TAENG International Journal of Applied Mathematics, 46:1, [JAM 46 1 08

Restricted Connectivity of Cartesian Product
Graphs

Laihuan Chen, Jixiang Meng,

Abstract—For a connected graph G = (V(G), E(G)),
a vertex set S C V(G) is a k-restricted vertex-cut
if G — S is disconnected such that every componen-
t of G — S has at least k vertices. The k-restricted
connectivity ki(G) of the graph G is the cardinal-
ity of a minimum k-restricted vertex-cut of G. In
this paper, we give the 3-restricted connectivity and
the 4-restricted connectivity of the Cartesian product
graphs, and we proposed two conjectures for general
cases of the k-restricted connectivity of the Cartesian
product graphs.
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1 Introduction

We follow [1] for graph-theoretical terminology and nota-
tion not defined here. A network can be modelled by an
undirected graphs with no loops or multiple edges. The
connectivity is a classic measure of network reliability. In
[4], Harary proposed conditional connectivity, which is a
more refined index than the connectivity. In this paper,
we consider finite, undirected and simple graphs. Let G
be a graph with vertex set V(G) and edge set F(G), and
S be a non-empty subset of V(G), then S is a vertez-cut
if G — S is disconnected, S is a k-restricted vertez-cut if
G — S is disconnected and every component of G — S has
at least k vertices, and S is a cyclic vertex-cut if G — S
is disconnected and has at least two components contain-
ing cycles. The connectivity k(G) is defined as the mini-
mum cardinality over all vertex-cuts of G, the k-restricted
connectivity ki(G) is defined as the minimum cardinal-
ity over all k-restricted vertex-cuts of G, and the cyclic
connectivity £.(G) is defined as the minimum cardinali-
ty over all cyclic vertex-cuts of G. It should be pointed
out that not all connected graphs have the k-restricted
vertex-cut. A connected graph G is called ky-connected if
ki (G) exists. The girth g(G) of the graph G is the length
of its shortest cycle if G contains cycles. Results on the
restricted connectivity are referred to [5, 8-11, 13].
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Let u € V(G) and G1, G2 be two subgraphs of G. Define
N(u) = {v € V(GQ)|v is adjacent to u}, and d(u) = |N(u)|
be the degree of v in G, and Ng, (G2) = {v € V(G1) \
V(G2) | v is adjacent to a vertex of Ga}. The graph G is
k-regular if d(u) = k for any u € V(G). Let A be a subset
of V(G). We define G[A] as a subgraph of G induced by
A, N(A) ={ue V(G)\ A | uis adjacent to a vertex of
A}, and N[A] = AUN(A).

Throughout this paper, we present the same notations
related to the Cartesian product graphs as in [6]. As-
sume G; = (V1,F1) and Gy = (Va, E3), where V; =
{z1,29, - ,xm} and Vo = {y1,y2, -+ ,yn}. The Carte-
sian product of graphs G; and G, denoted by G10G>,
is the graph with vertex set V3 x V5 = {(z,y) | z € W}
and y € Vo} such that two vertices (x1,y1) and (z2,y2)
are adjacent if and only if either x1 = x5 with y1y2 € Fo
or y; = yo with z129 € Ej.

For convenience, we define two kinds of subgraphs Gy,
and Go, of G10Gs as follows: V(G1y) = {(z,y) | z € V1 }
and E(G1y) = {(z1,y)(z2,y) | z1z2 € Ei} for any
y € Vo, V(Ga) = L(zy) | y € Va} and E(Gar) —
{(z,y1)(z,y2) | y1ye € Ea} for any = € Vi. Obvious-
ly, Gy is isomorphic to G for any y € Va, and Gay is
isomorphic to Gy for any « € V;. By definition, V(G1,)N
V(Ghy) =0forany y # y', V(Gaz) NV (Gayr ) = 0 for any
xz # ', V(G1y) N V(Gay) = {(x,y)} for any z € V; and
y € Vs, and V(G1DG2) = Uy€V2V1y = U:E€V1V2z. For
some results on the connectedness of Cartesian product
graphs, see [2, 3, 6-8].

By the definition of the Cartesian product, the graph
G = G10G2 can be viewed as formed from m disjoint
copies of Gg, denoted by Gay,, Gog,, -+, Gag,,, respec-
tively, by connecting vertex (x,y;) of Go, with vertex
(2',y;) of Gop for any y; € V5 whenever za’ € Ey. These
new edges are called cross edges. That is, there exists
a perfect matching between two copies G, and Ga, for
any zz' € E;. Similarly, G can also be viewed as formed
from n disjoint copies of G, denoted by G1y,, Giy,, -+,
Gy, , respectively, by connecting vertex (z;,y) of Gy
with vertex (z;,y’) of Gi, for any x; € Vi whenever
yy' € E5. Thus there is also a perfect matching between
two copies Gy and G, for any yy' € Es.

For § C V(G10G2), let G, = G1y, — S for any y € V3,
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and Gb, = Ga, — S for any z € Vi. It is clear that
V(Ghy,) = V(Giy)\ S for any y € V3, V(GY,) = V(Ga2a) \
S for any z € V1, and V(G10G2 — S) = Uyer, V(GY,) =
UfﬂEVlV( /2;r)

In the graph theory, Menger’s theorem and Whitney Cri-
terion are well-known [12]:

Theorem 1. (Menger’s theorem) Let G = (V,E) be a
connected graph with x,y € V. Then the minimum num-
ber of wvertices separating vertex x from vertex y in G
is equal to the maximum number of internally disjoint

(z,y)-paths in G if zy ¢ E.

Theorem 2. (Whitney Criterion) If G is a graph with
order at least k 4+ 1(k > 1), then k(G) > k if and only
if there are at least k internally disjoint (x,y)-paths in G
for any x,y € V.

2 Main Results

In this section, we always assume that G; = (Vi, Eq)
and Gy = (Va, E3) have m and n vertices, respectively.
For the 2-restricted connectivity of the Cartesian product
graphs, we can find the following theorems in [6] and [8].

Theorem 3. (/6]) ko( K, OK,) = min{m+2n—4,2m+
n—4} form+n > 6.

Theorem 4. (/8]) Let Gy be a ko(> 2)-regular and mawi-
mally connected graph. If g(Ga) > 4, then ko (K,,OG2) =
2ko +m — 2 for m > 2.

Theorem 5. ([8]) Let G; be a k;(> 2)-reqular and max-
imally connected graph with g(G;) > 4 for i € {1,2}.
Then K}Q(G1DG2) = 2]€1 + ng — 2.

In the following, we consider the k-restricted connectivity
of the Cartesian product graphs for k£ > 3.

By the exercise 2.1.9 in [1], we have |[V(G)| > k? + 1 for
9(G) > 5, where k is the regularity of G, thus we have
the following lemma.

Lemma 2.1. Let G be a k-regular graph with girth
9(G) > 5. Then |V(G)| > 3k —1 for k> 2.

Theorem 6. (i) k3(K,,0K,) = min{3m +n —6,m +
3n—6} form+n>8 withm>n+2orn>m+2;
(ii) k3(KnOKy,) = 2m + 2n — 8 for m +n > 8 with
m=mn,orn=m+1, orm=n+1.

Proof. Denote G = K,,0K,,. Assume G[A] is a connect-
ed subgraph of G such that |A] > 3.

(i)If A is contained in one copy Ga, or Gy for z € Vi and
y € Va, then since |A| > 3, G2z = K, and Gy = Ky,
there exist cycles in G[A]. Without loss of generality,
assume A C Ga,. When |A] = 3, |N(4)| is minimum,
there are at least three vertices in each component of

G — N(A), and there exist cycles in G\ N[A]. Thus N(A)
is a 3-restricted vertex-cut, and also is a cyclic vertex-cut.
Hence, £3(G) = £.(G) =min{3m +mn —6,m+ 3n — 6} by
the theorem 2.2(i) in [2].

(ii)If A is not contained in one copy Gag or Gy, for any
x € V3 and y € Vo. When there is no cycles in G[4],
G[4] = G[A1] U G[Ag] is a path of length ki + ko for
Gop =2 K, and Gy, = K, where |4;| = k; > 2 for
i € {1,2}. Assume G[A1] C Gaz, G[A2] C Gy, for z € V4
and y € Vs, then [N(A)| = (m — Dky + (n — 1)ko —
kike +1. When k1 = ky = 2, |[N(A)| is minimum, and
|G\N[A]| > 3. Let B = (G2$1 UGQajz) ﬁ(Glyl UGlyz) for
x1,x2 € Vi and y1,y2 € Vo, then |[N(B)| = 2m + 2n — 8,
|G\ N[B]| > 3, and there are cycles in G \ N[B], thus
N(B) is a 3-restricted vertex-cut, and |[N(A)| > |N(B)|,
a contradiction. We have A = B, and N(A) is a 3-
restricted vertex-cut, and also is a cyclic vertex-cut of
G. Thus k3(G) = ke(G) = 2m + 2n — 8 by the theorem
2.2(ii) in [2]. 0

In the following, we consider the graph G = G10G2 with
G1 2 K, or Gy 2 K,,. For G = K,,,.0G5, when m = 2,
we easily obtain k3(K30G2) = 3ky — 1 for ky > 2, where
G> is a ko-regular and maximally connected graph with
9(Ga) = 5.

Lemma 2.2. Let Gy be a ko(> 2)-regular connected
graph. If g(Ga) > 5, then k3 (K,OG2) < 3ka+m —3 for
m > 3.

Proof. Denote G = K,,0G> and G; = K,,,. The graph
G can be viewed as formed from m disjoint copies of
Ga, denoted by Gayz,, Gag,, -+, Gas,,, respectively, by
connecting vertex (z,y;) of Ga, with vertex (z',y;) of
Gy for any y; € Vo and = # 2.

When m = 3. Let P = ujusus be a path of G, where
up = (v1,y1), u2 = (21,92), and uz = (w2,y2). Since
G2z, is a kp-regular graph for i € {1,2}, G1,, = K,,, for
j €{1,2}, and ¢g(G2) > 5, we have

IN({ur,ug, usb)| = [Nay,, ({ur, u2})| + [Ny, (us))]
+ INay,, ()l + |Na,,, ({uz, us})|

- 1
= 2k‘272+k2+m72+m7171
= 3ky+m — 3.

Since g(G2) > 5 and Gy = K,,, G — N[{u1,usz,us}]
is connected, and |V(G) \ N[{u1,uz,us}]| > 3. Hence
N({u1,us2,us}) is a 3-restricted vertex-cut.

When m > 3. Let P = ujuous be a path of Gy, for
y1 € Va. Suppose u; = (x;,y1) for i € {1,2,3}. Since
Gy, = Ky, Gog, is a ko-regular graph for i € {1,2,3},
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and g(G3) > 5, we have

IN({u1,uz,us})| = |[Ng,,, ({u1,u2,us})l
51| Nas,, ({ui})]

= 3ko+m — 3.

+

Let G5, = Gop — {(z,y)} for some z € {x1,x2,23}
and y € V5 \ {y1}. Since there is a perfect match-
ing between Ga, and Ga, for any x # xz’, each vertex
v € V(GQ) \ N[{u1,uz,us}] is adjacent to some vertex
in G5, that is, G — N[{u1,u2,us}] is connected, and
[V(G) \ N[{u1,uz,us}]| > 3. Hence N({uy,us,us}) is a
3-restricted vertex-cut.

In conclusion,
lﬁlg(G) S |N({U1,U2,U3})| :3k2+m73 O

Theorem 7. Let Go be a k(> 2)-regular and maximally
connected graph. If g(Ga) > 5, then k3(K,,0G2) = 3ko+
m — 3 form > 3.

Proof. Denote G = K,,0G> and G; = K,,. By lem-
ma 2.2, we have k3(G) < 3ks + m — 3. By contrac-
tion, k3(G) < 3ka +m — 3. Assume S is a 3-restricted
vertex-cut of G with |S| = k3(G). Let S, = SN Va,
for any z € V;. Since G; = K,,, there exists a per-
fect matching between two copies Go, and Go, for any
x # 2. If Sz = () for some T € Vy, then all the vertices of
G4, are connected to Go=(= Gaz) by cross edges for any
x € V1\{Z}, which implies G— S is connected, contradict-
ing that S is a 3-restricted vertex-cut of G. Therefore,
Sz # 0 for any x € V4.

Let 7 be the number of copies of G5 in G which are dis-
connected in G — S. If r > 3, then since G5 is maxi-
mally connected and S, # 0 for any x € V;, we have
|S] = Zsevy |Sz| > 3k2 +m — 3. We suppose r < 2 in the
following.

Case 1. r =0.

Without loss of generality, assume G5, C C and G5, C
C’ for 1,79 € V1, where C and C' are distinct compo-
nents of G—S. Since there is a perfect matching between
G2z, and Gag,, we have |S;, | > [V(G5,,)| = n — [Se,],
that is [Sy, | + [Sxs| > n. Since Sy, # 0 for any z € Vi, we
have

|S‘ |SI1‘ + |sz| + Ewevl\{x1,w2}|sz|
n+m-—2

3ko+m —3

AVANY)

for g(G3) > 5, a contradiction. Hence G — S is connected,
a contradiction.

Case 2. r=1.

Assume Gy, is disconnected in G — S for x; € Vi. Then
%, 1s connected in G — S for any « € V4 \ {z1}. Suppose

bz, is contained in a component C' of G — S for x5 €
Vi \ {x1}. If there exists a copy Gb,, € C for x3 € Vi \
{1, 22}, then since there is a perfect matching between
Gay, and Gag,, we have | Sz, | + |Sz,| > n, and

5]

|SI2| + |S€I?%| + EIGV1\{IQ,I3}|SI|
> n+m-—2
> 3k +m—3

for g(G2) > 5, a contradiction. Hence G, C C for any
x e V1 \ {.’L‘l}

Denote the components of G5, by Hy, Ho, ---, Hi(l >
2). When |V (H;)| < 2 for some ¢ € {1,2,---,1}. Since S
is a 3-restricted vertex-cut of G, we have H; C C'. When
|V(H;)| > 3kq for some i € {1,2,---,l} and H; ¢ C,
Ve, (Hi) €S, for any x € V1 \ {z1}, and we have
S| = Zoewn|S:|
K(G2) + (m = 1)|V(H,))|
ky+m — 14 |V(H)| -1
3ks +m — 3,
a contradiction. When 3 < |V(H;)| < 3ks — 1 for some
i€ {1,2,---,1} and H; ¢ C, Vg, (H;) C S, for any
x € V1 \ {z1}, and
1Se,| = |Ne,,, [{ur, uz, ust]| — |V (H;)|
= 3k —1-|V(H,)|

\VARVARLY]

for g(G2) > 5, where P = ujusug is a path of H;. We
have

5]

Ez€V1|Sz|

Bky — 1 — |V(H:)| + (m — 1)|V (Hy)

Bky — 1 — |V(H;)| +m—1+|V(H,)| -1
3ky +m — 3,

(AVARAYS

a contradiction. Hence H; C C for any ¢ €
{1,2,---,1}(I > 2), and G — S is connected, a contra-
diction.

Case 3. r = 2.

Assume G5, and Gy, are disconnected in G — S. Then
G, is connected in G — S for any © € V1 \ {x1, 22}, with
the similar manner as the case 2, G5, is contained in a
component C' of G — S, and if there are at least three
vertices in component H of G5, or G, , then H C C.
If H C Gy, UGy, and |[H| < 2, then H C C by S
being a 3-restricted vertex-cut of G. Thus if H ¢ C for
H C GY,, UGY,,, then H is one of graphs in figure 1.
Since |N(F1)| = 3ka+2m—6, [N (Fy)| = 4ka+2m—8, and
|N(F3)| = 4ko + 3m — 10, we have [N (F;)| > 3ka +m —3
for any ¢ € {1,2,3}, a contradiction. Hence H C C, and
G — S is connected, a contradiction.

Since all possible cases lead to a contradiction, we have

/€3(G):3k2+m—3. O
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(w1,91) (z1,11) (21, 92) (ml,lll)(ﬂ?_la?ﬁ)

(x2,91) T2,Y2) (z2,y1) (22, y2)

(1‘27'3/2 5(9627 ys)
3

Fl F2
Figure 1. The subgraphs are not contained
inC of G—S.

Lemma 2.3. Let G; be a k;(> 2)-regular connected graph
with g(G;) > 5 for i € {1,2}. Then k3(G10G3) < 3k1 +
3ky — 5.

Proof. Denote G = G10G5. Let P = ujusus be a path
of G, where uy = (z1,41), uz = (22,y1), and uz = (2, y2)
for z1, 22 € V1 and y1,y2 € Va. Since Gy, is a ki-regular
graph for j € {1,2} and Ga,, is a kp-regular graph for
i € {1,2}, we have

IN({ur,uz,us})| = |Na,,, Qui})l + [Na,,, {uz, us})|
+ Nay, (w1, ue})| + [Nay, ({us})]

1
= 2k —24+Fk +ka+2ks—2-1
= 3k1+3ky—5

for g(G1) > 5 and ¢g(G2) > 5.

If there exists a isolated vertex (zo,y1) in Gy —
Ng,, ({u1,u2}), then Gy, = Gay,. If there exist-
s a isolated vertex (w2,y0) in Gaz, — Na,,, ({u2,us}),
then G, = Giy,. Thus there are at least three ver-
tices in each component of G — N ({u1, ua,us}), that is,

N({u1,uz,us}) is a 3-restricted vertex-cut of G. Hence
KZ3(G) < |N({U1,UQ,’U,3})| = 3k1 + 3ko — 5. O

Theorem 8. Let G; be a k;(> 2)-regular and mazimally
connected graph with g(G;) > 5 for i € {1,2}. Then
Hg(Gﬂ:lGQ) = 3]€1 + 3k2 - 5

Proof. Denote G = G10G5. By lemma 2.3, we have
k3(G) < 3ky + 3ky — 5. By contraction, k3(G) <
3k1 + 3ky — 5. Assume S is a 3-restricted vertex-cut of
G with |S| = k3(G). Let S, = SN Vy, for any x € V7,
we have S, # () for any € Vi. Otherwise, assume
Sy, = 0 for some x; € Vi, and GY, (= Ga,) is con-
tained in a component C of G — S, then G5, C C for
any « € Ng,(x1). For any 2’ ¢ Ng,[z1], we denote these
components of G5, by H1, Ha, ---, H;. Since there exist
at least k(G1) internally disjoint paths between z; and
2’ in Gy, there are k(G1)|V (H;)| internally disjoint paths
between G5, and H; in G—S;, — S, fori € {1,2,---,1}.
If |V(H;)| > 3ko, then H; C C, otherwise

IS| > w&(G1)|V(H;)|
> 3kiko
> 3(k1+ko— 1)
> 3k + 3ks — 5,

a contradiction. If 3 < |V(H;)| < 3ke — 1, and H; ¢ C,
then since Ng, ,(H;) € Sy and g(G2,r) > 5, we have

1Ser| = [Na,,, {ur, ug, us}]| — [V (H;)|
= 3ky—1—|V(Hi)l,

where P = ujusus is a path of H;. Hence

|5

Y

K(G1)IV(H;)| + 3k — 1 — |V (H;)|
= |V(H;)|(k1 —1) + 3k — 1
> 3ky + 3ky — 5,

a contradiction.

If |V(H;)| <2 for some ¢ € {1,2,---,1}, then since S is
a 3-restricted vertex-cut of G, there exists a copy Gay, of
G such that some vertex of H; is adjacent to a vertex of
a component H of G, for x5 € Vi \ {2'}, and |V (H; U
H)| > 3. When x5 € Ng, [x1] or |[H| > 3, we have H; C C
using the similar above manner. In the following, we
assume z3 ¢ Ng,[z1] and |H| < 2, then FF = H;UH
is one of graphs in figure 1. If F ¢ C, then |[N(Fy)| =
3k1 + 3ke — 5, and |N(Fy)| = |N(F3)| = 4k1 + 4k2 — 8,
we have |N(F;)| > 3k; + 3ka — 5 for any i € {1,2,3}, a
contradiction. Thus F' C C, and G — S is connected, a
contradiction. Hence S, # () for any = € V1.

Let 7 be the number of copies of G in G which are dis-
connected in G — S. If r > 3, then

|S| = EZE€V1|S:6|

> 3ka+m—3
> 3k1+3ke—5

for g(G1) > 5. We suppose r < 2 in the following.
Case 1. r =0.

Without loss of generality, assume G5, is contained in
one component C of G—S for x; € V5. By the minimality
of S, there exists one vertex v € N(u) NV (C’) for any
u € S,,, where C’ is a component of G — S different from
C. Assume v € Gy, for x5 € V1 \ {z1}, then G5, C ',
and there exists a perfect matching between the copies
Gay, and Gag,. Thus |S;, | + |Sz,| > n, and

|S‘ = |S11| + |Sﬂ?2| + E$€V1\{3?1,3?2}|Sm|
> n+m-—2
> 3k1+3ke—5

by g(G;) > 5 for i € {1,2}, a contradiction.
Case 2. r = 1.

Assume G5, is disconnected in G — S for x; € V1. G,
is connected in G — S for any € Vi \ {z1}. There is
at least one copy Gag, of Gy such that |S,,| < k(G3) for
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x9 € V1 \ {z1}. Otherwise

15| = mk(G2)
> (3k1— 1)k
= 3(k1 — ko + 2ks
> 3(k1—1+ky— 1)+ 2ko
> 3ky + 3ky — 5,

a contradiction. Let G5, be contained in a component
C of G — S. By the minimality of S, there exists one
vertex v € N(u) N V(C") for any u € S,,, where C’ is a
component of G — S different from C. Assume v € G5,
for w3 € Vi\ {xa}. If 3 # 21, then G5, C C’, and there
is a perfect matching between the copies G2z, and Gag,.
Thus |Ss,| + |Szs| > n, and

|S‘ = |S$2\ + |Sx3| + Eerl\{wz,I3}|Sx|
> n+m-—2
> 3k +3ky—5

by g(G;) > 5 for i € {1,2}, a contradiction. Hence z3 =
xI1.

Let v belong to a component H of G5, . Since G5, € C
and v € C', we have Ng,,, (H) C Sz,. When |V(H)| >
3k25

|S| = |S$2|+Ew€v1\{$2}‘5$|
3ko +m —1

>
> 3k1+3ke—5

for g(G1) > 5, a contradiction. When 3 < |V(H)|
3ky — 1,

IN

ING,,, (H)| INGa,, [{ur; uz, us}]| = [V(H)|

>
Z 3k2_1_|V(H)|7

where P = ujusus is a path of H. Since Ng,, (H) C Sz,
and Ng,,, (H) C S;,, we have

5]

|SCE1| =+ |SJ«2‘ + ZZI?GVl\{ZE1,£E2}|SI‘
> 3ko—1—|V(H)|+ |Se,| +m —2
> 3k1+3ks—5

for g(G1) > 5, a contradiction. When |V (H)| < 2. Since
S is a 3-restricted vertex-cut of G, v is adjacent to another
vertex w in one copy Gy, of G— S for x4 € V1 \ {1, 22}

£ V(G )| < [Se| + 9. then
‘S| = |S€L’1| + |Srz| + ‘5304‘ + EIEVl\{Il,I2714}|SZL"
> #(G2) +[Su,| + 1~ V(G )| +m =3
> 3k1+3ky—5

by ko > 2 and g(G;) > 5 for i € {1,2}, a contradiction. If
V(G5 )| > |Se,| + 3, then since there are (|V(GY5,,)| —

2x4

|Sz,])x(G1) disjoint paths between G5, and G5, in G —
Sz, — Sz,, We have

S| = S|+ [Sau |+ (IV(Gop,)| = [S2,)K(G1)
= [Suy| + 1= [V(Go,, )| + (IV(Gy,)

[Sa|)R(G1)

n+ (IV(Goy,)| = |Se,]) (ky — 1)

> 3ky+3ky — 5,

a contradiction.
Case 3. r = 2.

Assume G5, and G5, are disconnected in G — S for
x1,z9 € Vi, then Gj, is connected for any z € V; \
{®1,22}. Let Gy, be contained in a component C' of
G — S for 3 € Vi \ {x1,22}. By the minimality of S,
there exists one vertex v € N(u)NV(C’) for any u € S,
where C’ is a component of G— S different from C'. Using
the similar manner as the case 2, if there are at least
three vertices in a component H of G5, or G5, , then
we obtain H C C. If H ¢ C for H C GY, UGS,
then H is one of graphs in figure 1. Since |N(F})| =
3ky + 3ke — 5, and |N(Fy)| = |N(F3)| = 4k + 4k2 — 8,
we have |N(F;)| > 3ky 4+ 3ke — 5 for any i € {1,2,3}, a
contradiction.

Since all possible cases lead to a contradiction, we have

Hg(G) = 3k1 + 3k2 — 5. O

Using the similar above manner, we can obtain the similar
results for the 4-restricted connectivity of the Cartesian
product graphs.

Theorem 9. (i) k4(K,,O0K,) =min{dm + n — 8 m +
4dn — 8} for m+n > 10 with n > 2m or m > 2n;

(i1) ka(KnOK,) =2m+42n—8 ford <m < 2n—1 and
4<n<2m-1.

Theorem 10. Let Gy be a ko(> 2)-regular and maximal-
ly connected graph. If g(G2) > 6, then rk4(K,,0G2) =
4ko +m — 4 for m > 4.

2)-regular and maximally

Theorem 11. Let G; be a k;(>
> 6 fori € {1,2}. Then

connected graph with g(G;)
H4(G1|:|G2) = 4]431 + 4](12 — 8.

Let G; be a k;(> 2)-regular and maximally connect-
ed graph. If g(G;) > k + 2(k > 3), then using the
similar manner as the lemmas 2.2 and 2.3, we have
ke (KpnOGe) < kkg +m — k for m > k(k < 10), and
kp(G1O0G32) < kky + kko — 3k + 4(k < 10). Hence, we
have the following conjectures.

Conjecture 1. Let Gy be a ko(> 2)-regular and maz-
imally connected graph. If g(G2) > k + 2, then
ke(KmOGs) = kka +m — k for m > k(k > 2).
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Conjecture 2. Let G; be a ki(> 2)-regular and mazi-
mally connected graph with g(G;) > k + 2 fori € {1,2}.
Then K',k(Gﬂ:lGQ) = kki + kky — 3k + 4(/€ > 2)
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