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Abstract—In present paper, the Sharma-Tasso-Olever (STO)
equation is considered by the Lie symmetry analysis. All of
the geometric vector fields to the STO equation are obtained,
then the symmetry reductions and exact solutions of the STO
equation are investigated. Our results witness that symmetry
analysis was very efficient and powerful technique in finding
the solutions of the proposed equation.

Index Terms—STO equation, Lie symmetry analysis, power
series solution, Hyperbolic function solution, rational function
solution.

I. INTRODUCTION

RECENTLY, mathematics and physics field have de-
voted considerable effort to the study of solutions to

partial differential equations (PDEs). Among many powerful
methods for solving the equation, Lie symmetry analysis
provides an effective procedure for integrability, conservation
laws, reducing equation and exact solutions of a wide and
general class of differential systems representing real phys-
ical problems [1], [2]. In [3], Sinkala et al performed the
group classification of a bond-pricing PDE of mathematical
finance to discover the combinations of arbitrary parameters
that allow the PDE to admit a nontrivial symmetry Lie
algebra, and computed the admitted Lie point symmetries,
identify the corresponding symmetry Lie algebra and solve
the PDE. Under the condition of the symmetry group of the
PDE is nontrivial, it contains a standard integral transform
of the fundamental solutions for PDEs, and fundamental
solutions can be reduced to inverting a Laplace transform
or some other classical transform in [4]. In [5], by using
the direct construction method, all of the first-order multi-
pliers of the generalized nonlinear second-order equation are
obtained, and the corresponding complete conservation laws
of such equation are provided. Furthermore, Lie symmetry
analysis helps to study their group theoretical properties,
and effectively assists to derive several mathematical char-
acteristics related with their complete integrability [6]. Also,
Lie symmetry analysis and dynamical system method is a
feasible approach to dealing with exact explicit solutions to
nonlinear PDEs and systems, (see, e.g., [7]–[12]). Liu et
al derived the symmetries, bifurcations and exact explicit
solutions to the KdV equation by using Lie symmetry
analysis and the dynamical system method [13]. The STO
equation is a KdV-like equation and has been applied to
describe a wide range of physics phenomena of the evolution
and interaction to nonlinear waves, such as fluid dynamics,
aerodynamics, continuum mechanics, solitons and turbulence
et al, it possesses an infinitely many symmetries and the
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bi-Hamiltonian formulation. Note that the exact solutions
for it with different forms can describe different nonlinear
waves. In present paper, we will investigate the vector fields,
symmetry reductions and exact solutions to the STO equation
[14]–[19]

ut + 3au2
x + 3au2ux + 3auuxx + auxxx = 0, (1)

where a 6= 0 is a constant, u = u(x, t) is a field variable, the
subscripts denote the partial differentiation of the function
u with respect to the parameter x or t, x is the spatial
coordinate in the propagation direction and t is the temporal
coordinates, which occur in different contexts in mathemat-
ical physics. The dissipative uxxx term provides damping
at small scales, and the non-linear term u2ux stabilizes by
transferring energy between large and small scales.
The rest of this paper is organized as follows: In Section
II, the vector fields of Eq. (1) are presented by using Lie
symmetry analysis method. Based on the optimal dynamical
system method, all the similarity reductions to Eq. (1) are
obtained. In Section III, the exact analytic solutions to the
equation are investigated by means of the power series
method et al. respectively. Finally, the conclusions will be
given in Section IV.

II. LIE SYMMETRY ANALYSIS AND SIMILARITY
REDUCTIONS

Recall that the geometric vector field of a PDE equation is
as follows

V = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u, (2)

where the coefficient functions ξ(x, t, u), τ(x, t, u), η(x, t, u)
of the vector field are to be determined later.
If the vector field (2) generates a symmetry of the equation
(1), then V must satisfy the Lie symmetry condition

PrV (∆)|∆=0 = 0,

where PrV denotes the 3-th prolongation of V , and ∆ = ut+
3au2

x+3au2ux+3auuxx+auxxx. Moreover, the prolongation
PrV depends on the equation

PrV = η∂u + ηx∂ux + η2x∂u2x + η3x∂u3x ,

where the coefficient functions ηkx(k = 1, 2, 3) are given as

ηkx = Dk
x(η − τut − ξux) + τukxt + ξu(k+1)x,

k = 1, 2, 3,

here symbol Dx denotes the total differentiation operator and
is defined as

Dx = ∂x + ux∂u + utx∂ut
+ u2x∂ux

+ . . . .
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Then in terms of the Lie symmetry analysis method, we
obtain that all of the geometric vector fields of Eq. (1) are
as follows

V1 = x∂x + 3t∂t − u∂u, V2 = ∂x, V3 = ∂t.

Moreover, it is necessary to show that the vector fields of
Eq. (1) are closed under the Lie bracket, we have

[V1, V1] = [V2, V2] = [V3, V3] = 0,

[V1, V2] = −[V2, V1] = V2,

[V1, V3] = −[V3, V1] = 3V3,

[V2, V3] = −[V3, V2] = 0.

Based on the adjoint representations of the vector fields,
we obtain the optimal systems of the four STO equation
as follows

{V1, V2, V3, V3 + vV2},

where v 6= 0 is constant.
In the preceding section, we obtained the vector fields and the
optimal systems of Eq. (1). Now we deal with the symmetry
reductions and exact solutions to the equation, to consider
the similarity reductions and group-invariant solutions based
on the optimal dynamical system method. From an optimal
system of group-invariant solutions to an equation, every
other such solutions to the equation can be derived.
For the generator V1, it yields

u = t−
1
3 f(z), (3)

where z = xt−
1
3 . Substituting (3) into Eq. (1), we reduce it

into the following ODE

−1
3
f − 1

3
zf ′ + 3af ′2 + 3af2f ′ + 3aff ′′ + af ′′′ = 0, (4)

where f ′ = df
dz .

For the generator V2, we get the trivial solution to Eq. (1) is
u(x, t) = c, where c is an arbitrary constant.
For the generator V3, we have

u = f(z), (5)

where z = x. Substituting (5) into Eq. (1), we obtain the
following ODE

3f ′2 + 3f2f ′ + 3ff ′′ + f ′′′ = 0, (6)

where f ′ = df
dz .

For the generator V3 + vV2, we have

u = f(z), (7)

where z = x − vt, v > 0 is regarded as the wave velocity.
Substituting (7) into Eq. (1), we have

−vf ′ + 3af ′2 + 3af2f ′ + 3aff ′′ + af ′′′ = 0, (8)

where f ′ = df
dz .

III. EXACT SOLUTIONS

By seeking for exact solutions of the PDEs, we mean those
that can be obtained from some ODEs or, in general, from
PDEs of lower order than the original PDE [20]–[22]. In
terms of this definition, the exact solutions to Eq. (1) are
obtained actually in both of the preceding Sections II. In
spite of this, we still want to detect the explicit solutions
expressed in terms of elementary or, at least, known
functions of mathematical physics, in terms of quadratures,
and so on.

3.1 Exact power series solution to Eq. (4)

We know that the power series can be used to solve dif-
ferential equation, including many complicated differential
equations [23], [24], and so we consider the exact analytic
solutions to the reduced equation by using power series
method. Once we get the exact analytic solutions of the
reduced ODEs, the exact power series solutions to Eq. (1)
are obtained. In view of (4), we seek a solution in a power
series of the form

f(z) =
∞∑

n=0

cnzn. (9)

Substituting (9) into (4), and comparing coefficients, then we
obtain the following recursion formula:

cn+3 = − 1
(n + 1)(n + 2)(n + 3)

(
− cn

3a
− ncn

3a

+ 3
n∑

k=0

(n + 1− k)(k + 1)ck+1cn+1−k

+ 3
n∑

k=0

k∑

i=0

(n + 1− k)cick−icn+1−k

+ 3
n∑

k=0

(n + 1− k)(n + 2− k)ckcn+2−k

)
,

(10)

for all n = 0, 1, 2, . . ..
Thus, for arbitrarily chosen constants ci (i = 0, 1, 2), we
obtain

c3 = −c0c2 − c2
0c1

2
− c2

1

2
+

c0

18a
.

Furthermore, (10) yield

c4 = − 1
12

(
9c0c3 + 9c1c2 + 3c0c

2
1 + 3c2

0c2 − c1

3a

)
, (11)

c5 = − 1
60

(
36c0c4 + 36c1c3 + 18c2

2 + 9c2
0c3

+ 18c0c1c2 + 3c3
1 −

c2

a

)
, (12)

and so on.
Thus for arbitrary chosen constant numbers ci (i = 0, 1, 2),
the other terms of the sequence {cn}∞n=0 can be determined
successively from (11) and (12) in a unique manner. This
implies that for Eq. (4), there exists a power series solution
(9) with the coefficients given by (11) and (12). Furthermore,
it is easy to prove the convergence of the power series (9)
with the coefficients given by (11) and (12). Therefore, this
power series solution (9) to Eq. (4) is an exact analytical
solution.
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Hence, the power series solution of Eq. (4) can be written
as

f(z) = c0 + c1z + c2z
2 +

∞∑
n=0

cn+3z
n+3

= c0 + c1z + c2z
2

+
(− c0c2 − c2

0c1

2
− c2

1

2
+

c0

18a

)
z3

−
∞∑

n=1

1
(n + 1)(n + 2)(n + 3)

(
− cn

3a
− ncn

3a

+ 3
n∑

k=0

(n + 1− k)(k + 1)ck+1cn+1−k

+ 3
n∑

k=0

k∑

i=0

(n + 1− k)cick−icn+1−k

+ 3
n∑

k=0

(n + 1− k)(n + 2− k)ckcn+2−k

)
zn+3.

Thus, the exact power series solution of Eq. (1) is

u(x, t) = c0t
− 1

3 + c1xt−
2
3 + c2x

2t−1

+
(− c0c2 − c2

0c1

2
− c2

1

2
+

c0

18a

)
x3t−

4
3

−
∞∑

n=1

1
(n + 1)(n + 2)(n + 3)

(
− cn

3a
− ncn

3a

+ 3
n∑

k=0

(n + 1− k)(k + 1)ck+1cn+1−k

+ 3
n∑

k=0

k∑

i=0

(n + 1− k)cick−icn+1−k

+ 3
n∑

k=0

(n + 1− k)(n + 2− k)ckcn+2−k

)

× xn+3t−
n+4

3 .
(13)

In mathematical and physical applications, it will be con-
venient to write the solution of Eq. (1) in the approximate
form

u(x, t) = c0t
− 1

3 + c1xt−
2
3 + c2x

2t−1

+
(− c0c2 − c2

0c1

2
− c2

1

2
+

c0

18a

)
x3t−

4
3 − 1

12
× (

9c0c3 + 9c1c2 + 3c0c
2
1 + 3c2

0c2 − c1

3a

)
x4t−

5
3

− 1
60

(
36c0c4 + 36c1c3 + 18c2

2 + 9c2
0c3

+ 18c0c1c2 + 3c3
1 −

c2

a

)
x5t−2 + · · · .

(14)

Moreover, we can show that the convergence of the power
series solution (9) to Eq. (1). In fact, from (10), we have

|cn+3| ≤ M

(
2|cn|+

n∑

k=0

|ck+1||cn+1−k|

+
n∑

k=0

k∑

i=0

|ci||ck−i||cn+1−k|+
n∑

k=0

|ck||cn+2−k|
)

,

where M = max{ 1
3|a| , 3}. We introduce a power series

A(z) =
∑∞

n=0 anzn, set

ai = |ci|, i = 0, 1, 2,

and

an+3 := M

(
2an +

n∑

k=0

ak+1an+1−k

+
n∑

k=0

k∑

i=0

aiak−ian+1−k +
n∑

k=0

akan+2−k

)
,

n = 0, 1, . . . .

It is easy to see that

|cn| ≤ an, n = 0, 1, . . . .

In other words, the series A(z) =
∑∞

n=0 anzn is majorant
series of (9). Further, we show that the series A(z) has
positive radius of convergence. Indeed, note that by formal
calculation, it yields

A(z) = a0 + a1z + a2z
2 + M

(
2
∞∑

n=0

anzn+3

+
∞∑

n=0

n∑

k=0

ak+1an+1−kzn+3

+
∞∑

n=0

n∑

k=0

k∑

i=0

aiak−ian+1−kzn+3

+
∞∑

n=0

n∑

k=0

akan+2−kzn+3

)

= a0 + a1z + a2z
2 + M

(
z2A3(z) + (2z − a0z

2)A2(z)

+ (2z3 − 3a0z − a1z
2)A(z) + a2

0z
)
.

Consider now the implicit functional system with respect to
the independent variable z

A(z,A) = A− a0 − a1z − a2z
2 −M

(
z2A3(z)

+ (2z − a0z
2)A2(z) + (2z3 − 3a0z − a1z

2)A(z)

+ a2
0z

)
.

Obviously, there exists a δ > 0, the function A is analytic
in the neighborhood U((0, a0); δ) of the point (0, a0), and
A(0, a0) = 0. Furthermore,

∂

∂A
A(0, a0) 6= 0.

By the implicit function theorem [25], we see that A(z) =∑∞
n=0 anzn is analytic in a neighborhood of the point 0 and

with the positive radius. This implies that the power series
(9) converge in a neighborhood U(0; δ).
We would like to reiterate that the power series solutions
which have been obtained in this section are exact analytic
solutions to the equation. Moreover, we can see that these
power series solutions converge for the chosen constants ci

(i = 0, 1, 2) of (14), it is actual value for mathematical and
physical applications.

3.2 Exact rational function solution to Eq. (6)
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Integrating Eq. (6), we have

f ′′ + 3ff ′ + f3 = 0, (15)

taking the integration constant zero. Introduce the transfor-
mation

f(z) = (lnφ(z))′. (16)

Substituting (16) into (15), we obtain the following linear
equation

φ′′′ = 0.

Solve this equation, we have

φ(z) =
1
2
c1z

2 + c2z + c3, c2
1 + c2

2 + c2
3 6= 0. (17)

Substituting (17) into (16), then the exact rational function
solution to Eq. (1) is obtained as

u(x, t) =
c1x + c2

1
2c1x2 + c2x + c3

.

3.3 Exact travelling wave solutions to Eq. (8)

Consider the exact analytic solutions to the reduced equation
by using trial equation method, the exact travelling wave
solutions to Eq. (1) are obtained. By integrating Eq. (8),
keeping the integration constant zero, it yields

af ′′ + 3aff ′ + af3 − vf = 0. (18)

We assume a solution of Eq. (18) in the form [26]

f(z) =
λ sinh z

α + β cosh z
. (19)

Substituting for u, u′ and u′′ in Eq. (18), we obtain an
algebraic equation in powers of cosh z given as

− v(α + β cosh z)2 + aλ2(cosh2 z − 1)

+ 3a(λα cosh z + λβ)− a(2β2 − α2 + αβ cosh z) = 0.

Equating the coefficients of different powers of cosh z to
zero, it yields

−vα2 − aλ2 + 3aλβ − 2aβ2 + aα2 = 0, (20)
−2vαβ + 3aλα− aαβ = 0, (21)

−vβ2 + aλ2 = 0. (22)

In view of Eqs. (21) and (22), we can obtain a constraint
relation

9av = (a + 2v)2. (23)

From Eq. (22) and (23), Eq. (20) reduces into

aλ2 = vα2. (24)

In view of (24), the wave velocity v > 0 yields a > 0. By
Eqs. (22) and (24) one can conclude that α = β. Thus the
solution (19) can be read as

f(z) = ±
√

v

a

sinh z

1 + cosh z
. (25)

Therefore the solution of Eq. (1) can be given as

u(x, t) = ±
√

v

a

sinh(x− vt)
1 + cosh(x− vt)

, (26)

which is a kink-wave [27].
Now we also assume a solution of Eq. (18) in the form

f(z) =
λ cosh z

α + β sinh z
.

Substituting for u, u′ and u′′ in Eq. (18), we obtain an
algebraic equation in powers of sinh z given as

− v(α + β sinh z)2 + aλ2(1 + sinh2 z)

+ 3a(λα sinh z − λβ) + a(2β2 + α2 − αβ cosh z) = 0.

Equating the coefficients of different powers of cosh z to
zero, it yields

− vα2 + aλ2 − 3aλβ + 2aβ2 + aα2 = 0, (27)
− 2vαβ + 3aλα− aαβ = 0, (28)

− vβ2 + aλ2 = 0. (29)

In view of Eqs. (28) and (29), we can obtain a constraint
relation

9av = (a + 2v)2. (30)

Note that v > 0 yields a > 0. From Eq. (29) and (30), Eq.
(27) reduces into

aλ2 = −vα2. (31)

By Eqs. (29) and (31) one can conclude that β = ±iα. Thus
the solution (19) can be read as

f(z) = ±
√

v

a

i cosh z

1± i sinh z
. (32)

Therefore the solution of Eq. (1) can be given as

u(x, t) = ±
√

v

a

i cosh(x− vt)
1± sinh(x− vt)

. (33)

Eqs. (25), (26), (32) and (33) imply

av > 0.

This shows that the coefficient of the first nonlinear term and
the speed of the wave must carry the same sign.
Remark 1: Similar to the solving Eq. (15), we can also
employ the transformation (16) to Eq. (18), we can obtain
the following linear equation

aφ′′′ − vφ′ = 0.

Solve this equation, we have

φ1(z) = c1, φ2(z) = exp
(√v

a
z
)
,

φ3(z) = exp
(−

√
v

a
z
)
, a > 0, v > 0,

(34)

and

φ4(z) = c2, φ5(z) = exp
(√ v

−a
iz

)
,

φ3(z) = exp
(−

√
v

−a
zi

)
, a < 0, v > 0,

(35)

where c1, c2 are arbitrary constants. Substituting (34) and
(35) into (16), respectively, then the trivial solutions to Eq.
(1) is obtained as

u1(x, t) = 0, u2(x, t) =
√

v

a
, u3(x, t) = −

√
v

a
,

a > 0, v > 0,
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and

u4(x, t) = 0, u5(x, t) =
√

v

−a
i, u6(x, t) = −

√
v

−a
i,

a < 0, v > 0.

However, the solutions u5 and u6 yield the real analytical
solution Eq. (1)

u51(x, t) = −
√

v

−a
tan

(√ v

−a
(x− vt)

)
,

u61(x, t) =
√

v

−a
cot

(√ v

−a
(x− vt)

)
, a < 0, v > 0.

Remark 2: Under the conditions of the generator V3 and
V3 +vV2, we can also obtain the power series form solutions
to Eqs. (6) and (8), respectively, the details are omitted.

IV. SUMMARY AND DISCUSSION

In this paper, we have obtained the symmetries and similarity
reductions of the STO equation by using Lie symmetry
analysis method. All the group-invariant solutions to STO
equation (1) are considered based on the optimal system
method, then the symmetry reductions and exact solutions
of the STO equation are investigated. Being concise and
powerful, we note that this approach can also be applied
to solve other nonlinear PDEs.
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