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Abstract—For a connected graph G = (V (G), E(G)),
a vertex set S ⊆ V (G) is a k-restricted vertex-cut
if G − S is disconnected such that every componen-
t of G − S has at least k vertices. The k-restricted
connectivity κk(G) of the graph G is the cardinal-
ity of a minimum k-restricted vertex-cut of G. In
this paper, we give the 3-restricted connectivity and
the 4-restricted connectivity of the Cartesian product
graphs, and we proposed two conjectures for general
cases of the k-restricted connectivity of the Cartesian
product graphs.
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1 Introduction

We follow [1] for graph-theoretical terminology and nota-
tion not defined here. A network can be modelled by an
undirected graphs with no loops or multiple edges. The
connectivity is a classic measure of network reliability. In
[4], Harary proposed conditional connectivity, which is a
more refined index than the connectivity. In this paper,
we consider finite, undirected and simple graphs. Let G
be a graph with vertex set V (G) and edge set E(G), and
S be a non-empty subset of V (G), then S is a vertex-cut
if G− S is disconnected, S is a k-restricted vertex-cut if
G−S is disconnected and every component of G−S has
at least k vertices, and S is a cyclic vertex-cut if G − S
is disconnected and has at least two components contain-
ing cycles. The connectivity κ(G) is defined as the mini-
mum cardinality over all vertex-cuts of G, the k-restricted
connectivity κk(G) is defined as the minimum cardinal-
ity over all k-restricted vertex-cuts of G, and the cyclic
connectivity κc(G) is defined as the minimum cardinali-
ty over all cyclic vertex-cuts of G. It should be pointed
out that not all connected graphs have the k-restricted
vertex-cut. A connected graph G is called κk-connected if
κk(G) exists. The girth g(G) of the graph G is the length
of its shortest cycle if G contains cycles. Results on the
restricted connectivity are referred to [5, 8–11, 13].
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Let u ∈ V (G) and G1, G2 be two subgraphs of G. Define
N(u) = {v ∈ V (G)|v is adjacent to u}, and d(u) = |N(u)|
be the degree of u in G, and NG1

(G2) = {v ∈ V (G1) \
V (G2) | v is adjacent to a vertex of G2}. The graph G is
k-regular if d(u) = k for any u ∈ V (G). Let A be a subset
of V (G). We define G[A] as a subgraph of G induced by
A, N(A) = {u ∈ V (G) \ A | u is adjacent to a vertex of
A}, and N [A] = A ∪N(A).

Throughout this paper, we present the same notations
related to the Cartesian product graphs as in [6]. As-
sume G1 = (V1, E1) and G2 = (V2, E2), where V1 =
{x1, x2, · · · , xm} and V2 = {y1, y2, · · · , yn}. The Carte-
sian product of graphs G1 and G2, denoted by G1�G2,
is the graph with vertex set V1 × V2 = {(x, y) | x ∈ V1
and y ∈ V2} such that two vertices (x1, y1) and (x2, y2)
are adjacent if and only if either x1 = x2 with y1y2 ∈ E2

or y1 = y2 with x1x2 ∈ E1.

For convenience, we define two kinds of subgraphs G1y

and G2x of G1�G2 as follows: V (G1y) = {(x, y) | x ∈ V1}
and E(G1y) = {(x1, y)(x2, y) | x1x2 ∈ E1} for any
y ∈ V2, V (G2x) = {(x, y) | y ∈ V2} and E(G2x) =
{(x, y1)(x, y2) | y1y2 ∈ E2} for any x ∈ V1. Obvious-
ly, G1y is isomorphic to G1 for any y ∈ V2, and G2x is
isomorphic to G2 for any x ∈ V1. By definition, V (G1y)∩
V (G1y′) = ∅ for any y 6= y′, V (G2x)∩V (G2x′) = ∅ for any
x 6= x′, V (G1y) ∩ V (G2x) = {(x, y)} for any x ∈ V1 and
y ∈ V2, and V (G1�G2) = ∪y∈V2

V1y = ∪x∈V1
V2x. For

some results on the connectedness of Cartesian product
graphs, see [2, 3, 6–8].

By the definition of the Cartesian product, the graph
G = G1�G2 can be viewed as formed from m disjoint
copies of G2, denoted by G2x1

, G2x2
, · · · , G2xm

, respec-
tively, by connecting vertex (x, yi) of G2x with vertex
(x′, yi) of G2x′ for any yi ∈ V2 whenever xx′ ∈ E1. These
new edges are called cross edges. That is, there exists
a perfect matching between two copies G2x and G2x′ for
any xx′ ∈ E1. Similarly, G can also be viewed as formed
from n disjoint copies of G1, denoted by G1y1 , G1y2 , · · · ,
G1yn , respectively, by connecting vertex (xi, y) of G1y

with vertex (xi, y
′) of G1y′ for any xi ∈ V1 whenever

yy′ ∈ E2. Thus there is also a perfect matching between
two copies G1y and G1y′ for any yy′ ∈ E2.

For S ⊆ V (G1�G2), let G′
1y = G1y − S for any y ∈ V2,
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and G′
2x = G2x − S for any x ∈ V1. It is clear that

V (G′
1y) = V (G1y)\S for any y ∈ V2, V (G′

2x) = V (G2x)\
S for any x ∈ V1, and V (G1�G2 − S) = ∪y∈V2

V (G′
1y) =

∪x∈V1
V (G′

2x).

In the graph theory, Menger’s theorem and Whitney Cri-
terion are well-known [12]:

Theorem 1. (Menger’s theorem) Let G = (V,E) be a
connected graph with x, y ∈ V . Then the minimum num-
ber of vertices separating vertex x from vertex y in G
is equal to the maximum number of internally disjoint
(x, y)-paths in G if xy /∈ E.

Theorem 2. (Whitney Criterion) If G is a graph with
order at least k + 1(k ≥ 1), then κ(G) ≥ k if and only
if there are at least k internally disjoint (x, y)-paths in G
for any x, y ∈ V .

2 Main Results

In this section, we always assume that G1 = (V1, E1)
and G2 = (V2, E2) have m and n vertices, respectively.
For the 2-restricted connectivity of the Cartesian product
graphs, we can find the following theorems in [6] and [8].

Theorem 3. ([6]) κ2(Km�Kn) = min{m+2n−4, 2m+
n− 4} for m+ n ≥ 6.

Theorem 4. ([8]) Let G2 be a k2(≥ 2)-regular and maxi-
mally connected graph. If g(G2) ≥ 4, then κ2(Km�G2) =
2k2 +m− 2 for m ≥ 2.

Theorem 5. ([8]) Let Gi be a ki(≥ 2)-regular and max-
imally connected graph with g(Gi) ≥ 4 for i ∈ {1, 2}.
Then κ2(G1�G2) = 2k1 + 2k2 − 2.

In the following, we consider the k-restricted connectivity
of the Cartesian product graphs for k ≥ 3.

By the exercise 2.1.9 in [1], we have |V (G)| ≥ k2 + 1 for
g(G) ≥ 5, where k is the regularity of G, thus we have
the following lemma.

Lemma 2.1. Let G be a k-regular graph with girth
g(G) ≥ 5. Then |V (G)| ≥ 3k − 1 for k ≥ 2.

Theorem 6. (i) κ3(Km�Kn) = min{3m + n − 6,m +
3n− 6} for m+ n ≥ 8 with m ≥ n+ 2 or n ≥ m+ 2;
(ii) κ3(Km�Kn) = 2m + 2n − 8 for m + n ≥ 8 with
m = n, or n = m+ 1, or m = n+ 1.

Proof. Denote G = Km�Kn. Assume G[A] is a connect-
ed subgraph of G such that |A| ≥ 3.

(i)If A is contained in one copy G2x or G1y for x ∈ V1 and
y ∈ V2, then since |A| ≥ 3, G2x

∼= Kn, and G1y
∼= Km,

there exist cycles in G[A]. Without loss of generality,
assume A ⊆ G2x. When |A| = 3, |N(A)| is minimum,
there are at least three vertices in each component of

G−N(A), and there exist cycles in G\N [A]. Thus N(A)
is a 3-restricted vertex-cut, and also is a cyclic vertex-cut.
Hence, κ3(G) = κc(G) =min{3m+n− 6,m+ 3n− 6} by
the theorem 2.2(i) in [2].

(ii)If A is not contained in one copy G2x or G1y for any
x ∈ V1 and y ∈ V2. When there is no cycles in G[A],
G[A] = G[A1] ∪ G[A2] is a path of length k1 + k2 for
G2x

∼= Kn and G1y
∼= Km, where |Ai| = ki ≥ 2 for

i ∈ {1, 2}. Assume G[A1] ⊆ G2x, G[A2] ⊆ G1y for x ∈ V1
and y ∈ V2, then |N(A)| = (m − 1)k1 + (n − 1)k2 −
k1k2 + 1. When k1 = k2 = 2, |N(A)| is minimum, and
|G\N [A]| > 3. Let B = (G2x1 ∪G2x2)∩ (G1y1 ∪G1y2) for
x1, x2 ∈ V1 and y1, y2 ∈ V2, then |N(B)| = 2m+ 2n− 8,
|G \ N [B]| > 3, and there are cycles in G \ N [B], thus
N(B) is a 3-restricted vertex-cut, and |N(A)| > |N(B)|,
a contradiction. We have A = B, and N(A) is a 3-
restricted vertex-cut, and also is a cyclic vertex-cut of
G. Thus κ3(G) = κc(G) = 2m + 2n − 8 by the theorem
2.2(ii) in [2].

In the following, we consider the graph G = G1�G2 with
G1 � Km or G2 � Kn. For G = Km�G2, when m = 2,
we easily obtain κ3(K2�G2) = 3k2 − 1 for k2 ≥ 2, where
G2 is a k2-regular and maximally connected graph with
g(G2) ≥ 5.

Lemma 2.2. Let G2 be a k2(≥ 2)-regular connected
graph. If g(G2) ≥ 5, then κ3(Km�G2) ≤ 3k2 +m− 3 for
m ≥ 3.

Proof. Denote G = Km�G2 and G1 = Km. The graph
G can be viewed as formed from m disjoint copies of
G2, denoted by G2x1 , G2x2 , · · · , G2xm , respectively, by
connecting vertex (x, yj) of G2x with vertex (x′, yj) of
G2x′ for any yj ∈ V2 and x 6= x′.

When m = 3. Let P = u1u2u3 be a path of G, where
u1 = (x1, y1), u2 = (x1, y2), and u3 = (x2, y2). Since
G2xi

is a k2-regular graph for i ∈ {1, 2}, G1yj
∼= Km for

j ∈ {1, 2}, and g(G2) ≥ 5, we have

|N({u1, u2, u3})| = |NG2x1
({u1, u2})|+ |NG2x2

(u3)|
+ |NG1y1

(u1)|+ |NG1y2
({u2, u3})|

− 1

= 2k2 − 2 + k2 +m− 2 +m− 1− 1

= 3k2 +m− 3.

Since g(G2) ≥ 5 and G1
∼= Km, G − N [{u1, u2, u3}]

is connected, and |V (G) \ N [{u1, u2, u3}]| ≥ 3. Hence
N({u1, u2, u3}) is a 3-restricted vertex-cut.

When m > 3. Let P = u1u2u3 be a path of G1y1
for

y1 ∈ V2. Suppose ui = (xi, y1) for i ∈ {1, 2, 3}. Since
G1y1

∼= Km, G2xi
is a k2-regular graph for i ∈ {1, 2, 3},
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and g(G2) ≥ 5, we have

|N({u1, u2, u3})| = |NG1y1
({u1, u2, u3})|

+ Σ3
i=1|NG2xi

({ui})|
= 3k2 +m− 3.

Let G′
2x = G2x − {(x, y)} for some x ∈ {x1, x2, x3}

and y ∈ V2 \ {y1}. Since there is a perfect match-
ing between G2x and G2x′ for any x 6= x′, each vertex
v ∈ V (G) \ N [{u1, u2, u3}] is adjacent to some vertex
in G′

2x, that is, G − N [{u1, u2, u3}] is connected, and
|V (G) \ N [{u1, u2, u3}]| ≥ 3. Hence N({u1, u2, u3}) is a
3-restricted vertex-cut.

In conclusion,

κ3(G) ≤ |N({u1, u2, u3})| = 3k2 +m− 3.

Theorem 7. Let G2 be a k2(≥ 2)-regular and maximally
connected graph. If g(G2) ≥ 5, then κ3(Km�G2) = 3k2+
m− 3 for m ≥ 3.

Proof. Denote G = Km�G2 and G1 = Km. By lem-
ma 2.2, we have κ3(G) ≤ 3k2 + m − 3. By contrac-
tion, κ3(G) < 3k2 + m − 3. Assume S is a 3-restricted
vertex-cut of G with |S| = κ3(G). Let Sx = S ∩ V2x
for any x ∈ V1. Since G1 = Km, there exists a per-
fect matching between two copies G2x and G2x′ for any
x 6= x′. If Sx = ∅ for some x ∈ V1, then all the vertices of
G′

2x are connected to G′
2x(= G2x) by cross edges for any

x ∈ V1\{x}, which implies G−S is connected, contradict-
ing that S is a 3-restricted vertex-cut of G. Therefore,
Sx 6= ∅ for any x ∈ V1.

Let r be the number of copies of G2 in G which are dis-
connected in G − S. If r ≥ 3, then since G2 is maxi-
mally connected and Sx 6= ∅ for any x ∈ V1, we have
|S| = Σx∈V1

|Sx| ≥ 3k2 +m− 3. We suppose r ≤ 2 in the
following.

Case 1. r = 0.

Without loss of generality, assume G′
2x1
⊆ C and G′

2x2
⊆

C ′ for x1, x2 ∈ V1, where C and C ′ are distinct compo-
nents of G−S. Since there is a perfect matching between
G2x1

and G2x2
, we have |Sx1

| ≥ |V (G′
2x2

)| = n − |Sx2
|,

that is |Sx1 |+ |Sx2 | ≥ n. Since Sx 6= ∅ for any x ∈ V1, we
have

|S| = |Sx1 |+ |Sx2 |+ Σx∈V1\{x1,x2}|Sx|
≥ n+m− 2

≥ 3k2 +m− 3

for g(G2) ≥ 5, a contradiction. Hence G−S is connected,
a contradiction.

Case 2. r = 1.

Assume G′
2x1

is disconnected in G−S for x1 ∈ V1. Then
G′

2x is connected in G−S for any x ∈ V1 \{x1}. Suppose

G′
2x2

is contained in a component C of G − S for x2 ∈
V1 \ {x1}. If there exists a copy G′

2x3
* C for x3 ∈ V1 \

{x1, x2}, then since there is a perfect matching between
G2x2 and G2x3 , we have |Sx2 |+ |Sx3 | ≥ n, and

|S| = |Sx2
|+ |Sx3

|+ Σx∈V1\{x2,x3}|Sx|
≥ n+m− 2

≥ 3k2 +m− 3

for g(G2) ≥ 5, a contradiction. Hence G′
2x ⊆ C for any

x ∈ V1 \ {x1}.

Denote the components of G′
2x1

by H1, H2, · · · , Hl(l ≥
2). When |V (Hi)| ≤ 2 for some i ∈ {1, 2, · · · , l}. Since S
is a 3-restricted vertex-cut of G, we have Hi ⊆ C. When
|V (Hi)| ≥ 3k2 for some i ∈ {1, 2, · · · , l} and Hi * C,
VG2x

(Hi) ⊆ Sx for any x ∈ V1 \ {x1}, and we have

|S| = Σx∈V1
|Sx|

≥ κ(G2) + (m− 1)|V (Hi)|
≥ k2 +m− 1 + |V (Hi)| − 1

> 3k2 +m− 3,

a contradiction. When 3 ≤ |V (Hi)| ≤ 3k2 − 1 for some
i ∈ {1, 2, · · · , l} and Hi * C, VG2x(Hi) ⊆ Sx for any
x ∈ V1 \ {x1}, and

|Sx1 | ≥ |NG2x1
[{u1, u2, u3}]| − |V (Hi)|

= 3k2 − 1− |V (Hi)|

for g(G2) ≥ 5, where P = u1u2u3 is a path of Hi. We
have

|S| = Σx∈V1
|Sx|

≥ 3k2 − 1− |V (Hi)|+ (m− 1)|V (Hi)|
≥ 3k2 − 1− |V (Hi)|+m− 1 + |V (Hi)| − 1

= 3k2 +m− 3,

a contradiction. Hence Hi ⊆ C for any i ∈
{1, 2, · · · , l}(l ≥ 2), and G − S is connected, a contra-
diction.

Case 3. r = 2.

Assume G′
2x1

and G′
2x2

are disconnected in G− S. Then
G′

2x is connected in G−S for any x ∈ V1 \ {x1, x2}, with
the similar manner as the case 2, G′

2x is contained in a
component C of G − S, and if there are at least three
vertices in component H of G′

2x1
or G′

2x2
, then H ⊆ C.

If H ⊆ G′
2x1
∪ G′

2x2
and |H| ≤ 2, then H ⊆ C by S

being a 3-restricted vertex-cut of G. Thus if H * C for
H ⊆ G′

2x1
∪ G′

2x2
, then H is one of graphs in figure 1.

Since |N(F1)| = 3k2+2m−6, |N(F2)| = 4k2+2m−8, and
|N(F3)| = 4k2 + 3m− 10, we have |N(Fi)| ≥ 3k2 +m− 3
for any i ∈ {1, 2, 3}, a contradiction. Hence H ⊆ C, and
G− S is connected, a contradiction.

Since all possible cases lead to a contradiction, we have

κ3(G) = 3k2 +m− 3.
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Figure 1. The subgraphs are not contained

F1 F2 F3

in C of G− S.

Lemma 2.3. Let Gi be a ki(≥ 2)-regular connected graph
with g(Gi) ≥ 5 for i ∈ {1, 2}. Then κ3(G1�G2) ≤ 3k1 +
3k2 − 5.

Proof. Denote G = G1�G2. Let P = u1u2u3 be a path
of G, where u1 = (x1, y1), u2 = (x2, y1), and u3 = (x2, y2)
for x1, x2 ∈ V1 and y1, y2 ∈ V2. Since G1yj

is a k1-regular
graph for j ∈ {1, 2} and G2xi

is a k2-regular graph for
i ∈ {1, 2}, we have

|N({u1, u2, u3})| = |NG2x1
({u1})|+ |NG2x2

({u2, u3})|
+ |NG1y1

({u1, u2})|+ |NG1y2
({u3})|

− 1

= 2k1 − 2 + k1 + k2 + 2k2 − 2− 1

= 3k1 + 3k2 − 5

for g(G1) ≥ 5 and g(G2) ≥ 5.

If there exists a isolated vertex (x0, y1) in G1y1
−

NG1y1
({u1, u2}), then G′

2x0
= G2x0

. If there exist-
s a isolated vertex (x2, y0) in G2x2 − NG2x2

({u2, u3}),
then G′

1y0
= G1y0 . Thus there are at least three ver-

tices in each component of G − N({u1, u2, u3}), that is,
N({u1, u2, u3}) is a 3-restricted vertex-cut of G. Hence

κ3(G) ≤ |N({u1, u2, u3})| = 3k1 + 3k2 − 5.

Theorem 8. Let Gi be a ki(≥ 2)-regular and maximally
connected graph with g(Gi) ≥ 5 for i ∈ {1, 2}. Then
κ3(G1�G2) = 3k1 + 3k2 − 5.

Proof. Denote G = G1�G2. By lemma 2.3, we have
κ3(G) ≤ 3k1 + 3k2 − 5. By contraction, κ3(G) <
3k1 + 3k2 − 5. Assume S is a 3-restricted vertex-cut of
G with |S| = κ3(G). Let Sx = S ∩ V2x for any x ∈ V1,
we have Sx 6= ∅ for any x ∈ V1. Otherwise, assume
Sx1

= ∅ for some x1 ∈ V1, and G′
2x1

(= G2x1
) is con-

tained in a component C of G − S, then G′
2x ⊆ C for

any x ∈ NG1(x1). For any x′ /∈ NG1 [x1], we denote these
components of G′

2x′ by H1, H2, · · · , Hl. Since there exist
at least κ(G1) internally disjoint paths between x1 and
x′ in G1, there are κ(G1)|V (Hi)| internally disjoint paths
between G′

2x1
and Hi in G−Sx1

−Sx′ for i ∈ {1, 2, · · · , l}.
If |V (Hi)| ≥ 3k2, then Hi ⊆ C, otherwise

|S| ≥ κ(G1)|V (Hi)|
≥ 3k1k2

≥ 3(k1 + k2 − 1)

> 3k1 + 3k2 − 5,

a contradiction. If 3 ≤ |V (Hi)| ≤ 3k2 − 1, and Hi * C,
then since NG2x′ (Hi) ⊆ Sx′ and g(G2x′) ≥ 5, we have

|Sx′ | ≥ |NG2x′ [{u1, u2, u3}]| − |V (Hi)|
= 3k2 − 1− |V (Hi)|,

where P = u1u2u3 is a path of Hi. Hence

|S| ≥ κ(G1)|V (Hi)|+ 3k2 − 1− |V (Hi)|
= |V (Hi)|(k1 − 1) + 3k2 − 1

> 3k1 + 3k2 − 5,

a contradiction.

If |V (Hi)| ≤ 2 for some i ∈ {1, 2, · · · , l}, then since S is
a 3-restricted vertex-cut of G, there exists a copy G2x2

of
G2 such that some vertex of Hi is adjacent to a vertex of
a component H of G′

2x2
for x2 ∈ V1 \ {x′}, and |V (Hi ∪

H)| ≥ 3. When x2 ∈ NG1 [x1] or |H| ≥ 3, we have Hi ⊆ C
using the similar above manner. In the following, we
assume x2 /∈ NG1

[x1] and |H| ≤ 2, then F = Hi ∪ H
is one of graphs in figure 1. If F * C, then |N(F1)| =
3k1 + 3k2 − 5, and |N(F2)| = |N(F3)| = 4k1 + 4k2 − 8,
we have |N(Fi)| ≥ 3k1 + 3k2 − 5 for any i ∈ {1, 2, 3}, a
contradiction. Thus F ⊆ C, and G − S is connected, a
contradiction. Hence Sx 6= ∅ for any x ∈ V1.

Let r be the number of copies of G2 in G which are dis-
connected in G− S. If r ≥ 3, then

|S| = Σx∈V1
|Sx|

≥ 3k2 +m− 3

> 3k1 + 3k2 − 5

for g(G1) ≥ 5. We suppose r ≤ 2 in the following.

Case 1. r = 0.

Without loss of generality, assume G′
2x1

is contained in
one component C of G−S for x1 ∈ V1. By the minimality
of S, there exists one vertex v ∈ N(u) ∩ V (C ′) for any
u ∈ Sx1 , where C ′ is a component of G−S different from
C. Assume v ∈ G′

2x2
for x2 ∈ V1 \ {x1}, then G′

2x2
⊆ C ′,

and there exists a perfect matching between the copies
G2x1

and G2x2
. Thus |Sx1

|+ |Sx2
| ≥ n, and

|S| = |Sx1
|+ |Sx2

|+ Σx∈V1\{x1,x2}|Sx|
≥ n+m− 2

> 3k1 + 3k2 − 5

by g(Gi) ≥ 5 for i ∈ {1, 2}, a contradiction.

Case 2. r = 1.

Assume G′
2x1

is disconnected in G − S for x1 ∈ V1. G′
2x

is connected in G − S for any x ∈ V1 \ {x1}. There is
at least one copy G2x2

of G2 such that |Sx2
| < κ(G2) for
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x2 ∈ V1 \ {x1}. Otherwise

|S| ≥ mκ(G2)

≥ (3k1 − 1)k2

= 3(k1 − 1)k2 + 2k2

≥ 3(k1 − 1 + k2 − 1) + 2k2

> 3k1 + 3k2 − 5,

a contradiction. Let G′
2x2

be contained in a component
C of G − S. By the minimality of S, there exists one
vertex v ∈ N(u) ∩ V (C ′) for any u ∈ Sx2 , where C ′ is a
component of G− S different from C. Assume v ∈ G′

2x3

for x3 ∈ V1 \ {x2}. If x3 6= x1, then G′
2x3
⊆ C ′, and there

is a perfect matching between the copies G2x2
and G2x3

.
Thus |Sx2

|+ |Sx3
| ≥ n, and

|S| = |Sx2 |+ |Sx3 |+ Σx∈V1\{x2,x3}|Sx|
≥ n+m− 2

> 3k1 + 3k2 − 5

by g(Gi) ≥ 5 for i ∈ {1, 2}, a contradiction. Hence x3 =
x1.

Let v belong to a component H of G′
2x1

. Since G′
2x2
⊆ C

and v ∈ C ′, we have NG2x2
(H) ⊆ Sx2

. When |V (H)| ≥
3k2,

|S| = |Sx2 |+ Σx∈V1\{x2}|Sx|
≥ 3k2 +m− 1

> 3k1 + 3k2 − 5

for g(G1) ≥ 5, a contradiction. When 3 ≤ |V (H)| ≤
3k2 − 1,

|NG2x1
(H)| ≥ |NG2x1

[{u1, u2, u3}]| − |V (H)|
≥ 3k2 − 1− |V (H)|,

where P = u1u2u3 is a path of H. Since NG2x1
(H) ⊆ Sx1

and NG2x2
(H) ⊆ Sx2 , we have

|S| = |Sx1
|+ |Sx2

|+ Σx∈V1\{x1,x2}|Sx|
≥ 3k2 − 1− |V (H)|+ |Sx2

|+m− 2

> 3k1 + 3k2 − 5

for g(G1) ≥ 5, a contradiction. When |V (H)| ≤ 2. Since
S is a 3-restricted vertex-cut ofG, v is adjacent to another
vertex w in one copy G′

2x4
of G−S for x4 ∈ V1 \{x1, x2}.

If |V (G′
2x4

)| ≤ |Sx2 |+ 2, then

|S| = |Sx1
|+ |Sx2

|+ |Sx4
|+ Σx∈V1\{x1,x2,x4}|Sx|

≥ κ(G2) + |Sx2
|+ n− |V (G′

2x4
)|+m− 3

≥ 3k1 + 3k2 − 5

by k2 ≥ 2 and g(Gi) ≥ 5 for i ∈ {1, 2}, a contradiction. If
|V (G′

2x4
)| ≥ |Sx2

| + 3, then since there are (|V (G′
2x4

)| −

|Sx2
|)κ(G1) disjoint paths between G′

2x2
and G′

2x4
in G−

Sx2
− Sx4

, we have

|S| ≥ |Sx2 |+ |Sx4 |+ (|V (G′
2x4

)| − |Sx2 |)κ(G1)

= |Sx2 |+ n− |V (G′
2x4

)|+ (|V (G′
2x4

)|
− |Sx2 |)κ(G1)

= n+ (|V (G′
2x4

)| − |Sx2 |)(k1 − 1)

> 3k1 + 3k2 − 5,

a contradiction.

Case 3. r = 2.

Assume G′
2x1

and G′
2x2

are disconnected in G − S for
x1, x2 ∈ V1, then G′

2x is connected for any x ∈ V1 \
{x1, x2}. Let G′

2x3
be contained in a component C of

G − S for x3 ∈ V1 \ {x1, x2}. By the minimality of S,
there exists one vertex v ∈ N(u)∩V (C ′) for any u ∈ Sx3 ,
where C ′ is a component of G−S different from C. Using
the similar manner as the case 2, if there are at least
three vertices in a component H of G′

2x1
or G′

2x2
, then

we obtain H ⊆ C. If H * C for H ⊆ G′
2x1
∪ G′

2x2
,

then H is one of graphs in figure 1. Since |N(F1)| =
3k1 + 3k2 − 5, and |N(F2)| = |N(F3)| = 4k1 + 4k2 − 8,
we have |N(Fi)| ≥ 3k1 + 3k2 − 5 for any i ∈ {1, 2, 3}, a
contradiction.

Since all possible cases lead to a contradiction, we have

κ3(G) = 3k1 + 3k2 − 5.

Using the similar above manner, we can obtain the similar
results for the 4-restricted connectivity of the Cartesian
product graphs.

Theorem 9. (i) κ4(Km�Kn) =min{4m + n − 8,m +
4n− 8} for m+ n ≥ 10 with n ≥ 2m or m ≥ 2n;
(ii) κ4(Km�Kn) = 2m+ 2n− 8 for 4 ≤ m ≤ 2n− 1 and
4 ≤ n ≤ 2m− 1 .

Theorem 10. Let G2 be a k2(≥ 2)-regular and maximal-
ly connected graph. If g(G2) ≥ 6, then κ4(Km�G2) =
4k2 +m− 4 for m ≥ 4.

Theorem 11. Let Gi be a ki(≥ 2)-regular and maximally
connected graph with g(Gi) ≥ 6 for i ∈ {1, 2}. Then
κ4(G1�G2) = 4k1 + 4k2 − 8.

Let Gi be a ki(≥ 2)-regular and maximally connect-
ed graph. If g(Gi) ≥ k + 2(k ≥ 3), then using the
similar manner as the lemmas 2.2 and 2.3, we have
κk(Km�G2) ≤ kk2 + m − k for m ≥ k(k ≤ 10), and
κk(G1�G2) ≤ kk1 + kk2 − 3k + 4(k ≤ 10). Hence, we
have the following conjectures.

Conjecture 1. Let G2 be a k2(≥ 2)-regular and max-
imally connected graph. If g(G2) ≥ k + 2, then
κk(Km�G2) = kk2 +m− k for m ≥ k(k ≥ 2).
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Conjecture 2. Let Gi be a ki(≥ 2)-regular and maxi-
mally connected graph with g(Gi) ≥ k + 2 for i ∈ {1, 2}.
Then κk(G1�G2) = kk1 + kk2 − 3k + 4(k ≥ 2).
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