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Abstract—In this paper, we present a modified regularized
Newton method (M-RNM) for minimizing a convex function
whose Hessian matrices may be singular. At every iteration,
not only a RNM step is computed but also two correction steps
are computed. We show that if the objective function is LC2,
then the method posses local quadratic convergence under a
local error bound condition. A globally convergent M-RNM
algorithm is also given by using trust region technique.

Index Terms—Regularized Newton method, Local error
bound, Correction technique, Trust region technique, Uncon-
strained convex optimization.

I. INTRODUCTION

WE consider the unconstrained optimization problem
[1-5]

min
x∈Rn

f(x), (1)

where f : Rn → R is a convex and twice continuously
differentiable, whose gradient ∇f(x) and Hessian ∇2f(x)
are denoted by g(x) and H(x) respectively. Throughout this
paper, we assume that the solution set of (1) is nonempty
and denoted by X , and in all cases ∥·∥ refers to the 2-norm.

It is well known that f(x) is convex if and only if H(x)
is symmetric positive semidefinite for all x ∈ Rn. Moreover,
if f(x) is convex, then x ∈ X if and only if x is a solution
of the following nonlinear equations

g(x) = 0. (2)

Hence, we could get the minimizer of f(x) by solving
(2) [6-9].The Newton method is one of the efficient solution
method. At every iteration, it computes the trial step

dNk = −H−1
k gk, (3)

where gk = g(xk) and Hk = H(xk). As we know, if Hk

is Lipschitz continuous and nonsingular at the solution, then
the Newton method has quadratic convergence. However, this
method has an obvious disadvantage when the Hk is singular
or near singular. In this case, we may compute the Moore-
Penrose step dMP

k = −H+
k gk. But the computation of the

singular value decomposition to obtain H+
k is sometimes

prohibitive. Hence, computing a direction that is close to
dMP
k may be a good idea.
To overcome the difficulty caused by the possible singu-

larity of Hk, [10] proposed a regularized Newton method,
where the trial step is the solution of the linear equations

(Hk + λkI)d = −gk, (4)
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where I is the identity matrix. λk is a positive parameter
which is updated from iteration to iteration.

Now we need to consider another question, ”how to choose
the regularized parameter λk ? ” Yamashita and Fukushima
[11] chose λk = ∥gk∥2 and showed that the regularized
Newton method has quadratic convergence under the local
error bound condition which is weaker than nonsingularity.
Fan and Yuan [12] took λk = ∥gk∥δ with δ ∈ [1, 2] and
showed that the Levenberg-Marquardt method preserves the
quadratic convergence. Numerical results ([13], [14]) show
that the choice of λk = ∥Fk∥ performs more stable and
preferable.

Inspired by the regularized Newton method [14] with
correction for nonlinear equations, we propose a modified
regularized Newton method in this paper. At every iteration,
the modified regularized Newton method solves the linear
equations

(Hk + λkI)d = −gk with λk = µk ∥gk∥ (5)

to obtain the Newton step dk, where µk > 0 is updated from
iteration to iteration, and then solves the linear equations

(Hk + λkI) d = −gk + λkdk (6)

to obtain the approximate Newton step sk.
It is easy to see

sk = dk + d̃k, d̃k = λk(Hk + λkI)
−1

dk. (7)

Finally, the M-RNM solves the linear equations

(Hk + λkI) s = −g (yk) with yk = xk + sk (8)

to obtain the approximate Newton step s̃k.
The aim of this paper is to study the convergence proper-

ties of the modified regularized Newton method.
The paper is organized as follows. In Section 2, we

present a new modified regularized Newton algorithm by
using trust region ([14], [21], [22], [24]) technique, and prove
the global convergence of the new algorithm under some
suitable conditions. In Section 3, we study the convergence
rate of the algorithm, and obtain the quadratic convergence
under the local error bound condition. Finally, we conclude
the paper in Section 4.

II. THE ALGORITHM AND ITS GLOBAL CONVERGENCE

First, we give the modified regularized Newton algorithm.
Define the actual reduction of f(x) at the kth iteration as

Aredk = f(xk)− f(xk + sk + s̃k). (9)

Note that the regularization step dk is the minimizer of
the convex minimization problem

min
d∈Rn

1

2
dTHkd+ gTk d+

1

2
λk∥d∥2.
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If we let

∆k,1 = ∥dk∥ =
∥∥∥−(Hk + λkI)

−1
gk

∥∥∥ ,
then it can be proved [6] that dk is also a solution of the
trust region problem

min
d∈Rn

φ (d) =
1

2
dTHkd+ gTk d, s.t. ∥d∥ ≤ ∆k,1.

By the famous result given by Powell in [15] , we know
that

φ(0)− φ(dk) ≥
1

2
∥gk∥min

{
∥dk∥ ,

∥gk∥
∥Hk∥

}
. (10)

By some simple calculations, we deduce from (7) that

φ(dk)− φ(sk) = gTk dk +
1

2
dTkHkdk − gTk sk − 1

2
sTkHksk

= −gTk d̃k − 1

2
d̃k

T
Hkd̃k − d̃k

T
Hkdk

= λkd̃k
T
dk − 1

2
d̃k

T
Hkd̃k

=
1

2
d̃k

T
Hkd̃k + λkd̃k

T
d̃k

≥ 0,

so, we have

φ (0)− φ (sk) ≥ φ (0)− φ (dk) . (11)

Similar to dk, s̃k is not only the minimizer of the problem

min
s∈Rn

g(yk)
T
s+

1

2
sT (Hk + λkI) s

but also a solution to the trust region problem

min
s∈Rn

ϕ (s) =
1

2
sTHks+ g(yk)

T
s, s.t. ∥s∥ ≤ ∆k,2,

where ∆k,2 =
∥∥∥−(Hk + λkI)

−1
g (yk)

∥∥∥ = ∥s̃k∥.
Therefore we also have

ϕ(0)− ϕ(s̃k) ≥
1

2
∥g (yk)∥min

{
∥s̃k∥ ,

∥g (yk)∥
∥Hk∥

}
. (12)

Based on the inequalities (10), (11) and (12), it is reason-
able for us to define the new predicted reduction as

Pr edk = φ (0)− φ (sk) + ϕ (0)− ϕ (s̃k) , (13)

which satisfies

Pr edk ≥ 1

2
∥gk∥min

{
∥dk∥ ,

∥gk∥
∥Hk∥

}
+

1

2
∥g (yk)∥min

{
∥s̃k∥ ,

∥g (yk)∥
∥Hk∥

}
.

(14)

The ratio of the actual reduction to the predicted reduction

rk =
Aredk
Pr edk

, (15)

plays a key role in deciding whether to accept the trial step
and how to adjust the regularized parameter.

The modified regularized Newton algorithm with correc-
tion for unconstrained convex optimization problems is stated
as follows.
Algorithm2.1
Step 1. Given x0 ∈ Rn, ε ≥ 0, µ0 > m > 0, 0 < p0 ≤
p1 ≤ p2 < 1. Set k := 0.

Step 2. If ∥gk∥ ≤ ε, then stop.
Step 3. Compute λk = µk ∥gk∥.

Solve
(Hk + λkI) d = −gk (16)

to obtain dk.
Solve

(Hk + λkI) d = −gk + λkdk (17)

to obtain sk and set

yk = xk + sk.

Solve

(Hk + λkI) s = −g (yk) (18)

to obtain s̃k and set

tk = sk + s̃k

Step 4. Compute rk = Aredk

Pr edk
. Set

xk+1 =

{
xk + tk, if rk ≥ p0,
xk, otherwise.

(19)

Step 5. Choose µk+1 as

µk+1 =

 4µk, if rk < p1,
µk, if rk ∈ [p1, p2] ,
max {µk/4,m} , if rk > p2.

(20)
Set k := k + 1 and go step 2.

Before discussing the global convergence of the algorithm
above, we make the following assumption.
Assumption 2.1 g(x) and H(x) are both Lipschitz contin-
uous, that is, there exists a constant L1 > 0, L2 > 0 such
that

∥g (y)− g (x)∥ ≤ L1 ∥y − x∥ , ∀x, y ∈ Rn (21)

and

∥H (y)−H (x)∥ ≤ L2 ∥y − x∥ , ∀x, y ∈ Rn. (22)

It follows from (22) that

∥g (y)− g (x)−H (x) (y − x)∥ ≤ L2∥y − x∥2, ∀x, y ∈ Rn.
(23)

The following lemma given below shows the relationship
between the positive semidefinite matrix and symmetric
positive semidefinite matrix.
Lemma2.1 A real-valued matrix A is positive semidefinite
if and only if

(
A+AT

)
/2 is positive semidefinite.

See [6].
Next, we give the bounds of a positive definite matrix and

its inverse.
Lemma2.2 Suppose A is positive semidefinite. Then,

∥A+ φI∥ ≥ φ

and ∥∥∥(A+ φI)
−1

∥∥∥ ≤ φ−1

hold for any φ > 0.
See [14].
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Theorem 2.1 Under the conditions of Assumption 2.1, if f
is bounded below, then Algorithm 2.1 terminates in finite
iterations or satisfies

lim
k→∞

inf ∥gk∥ = 0. (24)

We prove by contradiction. If the theorem is not true, then
there exists a positive τ and an integer k̃ such that

∥gk∥ ≥ τ, ∀k ≥ k̃. (25)

Without loss of generality, we can suppose k̃ = 1. Set
T = {k|xk ̸= xk+1}. Then

{1, 2, · · ·} = T ∪ {k|xk = xk+1} .

Now we will analysis in two cases whether T is finite or
not.

Case (1): T is finite. Then there exists an integer k1 such
that

xk1 = xk1+1 = xk1+2 = · · · ,

by (19), we have

rk < p0, ∀k ≥ k1.

Therefore by (20) and (25), we deduce

µk → ∞, λk → ∞, (26)

since xk+1 = xk, ∀k ≥ k1, we get from (16) and (26) that

∥dk∥ =
∥∥∥−(Hk + λkI)

−1
gk

∥∥∥ ≤ λ−1
k ∥gk∥ → 0. (27)

Duo to (7), we get

∥sk∥ =
∥∥∥dk + d̃k

∥∥∥ ≤ 2 ∥dk∥ , ∥sk∥ → 0.

From (18), we obtain

∥s̃k∥ =
∥∥∥−(Hk + λkI)

−1
g (yk)

∥∥∥
≤

∥∥∥(Hk + λkI)
−1

(g (yk)− gk −Hksk)
∥∥∥

+
∥∥∥(Hk + λkI)

−1
gk

∥∥∥+
∥∥∥(Hk + λkI)

−1
Hksk

∥∥∥
≤ L2λk

−1∥sk∥2 + ∥dk∥+ ∥sk∥
≤ γ1 ∥dk∥ ,

(28)

where γ1 is a positive constant.
It follows from (9) and (13) that

|Aredk − Pr edk|
= |f(xk)−f(xk+sk+s̃k)−(φ(0)−φ(sk)+ϕ(0)−ϕ(s̃k))|

≤
∣∣∣∣f(yk + s̃k)− f(yk)−

1

2
s̃k

THks̃k − g(yk)
T
s̃k

∣∣∣∣
+

∣∣∣∣f(yk)− f(xk)−
1

2
sk

THksk − gk
T sk

∣∣∣∣
≤o

(
∥sk∥2

)
+ o

(
∥s̃k∥2

)
.

(29)

Moreover, from (14), (25), (21) and (27), we have

Pr edk ≥ 1

2
τ min

{
∥dk∥ ,

τ

L1

}
≥ 1

2
τ ∥dk∥ (30)

for sufficiently large k.

Duo to (29) and (30), we get

|rk − 1|

=

∣∣∣∣Aredk − Pr edk
Pr edk

∣∣∣∣
≤

∣∣∣∣∣∣f(xk)− f(xk + sk + s̃k)− (φ(0)− φ(sk) + ϕ(0)− ϕ(s̃k))

1
2τ min

{
∥dk∥ , τ

L1

}
∣∣∣∣∣∣

≤
o
(
∥sk∥2

)
+ o

(
∥s̃k∥2

)
∥dk∥

→ 0,

(31)

which implies that rk → 1. Hence, there exists positive
constant γ2 such that µk ≤ γ2, holds for all large k, which
contradicts to (26).

Case (2): T is infinite. Then we have from (14) and (25)
that

∞ > f(x1)− lim
k→∞

inf f(xk) ≥
∞∑
i=1

(f(xi)− f(xi+1))

=
∑
k∈T

(f(xk)− f(xk+1)) ≥
∑
k∈T

p0 Pr edk

≥
∑
k∈T

p0
2

∥gk∥min

{
∥dk∥ ,

∥gk∥
∥Hk∥

}
+

∑
k∈T

p0
2

∥g (yk)∥min

{
∥s̃k∥ ,

∥g (yk)∥
∥Hk∥

}
≥

∑
k∈T

p0
τ

2
min

{
∥dk∥ ,

τ

L1

}
,

(32)

which implies that

lim
k→∞,k∈T

dk = 0. (33)

The above equality together with the updating rule of (20)
means

λk → ∞. (34)

Similar to (28), it follows from (33) and (34) that

∥s̃k∥ ≤ γ3 ∥dk∥ , ∥sk∥ ≤ 2 ∥dk∥ , ∀k ∈ T,

for some positive constant γ3. Then we have

∥tk∥ ≤ ∥sk∥+ ∥s̃k∥ ≤ (γ3 + 2) ∥dk∥ , ∀k ∈ T.

This equality together with (32) yields∑
k∈T

∥tk∥ < ∞,

which implies that
xk → x∗. (35)

It follows from (16), (35), (34) and (28) that

sk → 0, s̃k → 0, (36)

since (Hk + µk ∥gk∥ I) dk = −gk from (16), we have from
(21), (25) and (36) that

1 ≤ ∥Hk∥
∥gk∥

∥dk∥+ µk ∥dk∥ ≤ L1

τ
∥dk∥+ µk ∥dk∥ ,

which means
µk → ∞. (37)
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By the same analysis as (31) we know that

rk → 1. (38)

Hence, there exists a positive constant γ4 > m such that
µk ≤ γ4 holds for all sufficiently large k, which gives a
contradiction to (37). The proof is completed.

III. LOCAL CONVERGENCE OF ALGORITHM 2.1
In this section, we show that the sequence generated by

Algorithm 2.1 converges to some solution of (1) quadratical-
ly. To study the local convergence properties of Algorithm
2.1, we make the following assumptions.
Assumption 3.1
(a) f(x) is convex and continuously differentiable.
(b) The sequence {xk} generated by Algorithm 2.1 con-
verges to x∗ ∈ X and lies in some neighbourhood of x∗

(c) ∥g(x)∥ provides a local error bound on some N (x∗, b1)
for (2), that is, there exist positive constants c1 > 0 and
b1 < 1 such that

∥g(x)∥ ≥ c1dist (x,X)

∀x ∈ N (x∗, b1) = {x| ∥x− x∗∥ ≤ b1} .
(39)

(d) The Hessian H(x) is Lipschitz continuous on N (x∗, b1)

, i.e., there exists a positive constant L̃1 such that

∥H(y)−H(x)∥ ≤ L̃1 ∥y−x∥ ∀x, y ∈ N(x∗, b1). (40)

Note that, if H(x) is nonsingular at a solution, then ∥g(x)∥
provides a local error bound on its neighbourhood. However,
the converse is not necessarily true, for examples please refer
to [16] and [17] . Hence, the local error bound condition is
weaker than nonsingularity.

By Assumption 3.1 (d), we know

∥g(y)−g(x)−H(x)(y−x)∥ ≤ L̃1∥y−x∥2

∀x, y ∈ N(x∗, b1)
(41)

and there exists a constant L̃2 > 0, such that

∥g(y)−g(x)∥ ≤ L̃2 ∥y−x∥ ∀x, y ∈ N(x∗, b1). (42)

In the following, we denote xk the vector in the solution
set X that satisfies

∥xk − xk∥ = dist (xk, X) .

The following lemma gives the relationship between the
trial step tk and the distance from xk to the solution set.
Lemma 3.1 Under the conditions of Assumption 3.1 hold.
If xk ∈ N (x∗, b1/2), then we have

∥tk∥ ≤ O (dist (xk, X)) . (43)

Since xk ∈ N (x∗, b1/2), we have

∥xk − x∗∥ ≤ ∥xk − xk∥+ ∥xk − x∗∥ ≤ 2 ∥xk − x∗∥ ≤ b1,

which means xk ∈ N (x∗, b1).
Then it follows from the local error bound condition yields

λk = µk ∥gk∥ ≥ mc1dist(xk, X) = mc1 ∥xk − xk∥ . (44)

From (7), we get∥∥∥d̃k∥∥∥ =
∥∥∥−λk(Hk + λkI)

−1
dk

∥∥∥
≤ λk

∥∥∥(Hk + λkI)
−1

∥∥∥ ∥dk∥
≤ ∥dk∥ .

(45)

Moreover, we deduce from (41), (44), Lemma2.2 and
g(xk) = 0 that

∥dk − (xk − xk)∥

=
∥∥∥−(Hk + λkI)

−1
gk − xk + xk

∥∥∥
=
∥∥∥(Hk + λkI)

−1
(gk + (Hk + λkI) (xk − xk))

∥∥∥
≤
∥∥∥(Hk + λkI)

−1
∥∥∥ ∥gk +Hk(xk − xk)∥

+λk

∥∥∥(Hk + λkI)
−1

∥∥∥ ∥xk − xk∥

≤λ−1
k L̃1∥xk − xk∥2 + ∥xk − xk∥

=O (∥xk − xk∥)

(46)

which yields
∥dk∥ = O (∥xk − xk∥) . (47)

Combining (45) and (47), we obtain

∥sk∥ =
∥∥∥dk + d̃k

∥∥∥ ≤ ∥dk∥+
∥∥∥d̃k∥∥∥ ≤ O (∥xk − xk∥) , (48)

since yk = xk + sk, then yk → x∗, which means yk ∈
N (x∗, b1) for sufficiently large k.

From (18), we get

∥s̃k∥ =
∥∥∥−(Hk + λkI)

−1
g (yk)

∥∥∥
≤

∥∥∥(Hk + λkI)
−1

(g(yk)− gk −Hksk)
∥∥∥

+
∥∥∥(Hk + λkI)

−1
gk

∥∥∥+
∥∥∥(Hk + λkI)

−1
Hksk

∥∥∥
≤ L̃1λ

−1
k ∥sk∥2 + ∥dk∥+ ∥sk∥

= O (∥xk − xk∥) .

(49)

Duo to (48) and (49), we get

∥tk∥ = ∥sk + s̃k∥ ≤ ∥sk∥+ ∥s̃k∥ ≤ O (∥xk − xk∥) (50)

The proof is completed.
Lemma 3.2 Under the conditions of Assumption 3.1, then
there exists a positive constant M > m such that

µk ≤ M

holds for all sufficiently large k.
From (10), (11), (39) and (42), we have

φ(0)− φ(sk)

≥ 1

2
∥gk∥min

{
∥dk∥ ,

∥gk∥
∥Hk∥

}
≥ 1

2
c1 ∥xk − xk∥min

{
∥dk∥ ,

c1 ∥xk − xk∥
L̃2

}
≥ c2 ∥xk − xk∥min {∥dk∥ , ∥xk − xk∥}

(51)

for some positive constant c2.
Then from (29), (47), (48), (49) and (51), we get

|rk − 1| =
∣∣∣∣Aredk − Pr edk

Pr edk

∣∣∣∣
≤

o
(
∥sk∥2

)
+ o

(
∥s̃k∥2

)
∥xk − xk∥min {∥dk∥ , ∥xk − xk∥}

→ 0,

(52)

which implies that rk → 1. Therefore there exists a constant
M > m such that µk ≤ M holds for all sufficiently large k.
Lemma 3.3 Under the conditions of Assumption 3.1, then
we have

dist(xk+1, X) ≤ O(dist(xk, X)2)
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From (39) and (42), we have

mc1 ∥xk − xk∥ ≤ λk = µk ∥gk∥ = µk ∥gk − g (xk)∥
≤ ML̃2 ∥xk − xk∥ ,

(53)

which shows that ∥xk − xk∥ is equivalent to λk.
From the local error bound condition, (18), (40) and (41),

we have

c1 ∥xk+1 − xk+1∥
≤∥g (xk+1)∥ = ∥g (yk + s̃k)∥
≤∥g (yk + s̃k)− g (yk)−H (yk) s̃k∥
+ ∥g (yk) +H (yk) s̃k∥
≤L̃1∥s̃k∥2 + ∥g (yk) +Hks̃k∥+ ∥(H (yk)−Hk) s̃k∥
≤L̃1∥s̃k∥2 + λk ∥s̃k∥+ L̃1 ∥sk∥ ∥s̃k∥

=O
(
∥xk − xk∥2

)
(54)

Note that since

∥xk − xk∥ ≤ ∥xk+1 − xk∥ ≤ ∥xk+1 − xk+1∥+ ∥tk∥

we may deduce from (54) that

∥xk − xk∥ ≤ 2 ∥tk∥ (55)

for all sufficiently large k. Combining this inequality with
(50) and (54), we obtain that

∥tk+1∥ = O
(
∥tk∥2

)
, (56)

which indicates that {xk} converges quadratically to x∗,
namely,

∥xk+1 − x∗∥ = O
(
∥xk − x∗∥2

)
(57)

IV. CONCLUSION

In this paper, we propose a new modified regularized
Newton method with correction for unconstrained convex
optimization. At every iteration, not only a RNM step is
computed but also two correction steps are computed which
make use of the available factorization of (Hk + λkI) in
(16), and only need a small amount of additional calculations
to obtain tk. Under the local error bound condition, we show
that the method achieves the quadratic convergence.

REFERENCES

[1] Chungen Shen, Xiongda Chen, Yumei Liang, A regularized Newton
method for degenerate unconstrained optimization problems, Optimiza-
tion Letters, vol. 6, no. 8, pp. 1913-1933, 2012.

[2] Cyril Dennis Enyi and Mukiawa Edwin Soh, “Modified Gradient-
Projection Algorithm for Solving Convex Minimization Problem in
Hilbert Spaces,” IAENG International Journal of Applied Mathematics,
vol. 44, no. 3, pp. 144-150, 2014.

[3] Songhai Deng, ZhongWan, Xiaohong Chen, An Improved Spectral Con-
jugate Gradient Algorithm for Nonconvex Unconstrained Optimization
Problems, Journal of Optimization Theory and Applications, vol. 157,
no. 3, pp. 820-842, 2013.

[4] Yang Weiwei, Yang Yueting, Zhang Chenhui, Cao Mingyuan, A
Newton-Like Trust Region Method for Large-Scale Unconstrained
Nonconvex Minimization, Abstract and Applied Analysis, vol. 2013,
2013.

[5] Hao Zhang, Qin Ni, A new regularized quasi-Newton algorithm for
unconstrained optimization, Applied Mathematics and Computation,
259, 2015, pp. 460-469.

[6] W. Sun, Y. Yuan, Optimization Theory and Methods, Springer Science
and Business Media, LLC, New York, 2006.

[7] W. Zhou, D. Li, A globally convergent BFGS method for nonlinear
monotone equations without any merit functions, Mathematics of Com-
putation, vol. 77, no. 264, pp. 2231-2240, 2008.

[8] Ioaanis K, Argyros, Said Hilout, On the semilocal convergence of
damped Newton’s method, Applied Mathematics and Computation, vol.
219, no. 5, pp. 2808-2824, 2012.

[9] C.T.Kelley, Iterative Methods for Optimization, in: Frontiers in Applied
Mathematics, vol. 18, SIAM, Philadelphia, 1999.

[10] D. Sun, A regularization Newton method for solving nonlinear com-
plementarity problems, Applied Mathematics and Optimization, vol. 40,
no. 3, pp. 315-339, 1999.

[11] D. H. Li, M. Fukushima, L. Qi, and N. Yamashita, Regularized Newton
methods for convex minimization problems with singular solutions,
Computational optimization and applications, vol. 28, no. 2, pp. 131-
147, 2004.

[12] J.Y.Fan and Y.X.Yuan, On the quadratic convergence of the Levenberg-
Marquardt method without nonsingularity assumption, COMPUTING,
vol. 74, no. 1, pp. 23-39, 2005.

[13] J.Y.Fan, J.Y.Pan, A note on the Levenberge-Marquardt parameter,
Applied Mathematics and Computation, vol. 207, no. 2, pp. 351-359,
2009.

[14] JinyanFan, YaxiangYuan, A regularized Newton method for monotone
nonlinear equations and its application, Optimization Methods and
Software, vol. 29, no. 1, pp. 102-119, 2014.

[15] M.J.D. Powell, Convergence properties of a class of minimization
algorithms, in: O.L. Mangasarian, R.R. Meyer, S.M. Robinson (Eds.),
in: Nonlinear Programming, vol. 2, Academic Press, New York, 1975,
pp. 1-27.

[16] N.Yamashita,M. Fukushima, On the rate of convergence of the
Levenberg-Marquardt method, Computing 15 (Suppl.)(2001),pp. 227-
238.

[17] Dong-huiLi, Masao Fukushima, Liqun Qi, Nobuo Yamashita, Regular-
ized Newton Methods for Convex Minimization Problems with Singular
Solutions, Computational Optimization and Applications, 28, 2004, pp.
131-147.

[18] Polyak, R.A., Regularized Newton method for unconstrained convex
optimization, Mathematical Programming, 120, 2009, pp. 125-145.

[19] Weijun Zhou, Xinlong Chen, On the convergence of a modified
regularized Newton method for convex optimization with singular
solutions, Journal of Computational and Applied Mathematics 239,
2013, pp. 179-188.

[20] C.T.Kelley, Solving Nonlinear Equations with Newton’s Method, Fun-
damentals of Algorithm, SIAM, Philadelphia, PA, 2003.

[21] JINYAN FAN, Accelerating the modified Levenberg-Marquardt
method for nonlinear equations, Mathematics of Computation, vol. 83,
no. 287, pp. 1173-1187, 2014.

[22] Y.X. Yuan, A review of trust region algorithms for optimization, in
ICM99: Proceedings of the Fourth International Congress on Industrial
and Applied Mathematics, J.M. Ball and J.C.R. Hunt, eds., Oxford
University Press, Edinburgh, 2000, pp. 271-282.

[23] Monnanda Erappa Shobha and Santhosh George, On Improving the
Semilocal Convergence of Newton-Type Iterative Method for Ill-posed
Hammerstein Type Operator Equations, IAENG International Journal
of Applied Mathematics, vol. 43, no. 2, pp. 64-70, 2013.

[24] Jinyan Fan, Jianyu Pan, An improved trust region algorithm for
nonlinear equations, Computational Optimization and Applications, vol.
48, no. 1, pp. 59-70, 2011.

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_01

(Advance online publication: 14 May 2016)

 
______________________________________________________________________________________ 




