by changing flat bottom topography function 

to anisotropic bottom topography function, retrieving   from the 

interpolation of field data, resulting in smooth anisotropic 

bottom topography function, helping to calculate the velocities, 

precisely, used as the input data  for calculating the pollutant 

concentration in steady state of dispersion model. When 

decreasing the pollutant concentration, releasing less waste 

water from the factories is ideal or treating the waste water in 

some part of the reservoir as to make the pollutant concentration 

in the reservoir even less, leading to less cost of treatment but 

better water quality.  
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