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Multiplicity of Solutions for Quasilinear Singular
Euler-Lagrange Equations with Natural Growth

Quincy Stevene Nkombo *

Abstract—This paper shows the existence of mul-
tiplicity solutions for quasilinear singular Euler-
Lagrange equation

—div((a(z)+ |u]") | Vu \N72 Vu)

+%\u|772u|Vu|N:)\|u|072u+|u|q72u in  Q,

with zero Dirichlet boundary condition. Under hy-
potheses 1 <O <N <g<~v+N;~v>0and \>0.

By using critical point methods we obtain the multi-
plicity of solutions for the above equation in the fol-
lowing cases:

Ifl1<0<N<g<~v+N,v>1 and there is a nonneg-
ative constant \* such that 0 < A < A", such equation
possesses an infinitely many bounded weak solutions.
Ifl<O<N<g<y+N,0<~vy<land 0< X<\,
the singular equation has an infinitely many bounded
weak solutions.

Keywords: FEuler-Lagrange equation, weak solution,

truncated functional, nonsmooth critical point theory,
singular lower order term.

1 Introduction

In this paper we study the following equation
—div((a(z)+ |u ) | Vu N2 Vu)—!—%\ w72 u | Vu |V

=Xu|2ut|u|"%u in Q

(1.1)

and

u=0 on 0. (1.2)

In this case, the functional corresponding to the quasilin-
ear Euler-Lagrange J is

I =5 [ (@@ [up) | val?

=5 = [rue
0 Jo qJq

Where Q is a bounded, open subset of RV, N > 2 and

(1.3)
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a(x) is a measurable function such that for some constants
a and 8 we have

O<a<a(z)<p ae x €. (1.4)

The main difficulty in solving this equation is due
to the term | w |¥ which, although we assume that
1 <60 < N <qg< N+~, Jis not well defined in
all the space VVO1 N(Q) Similarly, this kind of non-
differentiable functional J that combines a critical point
theory has been investigated in [1] for N = 2. The
functional J is not Géteau-differentiable in Wy (Q)
but is only differentiable through the direction of
Wol’N(Q) NLE®(Q). In that case, the functional J is well
defined in Wol’N(Q) NL>(Q), if we impose an additional
condition on v, namely, v < N.

In section 2, our technique for solving a quasilinear
Euler-Lagrange equation (1.1)-(1.2) is based on approx-
imating functional J with the sequence of functionals
Jm,n whose quadratic part in Vv is bounded with respect
to v. Similarly, our approach has been studied in [1],
and L™ priori estimate allows to prove that, when v > 1
the critical point wmzm of Jmm for m,m large enough,
therefore, a solution to (1.1)-(1.2) is found without
passing the limit of m and n. Then we use the theorem
2.8 in [2] to establish the existence of infinitely many
solutions to equation (1.1)-(1.2) for 0 < A < A* and
l<f<N<g<y+N.

In section 3, we show the existence of multiplicity solu-
tions to equation (1.1)-(1.2) for 0 < v < 1; 0 < A < A*
and 1 < 0 < N < ¢ < v+ N using the theorem 2.3 in
[2] and the method established in the theorem 3.1 in
[1]. However, the difficulty of this case is that the zero
Dirichlet boundary condition implies the singularity with
respect to u in the lower order term %IU\% | Vu [V of
the Euler-Lagrange equation.

The multiplicity results for N-Laplacian with critical
growth of concave-convex functions has been intensively
studied (see [5,6]) in earlier studies. Recently, the
existence of the nonnegative bounded weak solution
to the quasilinear Euler-Lagrange equation involving
concave-convex functions with N = 2 has investigated
by David Arcoya and Lucio Boccardo (see [1,15]).
Finally, the novelty of this work is that we study the
existence of multiplicity of bounded weak solutions
for quasilinear singular Euler-Lagrange equation with
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p=N.

Notation: in the rest of this work we use of the
following notation. L™ () , denote lebesgue spaces; the
usual norm in LY (Q) is denoted by | |x .

WEN(Q) denote sobolev spaces ; the norm in W™ ()
is denoted by || ||n-

Co,C1,C5,C5, ... denote (possibly different) positive
constants.

2 The case v >1

Definition 2.1 A measurable function u is called a weak
solution to the problem (1.1)-(1.2) if u € Wol’N(Q) such
that | u "2 u | Vu |[Ve L1(Q) and,

‘/(auﬂ+\up)|Vu|N_2Vqu
Q

+%/Q|u|772u\Vu|Nv

:)\/|u|9_2uv—&—/|u|q_2uv7
Q Q

holds for every u € Wy (Q) N L>® ().

(2.1)

Theorem 2.2 Suppose v > 1 and if ¢, 0 verifies the hy-
pothesis

l1<f<N<g<y+N. (2.3)

Moreover, there exists A* > 0 such that

0< A< A

Then, the problem (1.1)-(1.2) possesses an infinitely
many bounded weak solutions.

Proof. We use a similar argument as in [7] to prove the
existence of multiplicity weak solutions to equation (1.1)-
(1.2), then we argue this proof by splitting it in several
steps

e Step 1: A truncated function J,

o Step 2: Jy, ,(u) > ayy for all || u |n=rpx and Ju,
is bounded from below on B;.,

e Step 3: Compactness of the truncated functional J,, ,,
e Step 4: Existence of critical points of the truncated
functional J,, »

e Step 5: Uniformly L* - estimates

e Step 6: Conclusion

e Step 1: Truncated functional

We define the truncated functional J,,, from the defi-
nition of the functional J, if m is a positive integer, we
consider the C? regularization of the truncation at level

m, Ty, (t) is given

—m—% if t<—-m-—1

(m+1)t+t2+2m2 if —m—-1<t<-m

Tn(t) =gt if —m<t<m
2.2 .
(m+1)t—" if m<t<m+1
m+i if t>m+1
(2.4)
see [1],[16]

Assuming that ¢; and ¢o are numbers such that
1 <qg <0< N<q <q< N+~ and the C?
regularization of the truncated function f,, »(t) is defined

fn,/\(t) = )‘hn(t) + gn(t)7

where
0 .
ho(f) = % if |tl<n
n _ t|?0 .
ne(é—q%)—i-ne qo% if |t]|>n.
(2.5)
EE i Jtl<n
gn(t) = nq(l_i)+nq—cﬂﬁ if |t|>n
q q1 q1 -
(2.6)

By observing the definition of h,,(t) and g, (), we deduce
the following inequalities

n@—qo | t |9
0 < hu(t) < . | t]% and 0 < h,(t) < 5 (2.7)
0
nd—a |t |2
0<gn(t) < [ |7 and 0< gn(t) < - (2.8)
q1

Consequently, we are able to deduce the estimate of

fn,/\(t) by

Anf—a a—q
0< fur® < 22— (o +2— g2 (29)

Let us consider the truncated functional

1 . N
Jmn(u) = 5 | (a(@)+ | Tn(u) [7) | Vu |
Q
_/ Far(u) for uwe WEN(Q), (2.10)
Q

which is clearly well defined since
1<q0<9<N<q1<q<min(%,7+N)
and 0 +qg+v < %.

e Step 2: Geometry of truncated functional
Consider a positive real constant 0 < 7 such that

By ={ue Wi N @)/ ulv<r}

(Advance online publication: 14 May 2016)
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Integrating over 2 both sides of the inequality (2.9), we
have

nq—(IO @ nq—lh @
faa(u) <A |ul®+—— [ Jul?.
Q qo Q q1 Q

Combining Holder and Poincare inequalities, we obtain
the following result

Anst0m%mWW%+amwwum,@n>

where Cy and C; are nonnegative constants.
Performing calculations and taking into account the in-
equality (2.11), we infer that

(0%
Tmn(u) > = [l ¥ =Con”=™ [[u | §=Cont™" | u |I§,

with a(z)+ | Trn(u) |7> a.
Thereby, there exist nonnegative constants r,, » , 7,x and
A* such that

in OB

Jmm(w) >0in By . and  Jpn(u) >7h

Tn,A
forall 0 < A < \*

e Step 3: Compactness of the truncated function-
al Jp.n
Lemma 2.12 Let {w;} be a sequence in W™ () N
L>°(Q) satisfying, for every n € N the following con-
ditions:

J?n,n(wk:) < Cl

| wh [ oo < 201
w
U)o} < (L5 o 1)

vw € Wy () NL=(Q).

Where C; is a nonnegative constant, {by} C RT — {0}
is any nonnegative sequence and {e,} C RT — {0} is a
sequence converging to zero, then {wy} has a strongly
convergent subsequence in W™ (Q) (see [8]).

X,, as such

Considering a test function defined

that

—m-1<t<-—m

Tm(t)
Xo(t) = { Tom
0 otherwise

Remark 2.13 Since the following inequalities

T ()T (t) Tn(t) _
ng and T;n(t)g to

hold, then it is easy to verify that the function
X, € WM (Q).
After computing terms below

Towm(wy) + %u,gm(wk), X, (wp))

we have

LU Tt o
/Q<N+9 01", (wy)]? ) (V|

1 1 T/ (wg)Tm(wg) ~
+A<N+9_9WMWW +%J

X| T (wi) |7 | Vg |N

+/Q (—Mﬂ,x(wk) - fn,/\(wk)>

w
<Ci+eg ('bkk|°°+ | we ||N)-

We notice that the left hand side terms are positives.

The first and second terms are positive due to the
T (OTm(t) 4
(T, (0O =

The positiveness of the third term is given by the defini-

hypothesis

tion of fi, »(¢) function and the assumption gzgg < —t0.
The sequence {wy} is bounded in Wy (€). Then it

weakly converges into WO1 N(Q) up to the subsequence
that we still denote {wy} converging to a function w.

e Step 4: Existence of critical points of the
truncated functional J,, ,,
we suppose that Hj be a k-dimensional subspace of
WM (Q).
Let

Y= {C cwWiN@Q), 0ec, ¢ = —c}.

According to the geometry of truncated functional J,,
and previous remarks, the assumptions (I1) and (I3) of
theorem 2.8 in [2]are satisfied. Moreover, considering the
following set A,, , defined as

Ampn =By, , U{Jmn > 0}.

Therefore we assert that Hy N Ay, is bounded for all
n € N, consequently the hypothesis (I5) is achieved
We now build the following set

" = {h e C(Wy™ (), Wy () :

h is an odd homeomorphism h(0) =0 and h(B1) C Amn}

and

FkZ{KEE’Y(Kﬂh(aB1)) >k Vhef*}

and then
S = inf max Jy, ,(u).
KeTy, uek
Since the conditions of lemma 2.1 in [2] still holds. we
choose h(u) = 7y \u, where h lies in I'* from this we
can deduce that KN B, , # 0 for all K € T'y. Jp,p, s
bounded from below on 0B,., ,, then

Si = inf maxJ, u) > Tpon > 0.
k= Kery uek mon (1) 2 Tn,x

(Advance online publication: 14 May 2016)
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Finally, whole assumptions of theorem 2.8 in [2] holds
true. Consequently, there are infinitely many nontrivial
critical points of J,,, belonging to Wol’N(Q) N L>2(Q)
such that

Imon(Um ) >0 Vn,m € N.

Hence, the Dirichlet problem (2.14)-(1.2
ly many nontrivial weak solutions.

) has an infinite-

e Step 5: Uniformly L*>°-estimate
Consider the following equation

—div{(a(x)+ | Tn(Um.n) |7) | Vimn |N-2 Vi n}
v T, (Um,n)
m T
+N Tm( m,n) | m(um,n) | | Vmn | n)\(um n)
(2.14)

Assuming that w,, , consists of all those solutions to e-
quation (2.14)-(1.4) and setting Ty, (Wi n) = Wi, thus
the equation (2.14) can be written as

*d’LU{ +|Umn "Y) |vumn |N 2vu7nn}

7 | 17 i | Vit |¥= Fy(tn)-

In order to show that the solutions to equation (2.15)-
(1.2) are uniformly bounded, we construct an embedding
of the Orlicz-Sobolev space by using the theorem 3.1 in
[9]. Then we deduce the boundedness of solutions to
such equation in L>°(2).

Suppose that W(X) = W™ (Q), the sobolev space
which has the property such that every bounded se-
quence in I/VO1 N(Q) has a subsequence that is convergent
almost everywhere.

We consider two Young functions in relation with our pur-
pose F : ¢ t7*N and o : ¢ — t*~ such that F > 1.
Since u € Wy (Q) such that | u || Vu [Ne L*(), then
the embedding W, () ¢ LF(Q) holds.

(2.15)

Remark 2.16 Recalling that the embedding space
L?(Q) equipped with the Luzemburg norm

o= 1nf{k>0// ( )dﬂ<1}

is a Banach space (see [9]).

Let {¢t;m} € RT — {0} be an increasing sequence which
diverges to infinity. By applying the theorem 3.1 in [9],
we get the following embedding

Wol’N(Q) cC LY(Q) is compact.

A¢( umn|> /\umnle

< c/ |t 7] Tty [V
Q

Thus

Therefore, there exist a nonnegative constant C,, ,,, be-
cause of

/ | Un 7] Vi |N 18 bounded with respect tom andn,
Q

thus

it follows that

< Om,n~

| Winn ()

An adaptation to the quasilinear case of the proof of a
result of Stampacchia (see [10, theorem 4.1 and 4.2]) im-
plies that there exists M,, > 0 such that

| Um,n |oo§ M,

Let now m,, be an integer such that

my, > max(M, + p,t) and if we define u,, = ty,, », then
T, (un) =u, and T, (up)=1

Accordingly, the function u,, verifies the equation

_dw{ )+ [ un [7) | Vg, |N 2 Vun}

P 2w | Vg V= (), (27

with zero Dirichlet boundary condition.

Assuming the sequence {t,,} C RT — {0} is an increasing
sequence which converges to infinity. By induction on the
Orlicz space L¥(*)(Q), we can similarly prove that

| tn |yp(,)=inf {k > o;/ " (?')dm < 1} <C.
Q

Using again an adaptation of the proof of theorem 4.1
and 4.2 in [10] yields that there exists C\, > 0 such that

|t |oo< Cy ¥ > max(L, ).

e Step 6: Conclusion
Finally, if Vn > max(Ci,t, 0
then f/ (un) = A | u, |92

and then u def Usp.

Hence we conclude that the Dirichlet problem (1.1)-(1.2)
has an infinitely many bounded weak solutions.

U+ | un |72 up,

3 Thecase 0 <y <1

In this section we suppose that 0 < v < 1, and the as-
sumption
l1<d<N<g<y+N

still holds.
For a solution u of (1.1)-(1.2), we remark that u €

Wy N (€) such that "ZIZ'_IZ u lies in L(£2), therefore

(Advance online publication: 14 May 2016)
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Vu|N
+ul” VuNQVuV+ /|
| (@ 1up) 9] R
:/|u|072uv+/\u|q72uv (3.1)
Q Q

holds for every u € Wy™¥ (Q) N L= ().

The following theorem enables us to establish the exis-
tence of infinitely many bounded weak solutions of Dirich-
let problem (1.1)-(1.2).

Theorem 3.2 Assume that 0 < v < 1 and if ¢, 6 satisfies
the condition

1<f<N<g<y+N.
Moreover, there exists A* > 0 such that
0< A<,

Then there exist infinitely many bounded weak solutions
to Dirichlet problem (1.1)-(1.2).

Proof. The main idea of this proof is given in [1,13], The
fact that the function ¢ —| ¢ |7 is not differentiable, will
force us to choose a C? approximation of a truncature
function t (%—}— | ¢ |N)%, and a passage to the limit
with respect to m will be necessary to deduce solutions
to equation (1.1)-(1.2). We consider the truncated
functional Jm n for v in VVO N(Q) as follows

o)+ (4 1 Tolo >|N)N] o ¥
(3.3)

where T, and f, » would be found in the section 2 and
1<qgp<O0<N<qg <qg<N-+nr.

We observe that J,, , is well defined if ¢; < N +~ and
O0+p+q< %

The Euler-Lagrange equation in relation with the above
functional is defined for v € W, (9]

—div { (a(x) + (;L+ | T (v) |N>N> | Vo |N-2 vv}

2 T00) | Tul0) Y2 T 0)
N
(24 Tulw) M)
with zero Dirichlet boundary condition. We establish the
compactness condition of the truncated functional J,, .,

by repeating the argument used in the Theorem 2.2 Sec-
tion 2, we obtain

| Vo Y= £ (), (34)

11 T Tn@e) Y oy v IV
/§2<N+9 0 [T7, (wi))? ) (o) [V

11 Thw)Tw(ws) | v | Towy) [V
+/Q<N+9 0 [T, (wy)]? +91\7%+|Tm(wk:) |N>

m

1 X
X (-I— | To (wi,) |N> | Vg |V
m

AS

wy,
<t un )

T (wi)

T g w) = fuawn))

Reasoning as before, the three left hand side terms are

positives ( the second one term is positive because
‘Tm(wk)‘N
T (wi) [N

quence {wy,} is bounded in W, N(Q). Moreover, it weak-
ly converges into VVO1 N(Q) up to the subsequence which
we still denote {wy} converging to a function w. The
fact that a(z) + (L+ | T, (v) |N)% > «, we infer from
the proof of theorem 2.15 section 2, the functional jmn
is bounded from below. Accordingly,we are able to de-
duce that J,, , satisfies all assumptions of theorem 2.3
in [3], and then there exist infinitely many nontrivial so-
lutions u¥,  with k =1,2,...... in Wy N (Q) N L>®(Q) to
equation (3 4)-(1.2).

In the following steps every solution of Dirichlet prob-
lem (3.4)-(1.2) could be represented by wy,, for al-
lk=1,2,......

According to the proof of theorem 2.15, we infer that
there is M,, > 0 such that for every m, we have

> 0) thereby, we can conclude that the se-

| Winn oo < M. (3.5)
The fact that f; (t) = Ahy(t) + g,,(t), there exists a

nonnegative constant ]\~/n such that

| Fia(Wimn) loo< N (3.6)

Choosing m sufficiently large, we therefore see that
To(Wimn) = Wi, and then, wy, , solves the following
equation

1 ¥
—div { (a(x) + (m+ | Wm,n N) ) | Vwm,n |N_2 V’IUm,n}

N | Win [V 72

= (3.7)
N Lt w, )~

| VU’?ﬂ,n |N: f’;},,)\(wm7n)'

Notice that, in contract with the case v > 1, here we still
have an explicit dependance on m in the equation.
Since a(x) | V., [Ne L1 Q) and wy,,, € L®(Q) then

(Advance online publication: 14 May 2016)
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the sequence {wy,,} is bounded in W™ (Q) N L>(Q)
up to subsequence, it weakly converges in WO1 N(Q) to a
function w, which lies in Wy () N L>(Q).

Consider a test function fk such that

Taking into account 7} k(Wm,n) as test function in (3.7)
and dropping nonnegative terms, and so letting k tends
to zero, we get

Y | Wm,n |N_2 Wm,n

N Q (%"‘ | Wi ‘N) N];'Y

| Vwm,n |N <

which implies that

| Wi [NV 72 Wi,

%/ ) N—y | vwm,n |N < 15717
@ (E"’ | Wi, |N) Y

(3.8)

because (3.5) holds true.

N-—2
Consequently, the term S i

" | Vwp,, |V is
(#_me:n'N)NNW |
bounbed in L!() and the fact that (3.6) holds, then
this term a(z) + (24 | wm,n |V) Y is bounded in L>(12)
with respect to m. We amalgamate the theorem 2.1 in
[11] with the theorem A.0.6 in [12] to deduce that the

sequence {ANwWy, »} weak™ converges A nw,, for all ¢ lies

in WO1 N(Q) as m tends to infinity. Therefore, by using
Fatou lemma we can pass the limit in (3.8) to obtain that

N |an|N <P
N Jo lwn 277" =77

According to the previous proof we can deduce that
/ | wy || Vw, |V is  bounded with respect to n
Q

for wy, instead of w,,.

Remark 3.9 Repeating the same procedure as in section
2, the sequence {wy} is bounded in L™ (12).

In order to show that the equation (3.7)-(1.2) has a su-
persolution, we choose ¢ > 0 in W)™ (Q) N L>°(Q) and
define H,,(t) = 5 (S+ |t |N)% .

Taking ge~mnHm(Wm.n) ag test a function in (3.7), we

get
/

2z}

o) + (7711+ | W |N>

] | VWi n |N_2

% vwm7nv¢67w7n,nH'nL(w'nL,n)

1 N *
a(x) + + | Winn |
m

/ Wi HY (Wi )
Q

| VWi, n

1 W\
a(x) + | —+ | wmn |
m

X d)e_wnL,n H,, (wnL,n)

71/ | Wiy N 72 Winm
N RED
@ (Gt [ wmn V) 7

| VW n |V

+/QHm(wm,n)

‘ vwm,n |N ¢67wm,nHm(wm,n)

+ / f’r/z,/\(wm,n)¢6_wm"HHm(wm'n)'
Q

By combining the assumption 0 < a < a(z) < 8 with the
definition of H,,, we have

1 x t N—Zt
tHy, (t) |a(x) + (+ |t |N> ] - %%
" (G leN) =
1 ~
> tH'(t) <+ | t |N> > 0.
m
Consequently,

J

1 ¥
a(z) + <m+ | Win,n |N> ‘| | Vwp, |N_2 Vwp,n

% vgbef’w"z,,n Hp, (wm,n)

Q

Now we pass the limit, as m tends to infinity, thanks to
the weak convergence of the sequence {wy,. .} to w, and
its boundedness in L ().

Defining H(t) = -t | ¢ |7 as the limit of H,,(t) when m
tends to infinity, we have

[ ot [ [V, [V T, Tgevnttnen
Q

s [ Fontunggeminn

The fact that the sequence {w,} is bounded in L>((Q2),

we can choose 7 large enough so that w def wy, < 7.

We notice that w = wg in 2 yields a singular set of func-
tion IMI% is the boundary of €.

Since 0 < ¢ € Wol’N(Q) N L>°(Q) is taken as in the equa-
tion (3.7) in which w,, 7 a solution, and so using Fatou
lemma the sequence {Ayw,} weak* converges to Ayw
for all ¢ belongs to Wol’N(Q) yields,

J

a(z) + (;Jr | w |N)N] | Vw N2 VwVe

> /Q f%’,\(w)qb.

We follow the idea as in [13], therefore we choose v =
¢ﬁ\1;l(w)—Hm(wmﬁ) as test function in (3.7) to obtain

J

~

o) + (ot 10 V)

‘| | Vwmﬁ |N72 Vwmvﬁ

(Advance online publication: 14 May 2016)
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X V(beH(w)_Hm (wrn ,W)

o) + (ot 10z )

| Vwmﬁ ‘N72 Vwmﬁ

“,

XV¢6H(w)7Hm(wm'ﬁ)H/(w)f/ f%ﬁ/\(w")(beH(w)iHm(wm'ﬁ)
Q
-,

A Nwma NP wng

N Q (L_’_ | W7 |N) NN

m

| vwm,ﬁ |N72 vwm,ﬁ

1
a(z) + <+ | Wi 7 |N>
m

% v(beH(w)—Hm(wm ’W)H/(U)m’ﬁ)

Reasoning as before, the right hand side is nonnegative,
consequently, letting m tends to infinity and then apply-
ing Fatou lemma, thereby we have,

/Q la(e)+ | w "] | Voo [¥ 2 Vv
v w N H (w
+/Q[a<x>+|w|1|v N B ()

—/()\\w|9_2w+|w\q_2w)qﬁ
Q

N v | Vw [V
> [ fo@) 1w P Vo ¥ 5o - [
therefore
¥ N—-2 l | Vuw |N
/Q[a(x)—i—|w| ]| Vw | Vqub—i—N Q|w|2*7w¢
> / (A w P72 wt [w 772 w) ¢. (3.10)
Q

eHl(W)=Hm(wm =) equals to 1 as m tends to infinity.

We prove the converse inequality of (3.10)

Indeed, taking 0 < ¢ € W'V (Q) N L>(Q) as the test
function in the equation for w,, 7 solution to equation
(3.7)and applying Fatou lemma to equation (3.7). More-
over, fi(wg) = fi(w) = A | w 72 w+ | w |92 w then,
we deduce by letting m tends to infinity that

Vuw [N
a(z)+ | w|"]| Vw N_2VwV¢5+l | wo

[ et L1 v ¥ | o
g/ A w P2 wt w72 w) ¢. (3.11)

Q
By combining (3.10) with (3.11), we get
N
¥y N—-2 l |vw |

/Q[a(x)—l- w1V V2 GuTe+ 3 | o

:/Q()\|w\6*2w+\w|q72w)¢.

~ | vw"z,ﬁ ‘N ¢€H(w)7Hm(wm,ﬁ).

for every ¢ € Wy ¥ (€2) N L>(Q) The solution w of (1.3)-

. d d d
(1.4) is either w w0 orw ™ utor ... or w e P
or ......
Hence, we can assert that the Dirichlet problem

(1.1)-(1.2) has infinitely many positive bounded weak
solution.Od
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