
The k-Path Vertex Cover in Product Graphs of
Stars and Complete Graphs∗

Liancui Zuo†, Bitao Zhang, and Shaoqiang Zhang

Abstract

For a graph G and a positive integer k, a subset S of
vertices of G is called a k-path vertex cover if every path
of order k in G contains at least one vertex from S. The
cardinality of a minimum k-path vertex cover is denoted
by ψk(G). In this paper, we present the exact values of
ψk in some product graphs of stars and complete graphs.
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1 Introduction

Let x be a real number, denoted by bxc the maximum
integer no more than x, and denoted by dxe the minimum
integer no less than x. Let G be a finite, simple and
undirected graph, V (G) and E(G) denote its vertex set
and edge set, respectively. For a subset S ⊆ V (G), the
subgraph induced by S is denoted by G[S]. The order of
a path Pn is the number n of vertices while the length
is the number n − 1 of edges. For nonnegative integers
a, b, let [a, b] = {a, a+ 1, · · · , b} if a ≤ b, and [a, b] = ∅ if
a > b.

In recent years, many parameters and classes of graphs
were studied. For example, in [8], different properties of
the intrinsic order graph are obtained, namely those deal-
ing with its edges, chains, shadows, neighbors and de-
grees of its vertices, and some relevant subgraphs, as well
as the natural isomorphisms between them. In [10], the
n-dimensional cube-connected complete graph is stud-
ied. In [22], the multi-level distance number for a class
of Lobster-like trees are researched. In [23, 24], the lin-
ear 4-arboricity of some complete bipartite graphs and
the linear (n − 1)-arboricity of some Cartesian product
graphs are obtained.

For a graph G and a positive integer k, a subset S of the
vertex set of G is called a k-path vertex cover if every
path of order k in G contains at least one vertex from S.
The set S is also called the set of covered vertices in a
k-path vertex cover of G and we call T = V (G)− S the
set of uncovered vertices. The cardinality of a minimum
k-path vertex cover is denoted by ψk(G).

The motivation for the k-path vertex cover, which was
introduced in [13], arises from secure communications in
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wireless sensor networks, as well as in traffic control. The
topology of wireless sensor networks can be modeled as
a graph, in which vertices represent sensor devices and
edges represent communication channels between pairs
of sensor devices. Traditional security techniques cannot
be applied directly to wireless sensor networks since sen-
sor devices are limited in their computation, energy, and
communication capabilities. Furthermore, they are often
deployed in accessible areas, where they can be captured
by an attacker. Generally speaking, a standard sensor
device is not taken into account as tamper-resistant and
it is unnecessary to make all devices of a sensor network
tamper-proof due to increasing cost. Hence, the design
of wireless sensor networks safety contracts has become
a challenge in security research. We focus on the Canvas
scheme [6, 13, 14, 17] which should provide data integrity
in a sensor network. The scheme combines the properties
of cryptographic primitives and the network topology.

The model of communications in wireless sensor net-
works is just equivalent to the traffic control that is for-
mulated in [19]. This problem also has its background in
the real word. The increasing numbers of cars and buses
lead to more and more traffic accidents, hence posing the
installment of cameras to be in an urgent state. If every
crossing is installed with several cameras, the cost would
be enormous and unnecessary, since the installing fees
can vary greatly because of different factors. Hence we
need to install cameras at certain crossings which make
sure that a driver will encounter at least one camera
within n crossings. At the same time, we need to guar-
antee the lowest cost. This practical problem can, then,
be turned into the k-path vertex cover problem.

The concept of k-path vertex cover is a generalization of
the vertex cover. Clearly, ψ2(G) corresponds to the size
of a minimum vertex cover, moreover

ψ2(G) = |V (G)| − α(G),

where α(G) stands for the independence number of graph
G. This gives an interesting connection to the well stud-
ied independence number [9].

A subset of vertices in graph G is called a dissociation set
if it induces a subgraph with maximum degree at most 1.
The number of vertices in a maximum cardinality set in
G is called the dissociation number of G and is denoted
by diss(G). The dissociation number problem is studied
in several articles [1, 2, 5, 7], and a survey for this results
is given in [15]. The value of ψ3(G) is in close relation
to diss(G) because it is easy to see that

ψ3(G) = |V (G)| − diss(G).
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Some approximation algorithms for ψ3(G) are studied in
[18, 19, 20]. In [12] an exact algorithm for computing
ψ3(G) in running time O(1.5171n) for a graph of order
n is presented.

The problem of computing ψk(G) is in general NP-hard
for any fixed integer k ≥ 2, but for tree the problem can
be solved in linear time, as shown in [3]. The authors
also gave some upper bounds on the value of ψk(G) and
provide several estimations and the exact value of ψk(G).

The concept of the k-path vertex cover was also stud-
ied in different graph products. The Cartesian product
G2H of graphs G = (V (G), E(G)) and H = (V (H),
E(H)) has the vertex set V (G) × V (H), and vertices
(u1, v1), (u2, v2) are adjacent whenever u1 = u2 and
v1v2 ∈ E(H), or u1u2 ∈ E(G) and v1 = v2.

The lexicographic product G ◦ H of graphs G =
(V (G), E(G)) and H = (V (H), E(H)) has the vertex set
V (G)×V (H), and vertices (u1, v1), (u2, v2) are adjacent
whenever u1u2 ∈ E(G), or u1 = u2 and v1v2 ∈ E(H).

The direct product G×H of graphs G = (V (G), E(G))
and H = (V (H), E(H)) has the vertex set V (G) ×
V (H), and vertices (u1, v1), (u2, v2) are adjacent when-
ever u1u2 ∈ E(G) and v1v2 ∈ E(H).

The strong product G�H of graphs G = (V (G), E(G))
and H = (V (H), E(H)) has the vertex set V (G) ×
V (H), and vertices (u1, v1), (u2, v2) are adjacent when-
ever u1u2 ∈ E(G) and v1 = v2, or u1 = u2 and
v1v2 ∈ E(H), or u1u2 ∈ E(G) and v1v2 ∈ E(H).

The modular product G�H of graphs G = (V (G), E(G))
and H = (V (H), E(H)) has the vertex set V (G) ×
V (H), and vertices (u1, v1), (u2, v2) are adjacent when-
ever u1u2 ∈ E(G) and v1 = v2, or u1 = u2 and
v1v2 ∈ E(H), or u1u2 ∈ E(G) and v1v2 ∈ E(H), or
u1u2 /∈ E(G) and v1v2 /∈ E(H).

Let G and H be arbitrary graphs, for a fixed vertex
v ∈ V (H), we refer to the set V (G) × {v} as a G-layer.
Similarly {u} × V (H), for a fixed vertex u ∈ V (G), is
an H-layer. Whenever referring to a specific G- or H-
layer, we denote them by Gv or uH, respectively. Lay-
ers can also be regarded as the graphs induced on these
sets. It is clear that in the Cartesian and lexicographic
products, a G-layer or H-layer is isomorphic to G or H,
respectively.

For the Cartesian product of two paths, an asymptoti-
cally tight bound and the exact value for ψ3 are given
in [4], and some bounds are improved in [11] and ex-
tended to the strong product of two paths. Also, an
upper bound for ψ3 and a lower bound of ψk of regular
graphs are presented in [4]. For the lexicographic prod-
uct of two arbitrary graphs, some results are also given
in [11], and a good lower and an upper bounds for ψk,
ψ2 and ψ3 are presented in [3].

2 Main results

Let Sm denote the star graph, whose vertex set V (Sm) =
{u1, u2, · · · , um} and d(u1) = m − 1 while d(ui) = 1
for 2 ≤ i ≤ m. Similarly, let Kn denote the complete
graph, whose vertex set V (Kn) = {v1, v2, · · · , vn}. In
this paper, we present the exact values of ψk(Sm2Kn),
ψk(Sm ◦Kn), ψk(Sm �Kn), ψk(Sm �Kn), and ψk(Sm×
Kn), respectively.

Firstly, we give three lammas. It is obvious that the
following result holds.

Lemma 2.1. For any positive integers k and n with
2 ≤ k ≤ n, we have

ψk(Pn) = bn
k
c,

ψk(Cn) = dn
k
e,

ψk(Kn) = n− k + 1.

Lemma 2.2. If H is a subgraph of G and k is a positive
integer, then

ψk(G) ≥ ψk(H).

This is trivial since we can obtain one k-path vertex cover
S ∩ V (H) of H from every k-path vertex cover S of G
for every subgraph H of G.

Clearly, ψ1(G) = |V (G)| and ψk(G) = 0 for any graph G
and each integer k > |V (G)|, so we always suppose that
2 ≤ k ≤ |V (G)| for ψk(G) in the sequel.

Lemma 2.3. [21] If n ≥ 2 and dn2 e + 1 ≤ k ≤ n + 1,
then ψk(P22Kn) = n.

In the following, we provide the exact value of
ψk(Sm2Kn) at first.

Theorem 2.4. For positive integers m ≥ 3 and n ≥ 2,
the following results hold.
(1)If 2 ≤ k ≤ dn2 e, then ψk(Sm2Kn) = m(n− k + 1).
(2)If dn2 e+ 1 ≤ k ≤ n+ 1, then

ψk(Sm2Kn) = n+ (m− 2)(n− k + 1).

(3)If m ≤ n + 1 and k ∈ [n + 2,mn − n + m − 2], or
m ≥ n+ 2 and k ∈ [n+ 2, n2 + 2n], then

ψk(Sm2Kn) = n+ 1− b k

n+ 1
c.

(4)If m ≤ n+ 1 and k ∈ [(m− 1)(n+ 1),mn], then

ψk(Sm2Kn) = mn− k + 1.

(5)If m ≥ n+ 2 and k ∈ [(n+ 1)2,mn], then

ψk(Sm2Kn) = 0.

Proof. (1)Let S1 = {(u1, vj) ∈ V (Sm2Kn)|j ∈ [k, n]}
with |S1| = n−k+1 and Si = {(ui, vj) ∈ V (Sm2Kn)|1 ≤
j ≤ n − k + 1} with |Si| = n − k + 1, where 2 ≤ i ≤
m. It is clear that S = ∪mi=1Si is a k-path vertex cover
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since the largest connected component induced by all
vertices uncovered is isomorphic to Kk−1. Therefore,
ψk(Sm2Kn) ≤ |S| = m(n− k + 1).

On the other hand, each layer uiKn is isomorphic to Kn

and Sm2Kn has m such layers, where 1 ≤ i ≤ m. So,
we have ψk(Sm2Kn) ≥ mψk(Kn) = m(n−k+1). Thus,

ψk(Sm2Kn) = m(n− k + 1)

for 2 ≤ k ≤ dn2 e.

(2)Let S1 = {(u1, vj) ∈ V (Sm2Kn)|1 ≤ j ≤ k − 1} with
|S1| = k−1 and Si = {(ui, vj) ∈ V (Sm2Kn)|k ≤ j ≤ n}
with |Si| = n − k + 1 for 2 ≤ i ≤ m. It is obvious that
S = ∪mi=1Si is a k-path vertex cover since the largest
connected subgraph of Sm2Kn induced by all vertices
uncovered is isomorphic to Kk−1. Therefore,

ψk(Sm2Kn) ≤ |S|
= k − 1 + (m− 1)(n− k + 1)
= n+ (m− 2)(n− k + 1).

On the other hand, we delete all edges between the layers
u1Kn and uiKn, where 3 ≤ i ≤ m. The graph Sm2Kn

can be partitioned into a subgraph isomorphic to P22Kn

and (m− 2) subgraphs isomorphic to Kn. According to
Lemmas 2.2 and 2.3, we have

ψk(Sm2Kn) ≥ ψk(P22Kn) + (m− 2)ψk(Kn)
= n+ (m− 2)(n− k + 1).

Thus, (2) is proved.

(3)Firstly, we will construct a k-path vertex cover with
n + 1 − b k

n+1c vertices to prove that ψk(Sm2Kn) ≤
n + 1 − b k

n+1c. Let G = Sm2Kn and S = {(u1, vj) ∈
V (Sm2Kn)|b k

n+1c ≤ j ≤ n} with |S| = n + 1 − b k
n+1c.

Clearly, every path Pn+1 in Sm2Kn contains at least one
vertex that belongs to V (u1Kn), so graph G[V (G) − S]
contains b k

n+1c − 1 vertices which belong to V (u1Kn),
thus the largest connected subgraph of G[V (G)−S] has
order at most

n+(n+1)(b k

n+ 1
c−1) ≤ n+(n+1)(

k

n+ 1
−1) = k−1.

Therefore, S is a k-path vertex cover of Sm2Kn and then
ψk(Sm2Kn) ≤ |S| = n+ 1− b k

n+1c.

Secondly, we show that ψk(Sm2Kn) ≥ n + 1 − b k
n+1c.

Assume to the contrary that T is a k-path vertex cover of
ψk(Sm2Kn) with |T | ≤ n−b k

n+1c. Let Ti = T∩V (uiKn)
and ni = |Ti|, where 1 ≤ i ≤ m. It is easy to see that T =
∪mi=1Ti and |T | =

∑m
i=1 ni. Since n−ni ≥ n−|T | ≥ a for

a = b k
n+1c, there are at least a vertices which not belong

to T in each layer uiKn for 1 ≤ i ≤ m. By the symmetry
of vertices u2, · · · , um in graph Sm, we assume that n2 ≥
n3 ≥ · · · ≥ nl ≥ 1 and nj = 0 for j ∈ [l + 1,m], where
2 ≤ l ≤ m. If m ≤ n and n+ 2 ≤ k ≤ mn+m− n− 2,
then a + 2 = b k

n+1c + 2 ≤ b (m−2)(n+1)+n
n+1 c + 2 = m. If

m ≥ n + 1 and n + 2 ≤ k ≤ n2 + 2n, then a + 2 =

b k
n+1c + 2 ≤ bn(n+1)+n

n+1 c + 2 = n + 2 ≤ m. Therefore,
there are at least a+2Kn-layers in Sm2Kn in both cases.

We only need to show that all vertices which belong to
vertex set ∪a+2

i=1 (V (uiKn)− Ti) can form a path since

| ∪a+2
i=1 (V (uiKn)− Ti)| =

∑a+2
i=1 (n− |Ti|)

≥ n(a+ 2)−
∑m

i=1 |Ti|
≥ n(a+ 2)− (n− a)
= b k

n+1c(n+ 1) + n

≥ k−n
n+1 (n+ 1) + n

= k.

Clearly, if a = 1, then all vertices which belong to vertex
set ∪3i=1(V (uiKn) − Ti) can form a path. We assume
that a ≥ 2 and construct such a path P in two cases.

Case 1. l ≥ a+ 2.

Since n1 + n2 + n3 ≤
∑m

i=1 ni ≤ n − 1, there are
three vertices (u1, vy2

), (u2, vy2
), (u3, vy2

) /∈ T . Lying
in the layer u2Kn, all the vertices which are not cov-
ered by T can form a path P2 with terminate vertex
(u2, vy2), where 1 ≤ y2 ≤ n. Since 1 + n1 + n3 + n4 ≤∑m

i=1 ni ≤ n − 1, there are three vertices (u1, vy3),
(u3, vy3

), (u4, vy3
) /∈ T . Lying in the layer u3Kn, all

vertices which are not covered by T can form a path
P3 with original vertex (u3, vy2

) and terminate vertex
(u3, vy3), where 1 ≤ y3 ≤ n and y3 6= y2. · · · Lying
in the layer ua+2Kn, all vertices which are not covered
by T can form a path Pa+2 with the original vertex
(ua+2, vya+1

), where 1 ≤ ya+1 ≤ n and ya+1 6= yi for
2 ≤ i ≤ a. Let V1 = {(u1, vy2

), (u1, vy3
), · · · , (u1, vya+1

)}
and V2 = (V (u1Kn)− T1 − V1) ∪ {(u1, vya), (u1, vya+1)}.
All vertices which belong to vertex set V2 can form a path
P1 with the originate vertex (u1, vya

) and the terminate
vertex (u1, vya+1

). Set

P = P2 + (u2, vy2)(u1, vy2) + (u1, vy2)(u3, vy2)
+P3 + (u3, vy3

)(u1, vy3
) + · · ·+ Pa+1

+(ua+1, vya
)(u1, vya

) + P1

+(u1, vya+1
)(ua+2, vya+1

) + Pa+2.

We have a path P of order at least k with no vertex that
belongs to T , a contradiction.

Case 2. l < a+ 2.

Since n1 + n2 + n3 ≤
∑m

i=1 ni ≤ n − 1, there are three
vertices (u1, vy2), (u2, vy2), (u3, vy2) /∈ T . Lying in the
layer u2Kn, all the vertices which are not covered by T
can form a path P2 with the terminate vertex (u2, vy2

),
where 1 ≤ y2 ≤ n. Since 1+n1+n3+n4 ≤

∑m
i=1 ni ≤ n−

1, there are three vertices (u1, vy3
), (u3, vy3

), (u4, vy3
) /∈

T . Lying in the layer u3Kn, all vertices which are not
covered by T can form a path P3 with the original vertex
(u3, vy2

) and the terminate vertex (u3, vy3
), where 1 ≤

y3 ≤ n and y3 6= y2. · · · Since

l − 3 + n1 + nl−1 + nl ≤
m∑
i=1

ni ≤ n− 1,

there are three vertices (u1, vyl
), (ul, vyl

), (ul+1, vyl
) /∈ T .

Lying in the layer ulKn, all the vertices can form a path
Pl with the original vertex (ul, vyl−1

) and the terminate
vertex (ul, vyl

), where 1 ≤ yl ≤ n and yl 6= yi for 2 ≤ i ≤
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l − 1. Lying in the layer ul+1Kn, all vertices which are
not covered by T can form a path Pl+1 with the original
vertex (ul+1, vyl

) and the terminate vertex (ul+1, vyl+1
),

where 1 ≤ yl+1 ≤ n, (u1, vyl+1
) /∈ T and yl+1 6= yi

for 2 ≤ i ≤ l. · · · Lying in the layer ua+2Kn, all the
vertices can form a path Pa+2 with the original vertex
(ua+2, vya+1), where 1 ≤ ya+1 ≤ n, (u1, vya+1) /∈ T and
ya+1 6= yi for 2 ≤ i ≤ a. Let

V1 = {(u1, vy2
), (u1, vy3

), · · · , (u1, vya+1
)}

and

V2 = (V (u1Kn)− T1 − V1) ∪ {(u1, vya), (u1, vya+1)}.

All vertices which belong to vertex set V2 can form a path
P1 with the originate vertex (u1, vya

) and the terminate
vertex (u1, vya+1). Set

P = P2 + (u2, vy2)(u1, vy2) + (u1, vy2)(u3, vy2)
+P3 + (u3, vy3

)(u1, vy3
) + · · ·+ Pa+1

+(ua+1, vya
)(u1, vya

) + P1

+(u1, vya+1
)(ua+2, vya+1

) + Pa+2.

We have a path P of order at least k with no vertex that
belong to T , a contradiction, too.

(4)Let S be a k-path vertex cover of Sm2Kn with |S| =
mn − k + 1. Since |V (Sm2Kn)| − |S| = k − 1, we have
ψk(Sm2Kn) ≤ mn− k + 1.

Next we prove that ψk(Sm2Kn) ≥ mn − k + 1. As-
sume to the contrary that T is a k-path vertex cover of
ψk(Sm2Kn) with |T | ≤ mn− k. Let Ti = T ∩ V (uiKn)
with |Ti| = ni, where 1 ≤ i ≤ m. It is easy to see
that T = ∪mi=1Ti and |T | =

∑m
i=1 ni. Since n − ni ≥

n−|T | ≥ n−mn+k ≥ n−mn+(m−1)(n+1) = m−1,
there are at least m − 1 vertices which not belong to
T in each layer uiKn for 1 ≤ i ≤ n. It is clear that
|V (Sm2Kn)−T | ≥ mn−(mn−k) = k, and we can show
that all vertices of V (Sm2Kn) − T can form a path as
(3) similarly, a contradiction.

(5)Since every path in Sm2Kn with order n + 1 has at
least one vertex that belongs to V (u1Kn), every path of
Sm2Kn has order at most

n+ n(n+ 1) = n2 + 2n ≤ k − 1.

Therefore, ψk(Sm2Kn) = 0.

In the next theorem, we study Sm ◦Kn, Sm �Kn, and
Sm �Kn.

Theorem 2.5. For positive integers m ≥ 3 and n ≥ 2,
the following results hold.
(1)If 2 ≤ k ≤ n+ 1, then

ψk(Sm ◦Kn) = ψk(Sm �Kn)

= ψk(Sm �Kn) = n+ (m− 1)(n− k + 1).

(2)If m ≤ n + 1 and n + 2 ≤ k ≤ mn − n + m − 2, or
m ≥ n+ 2 and n+ 2 ≤ k ≤ n2 + 2n, then

ψk(Sm ◦Kn) = ψk(Sm �Kn)

= ψk(Sm �Kn) = n+ 1− b k

n+ 1
c.

(3)If m ≤ n+ 1 and (m− 1)(n+ 1) ≤ k ≤ mn, then

ψk(Sm ◦Kn) = ψk(Sm �Kn)

= ψk(Sm �Kn) = mn− k + 1.

(4)If m ≤ n+ 2 and (n+ 1)2 ≤ k ≤ mn, then

ψk(Sm ◦Kn) = ψk(Sm �Kn) = ψk(Sm �Kn) = 0.

Proof. It is easy to see that both Sm �Kn and Sm �Kn

are isomorphic to Sm ◦Kn, thus it is only need to show
that results hold for Sm ◦Kn.

(1)Let

S1 = {(u1, vj) ∈ V (Sm ◦Kn)|1 ≤ j ≤ n}

with |S1| = n and

Si = {(ui, vj) ∈ V (Sm ◦Kn)|k ≤ j ≤ n}

with |Si| = n− k + 1, where 2 ≤ i ≤ m. It is clear that
S = ∪mi=1Si is a k-path vertex cover since the largest
connected subgraph of Sm ◦ Kn induced by all vertices
uncovered is isomorphic to Kk−1. Therefore,

ψk(Sm ◦Kn) ≤ |S| = n+ (m− 1)(n− k + 1).

On the other hand, we delete all edges between layers
u1Kn and uiKn, where 3 ≤ i ≤ m. The graph Sm ◦Kn

can be partitioned into a subgraph isomorphic to K2n

and (m− 2) subgraphs isomorphic to Kn. According to
Lemma 2.2, we have

ψk(Sm ◦Kn) ≥ ψk(K2n) + (m− 2)ψk(Kn)
= 2n− k + 1 + (m− 2)(n− k + 1)
= n+ (m− 1)(n− k + 1).

(2)Firstly, we construct a k-path vertex cover with n +
1− b k

n+1c vertices to prove that

ψk(Sm ◦Kn) ≤ n+ 1− b k

n+ 1
c.

Let G = Sm ◦Kn and

S = {(u1, vj) ∈ V (Sm ◦Kn)|b k

n+ 1
c ≤ j ≤ n}

with |S| = n+ 1− b k
n+1c. It is obvious that every path

in Sm ◦Kn with order n+ 1 contains at least one vertex
that belongs to V (u1Kn), so graph G[V (G)−S] contains
b k
n+1c − 1 vertices which belong to V (u1Kn), thus the

largest order of paths in G[V (G)− S] is at most

n+(n+1)(b k

n+ 1
c−1) ≤ n+(n+1)(

k

n+ 1
−1) = k−1.

Therefore, S is a k-path vertex cover of Sm ◦ Kn and
then

ψk(Sm ◦Kn) ≤ |S| = n+ 1− b k

n+ 1
c.
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Secondly, we can show that

ψk(Sm ◦Kn) ≥ n+ 1− b k

n+ 1
c

by Theorem 2.4 since Sm2Kn is a subgraph of Sm ◦Kn.

(3)Let S be a k-path vertex cover of Sm ◦Kn with |S| =
mn− k + 1. Since |V (Sm ◦Kn)| − |S| = k − 1, we have
ψk(Sm ◦Kn) ≤ mn− k + 1.

We can obtain that ψk(Sm ◦ Kn) ≥ mn − k + 1 as (2)
similarly.

(4)Since every path in Sm ◦Kn with order n+ 1 has at
least one vertex that belongs to u1Kn, the largest order
of paths in Sm ◦Kn is at most

n+ n(n+ 1) = n2 + 2n ≤ k − 1.

Therefore, ψk(Sm ◦Kn) = 0.

Finally, we present the exact value of ψk(Sm×Kn). Be-
fore giving the main result, we show the following lemma
first.

Lemma 2.6. If n ≥ 3 and 4 ≤ k ≤ 2n− 1, then

ψk(P2 ×Kn) ≥ n+ 1− bk
2
c.

Proof. Assume to the contrary that T is a k-path vertex
cover of the graph P2 × Kn with |T | = n − bk2 c. Let
Ti = T ∩ V (u1Kn) with ni = |Ti| for i = 1, 2. Because of
the symmetry of two layers in graph P2 × Kn, we may
assume that n1 ≥ n2. Since n1 +n2 = |T | = n−bk2 c, we
have

n2 ≤ b
n− bk2 c

2
c ≤ bn− 2

2
c ≤ b2n− 5

2
c = n− 3.

Let a = n− |T1| and b = n− |T2|. It is easy to see that

n ≥ a = n− |T1| ≥ n− |T | = b
k

2
c.

According to the symmetry of vertices in each layer of
graph P2 × Kn, we may assume that V (u1Kn) − T1 =
{(u1, v1), (u1, v2), · · · , (u1, va)}. Next we discuss on a in
two cases.

Case 1. a = bk2 c.

Then T1 = T and T2 = ∅.

Let

P = (u2, v2)(u1, v1)(u2, v3)(u1, v2)(u2, v4)
(u1, v3)(u2, v5) · · · (u1, va)(u2, va+2)

with a+2 = bk2 c+2 ≤ b 2n−1
2 c+2 = n+1, where indices

are taken modulo n. Since |V (P )| = 2a+1 = 2bk2 c+1 ≥
k, we have a path P of order at least k with no vertex
that belongs to T , a contradiction.

Case 2. bk2 c+ 1 ≤ a ≤ n.

Let c = bk2 c+ 1 and

V (u2Kn)− T2 = {(u2, vxi
)|1 ≤ i ≤ b,

1 ≤ xi ≤ n, xp < xq for 1 ≤ p < q ≤ b}.

Let Ux = {xi|(u2, vxi) ∈ (V (u2Kn) − T2)} and xl be
the smallest index of xi not less than 3, then we have
3 ≤ xl ≤ n2 + 3, where 1 ≤ l ≤ b and xl ∈ Ux. For any
d ≥ 1, we have 3 + d ≤ xl+d ≤ n2 + d+ 3, where indices
are taken modulo n. Since, for any integer 1 ≤ j ≤ c−1,
we have xl+j−1 ≥ j+2 and xl+j−1 ≤ n2+j+2 ≤ n+j−1,
(u2, vxl+j−1

) is incident with (u1, vj) and (u1, vj+1). Let

P = (u1, v1)(u2, vxl
)(u1, v2)(u2, vxl+1

)
· · · (u1, vc−1)(u2, vxc+l−2

)(u1, vc),

where xc+l−2 ≤ n2 + c + 1 ≤ n1 + a + 1 = n + 1 and
indices are taken modulo n. Since

|V (P )| = 2c− 1 = 2bk
2
c+ 1 ≥ k,

we have a path P of order at least k with no vertex that
belongs to T , a contradiction, too.

By the definition, we have

E(Sm×Kn) = {(u1, vj)(ui, vl)|2 ≤ i ≤ m, 1 ≤ j 6= l ≤ n}

and |E(Sm ×Kn)| = n(n − 1)(m − 1). It is easy to see
that Sm×Kn is a bipartite graph with a partition (X,Y ),
where X = V (u1Kn) and Y = V (Sm ×Kn)−X.

Theorem 2.7. For any positive integers m ≥ 3 and
n ≥ 2, we have

ψk(Sm ×Kn) =


2, if n = 2 and 2 ≤ k ≤ 3,
0, if n = 2 and 4 ≤ k ≤ mn,
n+ 1− bk2 c, if n ≥ 3 and

2 ≤ k ≤ 2n+ 1,
0, if n ≥ 3 and 2n+ 2 ≤ k ≤ mn.

Proof. (1)If n = 2, then graph Sm ×Kn consists of two
vertex-disjoint isomorphic stars with orderm. Therefore,
we have ψk(Sm) = 1 and

ψk(Sm ×Kn) = 2ψk(Sm) = 2

for 2 ≤ k ≤ 3. Since every path in graph Sm × Kn

contains at most three vertices in this case, we have
ψk(Sm ×Kn) = 0 for 4 ≤ k ≤ mn.

(2)Assume that n ≥ 3 and 2 ≤ k ≤ 2n+ 1.

Firstly, we construct a k-path vertex cover with n+ 1−
bk2 c vertices to prove that

ψk(Sm ×Kn) ≤ n+ 1− bk
2
c.

Let G = Sm ×Kn and

S = {(u1, vj) ∈ V (Sm ×Kn)|bk
2
c ≤ j ≤ n}

with |S| = n + 1 − bk2 c. Since every edge in Sm × Kn

contains one vertex that belongs to V (u1Kn), graph
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G[V (G) − S] contains bk2 c − 1 vertices which belong to
V (u1Kn), thus the largest order of paths in G[V (G)−S]
is at most

1 + 2(bk
2
c − 1) ≤ 1 + 2(

k

2
− 1) = k − 1.

Therefore, S is a k-path vertex cover of Sm × Kn and
then

ψk(Sm ×Kn) ≤ |S| = n+ 1− bk
2
c.

Secondly we show that

ψk(Sm ×Kn) ≥ n+ 1− bk
2
c

in two cases.

Case 1. 2 ≤ k ≤ 2n− 1.

If 2 ≤ k ≤ 3, then set Pj = (u2, vj)(u1, vj+1)(u3, vj) for
1 ≤ j ≤ n, where indices are taken modulo n. Since
graph Sm × Kn contains n vertex-disjoint paths Pj of
order three, according to Lemma 2.2, we have

ψk(Sm ×Kn) ≥ nψk(P3) ≥ n = n+ 1− bk
2
c.

Assume that 4 ≤ k ≤ 2n− 1, then we have

ψk(Sm ×Kn) ≥ ψk(P2 ×Kn) ≥ n+ 1− bk
2
c

according to Lemmas 2.2 and 2.6 since P2 × Kn is a
subgraph of Sm ×Kn.

Case 2. 2n ≤ k ≤ 2n+ 1.

Let

P = (u2, v2)(u1, v1)(u2, v3)(u1, v2) · · · (u2, vn)
(u1, vn−1)(u2, v1)(u1, vn)(u3, v1)

with |P | = 2n+1 ≥ k. Since n ≥ 3 and Sm×Kn contains
a path P with order at least k, we have

ψk(Sm ×Kn) ≥ 1 = n+ 1− bk
2
c.

(3) Assume that n ≥ 3 and 2n+ 2 ≤ k ≤ mn.

Since every edge in Sm×Kn has one vertex that belongs
to V (u1Kn), the largest order of paths in Sm ×Kn is at
most 2n + 1 ≤ k − 1 in this case. Therefore, ψk(Sm ×
Kn) = 0.
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[8] L. González, Edges, chains, shadows, neighbors and
subgraphs in the intrinsic order graph, IAENG In-
ternational Journal of Applied Mathematics, vol.
42, no. 1, pp 66-73, 2012.

[9] J. Harant, M.A. Henning, D. Rautenbach, I. Schier-
meyer, The Indepence Number in Graphs of Maxi-
mum Degree Three, Discrete Math. 308(2008)5829-
5833.

[10] J. Liu and X. Zhang, Cube-connected complete
graphs, IAENG International Journal of Applied
Mathematics, vol. 44, no. 3, pp 134-136, 2014.

[11] M. Jakovac, A. Taranenko, On the k-path ver-
tex cover of some graph products, Discrete Math.
313(1)(2013)94-100.
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