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The Study on Almost Periodic Solutions for A
Neutral Multi-species Logarithmic Population

Model With Feedback Controls By Matrix's
Spectral Theory

Changjin Xu, and Yusen Wu

Abstract—In this paper, a neutral multi-species logarithmic
population model is investigated. By applying the matrix’s
spectral theory which is different from the methods employed
in the literature, a set of sufficient conditions are obtained
for the existence and uniqueness of almost periodic solution
of the neutral multi-species logarithmic population model. The
obtained sufficient conditions are given in terms of spectral
radius of explicit matrices which are much different from those
by the algebraic inequalities. An example is given to illustrate
the feasibility and effectiveness of the obtained results. The
results of this paper are completely new and generalize those
of the previous studies.

Index Terms—Nicholson-type system, positive solution, expo-
nential stability, delay, Lyapunov method.

I. INTRODUCTION

N recent years, various multi-species logarithmic pop-

ulation models have been extensively investigated by
many scholars due to their theoretical and practical signifi-
cance in biology. Gopalsamy [1] and Kirlinger [2] proposed
the following single species logarithmic model

AN (1)
dt

=N@t)la—blnN({t)—cInN(E—7)]. (1)
In 1997, Li [3] generalized system (1) to the following non-
autonomous form

AN (t)
dt

= N(®)[a(t)=b(t) In N(t)—c(t) In N(t—7())]. (2)

Applying the coincidence degree theory, Li [3] established
some sufficient conditions for the existence of positive pe-
riodic solutions of system (2). In 2003, Chen et al. [4]
generalized system (2) to the system with state dependent
delays and investigated the existence of positive periodic
solutions of the system. In [5], Liu proposed the following
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multispecies periodic logarithmic population model

AN ()

i~ Z aij (1

n

— me(t) thj(t

j=1

t)In N;(t)

—7ij(t)] - 3)

Applying the coincidence degree theory and constructing
Lyapunov functional, a set of sufficient conditions which
guarantee the existence, uniqueness and stability of the posi-
tive periodic solution of system (3) are established. In 2005,
Chen [6] proposed the following multispecies logarithmic
population model

dNi(t) _
dt

Zaw

t)In N; (t — 73;(¢))

t)In N;(t)

_ZbU
JchU / Ku

By using the fixed point theory and constructing a suitable
Lyapunov functional, a set of easily applicable criteria are
obtained for the existence, uniqueness and global attractivity
of positive periodic solution (positive almost periodic solu-
tion) of the model (4). Gopalsamy [1] pointed out that in
some case, the neutral delay population models are more
realistic. Then Li [7] and Li et al. [8] considered the periodic
solution or almost periodic solutions of the following two
single species neutral Logarithmic models

AN(t) _
=N ()

s)In N;(s)ds|. 4)

—a(t)lnN(t — o)

iy PNEZT) T)} 5)
and
AN(t)
7— Zaj YInN(t —o;(t))
- dlnN 7i(t))

(6)

,ij

respectively. In 2003, Yang and Cao [9] addressed the exis-
tence of positive periodic solutions of the neutral logarithmic

t 7

(Advance online publication: 15 February 2016)



TAENG International Journal of Applied Mathematics, 46:1, [JAM 46 1 16

population model with multiple delays

dN(t) "
o = N(t)|a(t) - _ZNN)
xNu—nw»—Ejmo@Eﬁ%ﬁﬁD.a>

In 2004, Lu and Ge [10] pointed out that the proof of
Theorem 3.1 is incomplete and analyzed the existence of
positive periodic solutions for neutral logarithmic population
model with multiple delays

dN(t) _
dt

HInN(t — oi(1))

(P
_ib] M] )

With the help of an abstract continuous theorem of k-
set contractive operator, authors obtained some sufficient
conditions for the existence, global attractivity of positive
periodic solution of (8). In 2009, Wang et al. [11] focused
on the existence and uniqueness of positive periodic solutions
for a following neutral logarithmic population model

dN(t)
— N@P@—

a(t)In N(t)

j=1
- Z c;(t) /_ kj(t — s)In N(s)ds
—EZ%@dmN%;m“”} ©

Applying an abstract continuous theorem of k-set contractive
operator, authors established some sufficient conditions for
the existence, global attractivity of positive periodic solution
of (9). In 2010 and 2011, Alzabut et al. [12-13] studied the
almost periodic solutions for delay logarithmic population
models. Recently, Chen [14] had investigated the periodic
solution and almost periodic solutions of the following
neutral multi-species logarithmic population model

dN;(t)
7 = [ Za” t) In N;(
— wa t)In N (t — 75())
+ch / Kij(t — s)In N;(s)ds
S dlﬂN — i (t)
=D dijt ﬁ ., 30
Jj=1
where 7 = 1,2,---,,n, aij(t),bij(t),cij(t),dij(t) S

C(R, (0,+00)),7;(t),mi;(t) € C(R, R") are all continuous

functions. ["*° K;j(s)ds = 1, [;7°° sKi;(s)ds < +oc.
Many scholars [15-18,22-24] argue that ecosystem in the

real world is continuously distributed by unpredictable forces

which can result in changes in the biological parameters
such as survival rates. Of practical interest in ecology is
the question of whether or not an ecosystem can withstand
those unpredictable disturbances which persist for a finite
period of time. In the language of control variables, we call
the disturbance functions as control variables. Motivated by
the discussion above, we will investigate the neutral multi-
species logarithmic population model with feedback controls
as follows

dN;(t)
T l Zaw t) In N;(
_ wa lnN Tij(t))
—I—ZC” / Kzg IIIN( )d
dlIlN (%
B de dt — nij(t)
—ei(t)ui(t) — fi(t)ui(t — Ui(t))] )
Wll) — ou(tyut) + B,(0) N, 1)

(1D
where ¢ = 1,2, ;n,u;(i = 1,2,--- ,n) denote indirect
feedback control variables.

The main aim of this article is to establish some sufficient
conditions for the existence and uniqueness of almost peri-
odic solutions of (11). Our results are new and complement
those of the previous studies in [8-14]. To the best of our
knowledge, it is the first time to investigate the neutral multi-
species logarithmic population model with feedback controls
by applying the matrix’s spectral theory. So far, there are
very few paper that deal with the almost periodic solutions
by applying the matrix’s spectral theory.

The remainder of the paper is organized as follows. In
Section II, we introduce some notations and assumptions,
which can be used to check the existence and uniqueness
of almost periodic solution of system (11). In Section III,
we present some sufficient conditions for the existence and
uniqueness of almost periodic solution of (11). An example
is given to illustrate the effectiveness of the obtained results
in Section V. A brief conclusion is drawn in Section VI.

II. NOTATIONS AND ASSUMPTIONS

In this section, we would like to introduce some no-
tations and assumptions which are used in what follows.
Let z = (x1,22, - ,2,)T € R™ denote a column vector,
D = (dij)nxn be an n x n matrix, DT be the transpose
of D, and E,, be the identity matrix of size n. A matrix or
vector D > 0 means that all entries of D are greater than
zero, likewise for D > 0. For matrices or vectors D and F,
D > E(D > E) means that D — F > 0(D — E > 0). p(D)
denotes the spectral radius of the matrix D.

€ R™, then we define the com-

If v = (vy,v2,,vn)7
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monly used norms as follows

2

[vlfoe = max [vg].
1<i<n

n n
ol =~ ol llolla = [ D Joif?
Jj=1 j=1

If A= (aij)nxn. then we define the norm of the matrix || A||
as follows

| Av]| _

1Al = sup ||Av[| = sup [|Av]].

[lvl[=1 lvl[<1

sup
veER™,v#0

]|

In particular,

n

— .. — T L
Al = g ol 141k = Do (AT

[|Alloo = maxi<i<n Z?zl la;;|. Let
T
ft)dt =0,

lim
T—+oco T 0

m(f)

where f(t) is almost periodic function.

Throughout this paper, we make the following assumptions.

H) r3(t), aiz(t), bij(t), cij (), dij(t), i (t), Bi(t), vi(t), (),
fi(t),4,5 1,2,---,n are continuous real-valued
nonnegative almost periodic functions on R.

(H2) The kernels K;;(.),i,7 = 1,2,---,n are nonneg-
ative continuous functions defined on [0,+4o00) satisfying
“+ o0

(H3) 7,;(t),04(t), 8;(t) and 7;;(t) are nonnegative, continu-
ously differentiable and almost periodic functions on ¢ € R.
Moreover, 7;;(t),&;(t),d;(t) and 7;;(t) are all uniformly
continuous on R with inf;er{1 — 7;;(¢)} > 0,infier{l —
O’Z(t)} > O,infteR{l — 5L(t)} > O,infteR{l - r]u(t)} > 0.
System (11) is supplemented with the initial value conditions

NZ(S) = @Ni(s) > OVNZ(S) = ¢Ni(s)75 € (_0070]1

¢n:(0) >0, sup on,(s) <+oo, sup on(s)
s€(—00,0] s€(—00,0]
< 400,u;i(8) = ¢y, (s) > 0,04,(0) > 0,s € (—o0,0].
(12)

It is easy to see that there exists a positive solution y(t) =
(N1(t), Na(t), -+, xn(t), ur(t), ua(t), - -, un(t)) of system
(11) satisfying the initial value condition (12).

III. EXISTENCE AND UNIQUENESS OF ALMOST PERIODIC
SOLUTION

In this section, we will establish sufficient conditions on the
existence and uniqueness of almost periodic solutions of (11).
For convenience, we introduce some definitions and lemmas
which will be used in what follows.

Definition 3.1 [19-20] Ler f(¢) : R — R™ be continuous in
t. f(t) is said to almost periodic on R, if for any € > 0,
the set T(f,e) = {0 : |f(t+0) — f(t)] < &,Vt € R} is
relatively dense, i.e., for Ye > 0, it is possible to find a
real number | = () > 0, for any interval with length (<),
there exists a number § = () in this interval such that

|f(t+06) — f(t)| <&, for Ve R.

Definition 3.2 Let z € R™ and Q(t) be a n X n continuous
matrix defined on R. The linear system

d

= = Q1)

is said to admit an exponential dichotomy on R if there exist
constants k, X\ > 0, projection P and the fundamental matrix
Z(t) of (13) satisfying

| Z(t)PZ7Y(s)|| < ke %) for t > s,

13)

|1Z(t)(I — P)Z7Y(s)|| < ke %) for t <s.

Lemma 3.1 [20-21] If the linear system (13) admits an
exponential dichotomy, then almost periodic system

dz

dt

has a unique almost periodic solution z(t) and
t

/.

+o00
—/t Z(t)(I — P)Z *(s)g(s)ds.

()=(t) + 9(1) (14)

z(t) Z(t)PZ 7 (s)g(s)ds

Lemma 3.2 [20-21] Ler a;(t) be an almost periodic function
on R and a;(t) > 0. Then the system

B iag(—ar(t),—as(t), -+ —an(®)=(t)  (15)

dt

admits an exponential dichotomy.

Remark 3.1 It follows from Lemma 3.2 that system (15)
has a unique almost periodic solution z(t) which takes the
form

— (/ e~ Jiadug (g ..
t _Oot

/ e “”(“)d“gn(s)ds> .
—o0

Lemma 3.3 [14] Assume that v(t),n(t) are all continuously
differentiable T-periodic functions, a(t),b(t) are all nonneg-
ative continuous T-periodic functions such that fo a(t)dt >
0, then

.

_ / e 124 (q(s)e(s) + ¢ (s)) (v(s — n(s))ds,

— 00

e~ Js aMdTp(s)0' (5) (s — n(s))ds

c(t)o(t —n(t))

b(s)
1-n'(s)"
Lemma 3.4 Let m be a positive integer and B be an Banach
space. If the mapping I' : B — B is a contraction mapping,
then I' : B — B has exactly one fixed point in B, where
rm="1n(rm1t).

where c(s) =

By (H1), m(a;) > 0. In view of Lemma 3.1, we have the
following result.

(Advance online publication: 15 February 2016)
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Lemma 3.5 (Ny(t), Na(t), -, Np(t), u1(t), ua(t), -,
un ()T is an almost periodic solution of system (11) if and
only if it is an almost periodic solution of

dN;(t) [ Z .

it~
t)In N; (t — 7;;(¢))

t) In N;(

_wa

+ZCU /
dIn N;(

_Zd” = -

—ei(t)ui(t) — fi(t)ui(t — Uz'(t))] ;

5)In N;(s)ds

77%]( )

ui(t) = / t els @i (QdCI3, (5) In Ny(s)
() In Ni(s — 6:(s))]ds,

(16)

where ¢ = 1,2,
following system

,n. Obviously, (16) is equivalent to the

dN;(t)
7 = N;(t [ Za” t) In N;(
- Z bij (t) In N (t — 73;(t))
+ch / Kij(t — s)In N;(s)ds
dlnN T]ij(t)

_ de T

—ei(t) /t els :(Qd( () In Ny (s)
+7i(s) In Ni(s — di(s)))ds

—fi(t) /_:”i(t)

+"}/1(8) In NZ(S — 51(5)))d5] .

el 7T O (3, () In N (s)

a7)

Now we are in a position to state our main results on the
existence and uniqueness of almost periodic solution for
system (11).

Theorem 3.1 In addition to (Hl)-(H3), if the following
condition
(H4) p(A) < 1, where A = (Aij)nxn and
t
Ay = dii(t) + / e Js wilOd e, (s)ds,

t
Aij = dij(t) + /

— 0o

e Jd ai"(C)dC@ij(s)ds, 1 7,

@”(8) = a”(s) + b“(s) + c“-(s) Aw K”(Q)dﬁ

+ dis(s) (s (s)dis(s) + |dis(5)])

Hels)+ 469) [ T O (g () 4 y,(6))de,

0i;(s) = (ai;j(s) + bij(s) + cij(s) /OOO Ki;(0)d6
dij () (aii(s)dij (s) + |dy; (s)]),7 # J.

where © = 1,2,--- ,n. Then system (11) has a unique
positive almost periodic solution.

Proof Let N;(t) = ), then (17) takes the form

d:cZ
=ri(t Za” i (t
- Z bij(t)x;(t — 7i5(t))
+Zczj / Kz] x]( )dS
- Z dig(t)a;(t — mii (8) (1 — 1i5(t))
—eit) [ el O 5 )i
+yi(s)wi(s — di(s)))ds
t—oi(t) P
hi) [ el O sy
+i(s)zi(s — di(s)))ds
= —au(Dzi(t) = D ay(t)z;(t)
=15
- Z bij(t)z;(t — 1i5(t))
+Q cii(t) | Kij(t —s)z;(s)ds

= D dis (1) (¢ = mig () (1 — i (1))

+7i(s)i(s — bi(s))ds
t—O'i(t) t—o (1)
[ IO

— 00

i(8)zi(s — 6;(s)))ds + ri(t).

Clearly, if system (18) has an almost periodic solu-
tion (zj(t),a5(t),--- x5 (t))", then (Ny(t),N5(t), -,
N()T = (e*1®) 21 ... e®n®)T is an almost periodic
solution of (17). In view of Lemma 3.5, we can conclude that
(em11) i) o emn(®) gk (4), wk(t), - -, uk ()T is an al-
most periodic solution of (11), where

(18)

u; (t) = /_ el s «(OK[,(5)7 (5) +7i(s)7 (s = di(s) s,

where ¢ = 1,2,--- ,n. Now we will show that (18) has a
unique almost almost periodic solution. Firstly, we define
B = {u(t) = (@1(t), a(t), - 1 (£)Thi(#) is a contin-
uous almost periodic function}. Obviously, B is a Banach
space with the norm ||¢)|| = maxi<;<n, Sup,cp |z:(t)|.

(Advance online publication: 15 February 2016)
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For any 4(t) = (d1(t),¢2(t), -, ¥a(t))" € B, we

consider the following almost periodic system

dt

Lo o - Y a0
J=1,j7#i
—me ’(/}j

+ gcij(t) /_OO Koyt

- Z i (005 (= ey (£)(1 — 1y (1))

—7i;(t))

)¥;(s)ds

—ei(t) / el Q% (3, (5);(5)
+i(s)i(s — 6i(s)))ds

t—o;(t) o
—ft(t)/ el l”m(()d((ﬂi(s)wi(s)
+7i(8)Yi(s — di(s)))ds + 7i(t). 19)

By (H1), we know that m(a;; > 0. In view of Lemma 3.2,
the linear system

di(t)

7t (20)

= —aii(t)xi(t),i = 1,2, e, N,

admits an exponential dichotomy on T. Then system (20)
has exactly one almost periodic solution as follows

2t = (af b ()T
—Jt(lll(C dchw(s)d
6 fa22(§ dChdJ(S)d , (21)
el ann<<>d<hw( )ds
where
hzb(S) - - Z am( )wj( ) Z ( )’(/}J( ng( ))
j=1,j#i
S [t oo
= D dig()by (s = mis () (1 = i (5))

) / T el Ok (5 6y )
FYi(E)i (€ — 6:(€)))dg

s—oi(s) s—os(s
—fils) /_ el O (3, () (€)

In view of Lemma 3.2, z(¢) can be expressed as
= (A15A2>"' 7An)T7 (23)

(Advance online publication:

where

t "t

Zdu Yooy (= s (1)) + / e I e OUp (5) s,
t t

Zdzy Yoy — oy (6)) + / e~ 12 22O ()4,

n t
Z dnj ()i (t — 1 (1)) + / e I: ann(C)dCl%(s)ds

and

— 7i5(s))

Jj=1

+Zoij(s) [ Kij(s — 0)y;(0)do

+ 3" dij (5)(ai(s)dij(s) + dij(5))1h; (s — 135 (s))
Jj=1

—alo) [l o
+7i(§)Yi(€ — 6:(€)))dE
() s
—fi(S)/_ eJe T @8 (5, () (e)
+7i (&)Y (€ — 6:(§)))dE + 7i(s). (24)
Define a mapping F' : B — B as follows
Fy(t) = Z¥(t), for any 1) € B. (25)
For any ¢, € B, we have
[(F(¢) — F(v))|
= ([(F(o(1)) = F(()l, [(F(S(1) — F((1)))2l,
<L I(F(8(1) = F(t)a)" <
>ie du(t)lcb (=11 (1) = 5t —m;(2))]
+ [ e S e QU ip (s) — 17 (s)|ds
Py dzg(t | (t 12;(t)) — ¥ (t —m2;(1))]
+ [ e I e 0 g () — 1 (s)]ds
D i1 dnj (D)5 (t = g (1)) — ¥t — 1y (1))
+ [ e e O ig (5) — 12 (s)|ds
(26)
On the other hand, by (24), we get
17 (s) =1 (s))|
= > ai(9)li(s) — ¥5(s)|
Jj=1,j#i
+wa (5)[6 (s = 75(8)) =15 (5 — 735 (5))|
+ch / Kis(s— 0)05(6) — 05(6)]as
+Z dz] CL“ l (S) + |dz](5)|)|¢](s - 7’]1](8))
15 February 2016)
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—%( 771]( ))‘
vei) [ el OB 10ue) — i)
+7:(&)|#i(§ — 6:(€)) — wi(i —6:(8)))d¢
s—oi(s)

fis) / ¢ 7T @O (5,(6) 6(6) — i(€)]
+yi(E)|@i(§ — 8:(€)) — i€ — 8:(£))])dE

< aij(s)sup |p;(t) —;(t)

Pleyrd® teR
+Zb2‘j(5)SUP|¢J( ) —¥;(t)]
+Zcij(s)/ Kij(s —0) sup |5 (t) — 15 (t)]d0

+Zd” aii(s)di; (s) + |di;(s)])

sup |¢;(t) — 1, (t)| + ei(s) /s of& @i(Q)d¢
teR .

x(B(€) Sup |9i(t) — ¥i(t)]

+7i(§) ilelﬂlg |pi(t) — 2s(t)])dE

s—oi(s) ooy
b [k

sup [¢;(t) — i (t)] + 7i(§) sup |¢i(t)
teR teR

= l 7 aii(s)+ > bij(s)

J=Lj#i Jj=1

+Zdu (@ii(s)dij(s )+|d;j(8)|)]
b;(8)]

ilQde(3;(¢)
— i(t)])de

sup |¢j< ) =
teR

+ |(ei(s) + fils)) j elé al‘“’“(@(&)ﬂ(é))d&]
xsup |6 (t) = vi(®)]

= [aii(s)+bii(s)+cii(s)/) K;;(0)do
+dis(s)(aii(s)dis(s) + |diy(s)])

Heils) + fils) | 0% (g, (£)+%(£))d§]
X sup |pi(t) — i(t)

{3

j=1,j#i

|
[(ams) +biy(5) + (o) [ " Ky (0)d6

+dij(s)(aii(s)di;(s) + |d;j(s)|)] }

— ()] 27

X sup |¢; (t)
teR

Let

(")”(S) = a“‘(s) + b“(s) + CM‘(S) /C>o K“(Q)dt?

, 0
+dii(3)(aii(5)dii(s)s+ |di (s)])
eals) + fi(s)) / I O (5. (6) 4 (),

— 00

015(5) = (as; (s) + big(5) + c15(5) / K3;(0)d0

+dij(s)(aii(s)di;(s) + \d;j (s))),i # 3.

where 1 = 1,2,--- ,n. It follows from (27) that

17 (s) =1 (5)] < ©ui(s) sup |¢a(t) — i(t)]

+ 22 Ouls)swlas(t) — (),

j=1,j#i

(28)

where ¢ = 1,2,--- ,n. Then

D iy (8)]65(t = mi (1) — (¢ — i ()]
=1

t

" = I @ QAo () _ ¥ (s)|ds
< ) dij(t)sup |@;(t) — ;(t)]

= teR

t t
+/ e~ [2 4 QdCQ,, (s)ds sup |¢i(t) — i (t)]
teR

+ Z / dg@,;j(s)ds

J=1lg#1"
x sup |¢;(t) — 1;(t)]

teR
+ Z Azy iup|¢J( ) (t)|’ (29)

J=1,5#i
where

t
Aii = di (1) +/ e~ Je @O e, (s)ds,

t .
Aij = dij (t) +/ e js a“(od(@ij(s)ds,i 75 j,

where ¢ = 1,2,--- ,n. It follows from (26) and (29) that

(Advance online publication: 15 February 2016)
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Avisupep [¢1(t) — 91 (t)

+ Z] 1,j#1 Aqjsupseg |95 (t) — ¥5(t)]
A22 SUPger |p2(t) — 2(t)]

+ Z] 1,j#2 Az; SupteR |9 (t) — ;(2)]

nAnn SUP¢eRr |¢n( ) - wn (t)‘
+ 2 150 Anj SUDser [0 (1) — 45 (1))
All All Aln
A21 A22 A2n

IN

Ao
— U1 (t)]
— 2 (t)]

SUPier ‘qbn(t) - ¢n(t)| nx1
= A(sup |91 () — ¥1(t)],sup |p2(t) —
teR teR

: 72161]11@) |¢n(t) - wn(t)l)T
= A(ilelﬂg [(@(t) — 1 (t)1], Sup [(o(t)
< ,sup |(o(t) — ¢ (t))n])”

terR

Aoy Apo
SUP¢er |p1(t)
Sup;ep |@2(t)

nxn

ba(t)];

—¥(t))2],
(3D

Then we get

supyeg |(F(o(t)) — F (¢
sup;eg |(F (1)) — F(4(1)))2|
G

supres | (F(6(8)) — F(())a
supyes | (6(1) — (1)
< SUP¢er |(¢(t) - w(

supseg |(#(2) — ¥(2))nl

For any positive integer m, by (31), we have

supyeg [(F (¢(2)) — F™ (v(0))
supyeg [(F (¢(t)) — F™ (4(1)))z]

supres [(F™(0(8)) — F™(5()))al
supres | (F(F™1(6(1)))
suprcs [(F(F™1(6(1))) -

(32)

supep | (£
sup; g (£

supyeg |(F" 1 (6(t)) —

<A

supser |(9(t) — ¢()1]
supcg [(9(t) — ¥(1))2]

supe [(9(t) — ¥(t))nl
By (H4), we get

<A™

(33)

lim A™ =0,

m——+oo

(34)

which implies that there exists a positive integer N* and a
positive constant po < 1 such that

n

= (K‘Z])TIXTL and ZHZ] S /,[,072 = 1727... , T
j=1

AN (35)

It follows form (32) and (34) that

[(FN(¢) = FN" (4))s]
< Rij Slel]g |¢(t) - ’(/}(t)‘

1<i<n 4R et
Thus
1Y (¢) — ) N*(¢)||*=
max (P (6) = FY ()il < mollé = I, 37)

which implies that the mapping FN° : B — B is a
contraction mapping. In view of Lemma 3.4, F' has a unique
a fixed point z*(t) in B. Thus system (18) has a unique
almost periodic solution :c*(t) = (x5 (), z5(t), -,z ()7,
then (N} (), N3 (8),-- - Ny ()" -
(e¥1®) em2(®) ... emn(T s the unique almost
periodic solution of (17). Thus, by Lemma 3.5,
(em1®) er2(t) o emn(®) (1), ui(t), -, ul ()T is
the unique almost periodic solution of (11). The proof of
Theorem 3.1 is completed.

IV. NUMERICAL EXAMPLE

In this section, we will give an example to illustrate the
feasibility and effectiveness of our main results obtained in
previous sections. Considering the following neutral multi-
species logarithmic population model with feedback controls

dNy(t)
dlt - l Za“

£)In N, (t — 715(t))

lnN

_ Zbl?
+chj(t)/ Ki;(t—s)InN;(s)ds
dlnN —n15(t)

_ Z dyj(t) o
—e1(t)ur(t) — fr()ui(t — 01@))] ;

du1 (t

) _
5 = —on(un(t) + B (t) In N (1)

+71(t) In Ny (t — 01(2)),

(38)
“S5.r(t) = 1 +sint,a1p = 1 +sint,a12 =
1 + cost,by; = 0.3 + sint,bys = 0.2 + cost,ciy
0.1 + sint,c12 = 0.3 + cost,dy; = 0.4 + sint,dys =
0.5+4+cost, 71 =0.2+0.4sint, 712 = 0.3+ 0.1cost,n11 =
0.3 + 0.2sint,1m2 = 0.2 + 0.lcost,e1(t) = 0.2 +
sint, f1(t) = 0.2 4 cost,o1(t) = 0.4 + 0.2sint,d;(¢) =
0.3 + 0.3sint,a1(t) = 0.4 + cost,(1(t) = 0.3 +
sint,y1(t) = 0.5+ cost. Then by Matlab software, we have
IS Kij(s)ds =1, p(A) ~ 0.3472 < 1. Thus all assumptions
in Theorems 3.1 are fulfilled. Thus we can conclude that
(37) has a unique positive periodic solution. The results are
verified by the numerical simulations in Fig. 1.

where k;; = e

(Advance online publication: 15 February 2016)
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Fig. 1. Time response of state variables Ni(¢) and wq(t).

V. CONCLUSIONS

In this paper, we study a neutral multi-species logarithmic
population model. Applying the matrix’s spectral theory,
we establish some sufficient conditions for the existence
and uniqueness of almost periodic solution of the neutral
multi-species logarithmic population model. The obtained
sufficient conditions are given in terms of spectral radius
of explicit matrices which are much different from those by
the algebraic inequalities. An example is given to illustrate
the feasibility and effectiveness of the obtained results. The
results of this paper are completely new and generalize
those of the previous studies in [8-14]. Recently, the almost
periodic solution of discrete neutral multi-species logarithmic
population models has also paid more attention by numerous
researchers. However, there are very few results on the
almost periodic solutions of discrete neutral multi-species
logarithmic population models, which might be our future
research topic.
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