
A Solution to Yamakami’s Problem on
Non-uniform Context-free Languages

Toshio Suzuki, Member, IAENG

Abstract—Yamakami (Theoret. Comput. Sci., 2011) studies
non-uniform context-free languages. Here, the length of advice
is assumed to be the same as that of an input. Let CFL and
CFL/n denote the class of all context-free languages and its non-
uniform version, respectively. We let CFL(2) denote the class
of intersections of two context-free languages. An interesting
direction of a research is asking how complex CFL(2) is,
relative to CFL. Yamakami raised a problem whether there
is a CFL-immune set in CFL(2) - CFL/n. The best known
so far is that LSPACE - CFL/n has a CFL-immune set,
where LSPACE denotes the class of languages recognized in
logarithmic-space. We present an affirmative solution to his
problem. Two key concepts of our proof are the overlapped
palindrome and Yamakami’s swapping lemma. The swapping
lemma is applicable to the setting where the pumping lemma
(Bar-Hillel’s lemma) does not work. Our proof is an example
showing how useful the swapping lemma is. In addition, by
means of Kolmogorov complexity, we show the following: With
respect to realtime deterministic context-free languages, the
non-uniform class with parallel advice is not a subset of that
with serial advice.

Index Terms—context-free language; pushdown automaton;
advice function; non-uniform complexity class; immune set.

I. INTRODUCTION

THE regular languages have beautiful closure properties.
For example, given two regular languages, their inter-

section is a regular language. Nevertheless, in the studies
of programming languages, most of important languages are
not regular. The same holds in the studies of formal models
of natural languages. In the case of classes larger than the
regular languages, closure properties are more difficult than
the regular cases.

In particular, given two context-free languages, their inter-
section is not necessarily context free. For a positive integer
k, we consider the intersection of k context-free languages,
and let CFL(k) denote the class of all such intersections.
CFL(1) is CFL, the class of all context-free languages. It is
known that CFL(k) is a proper subset of CFL(k + 1).

How complex is CFL(k + 1), relative to CFL(k)? An
interesting observation is given by Flajolet and Steyaert [6].
Let L3eq denote the set of all strings of the form 0n1n2n,
where n is a natural number. It is easily seen that L3eq

belongs to CFL(2).
An immune set is a key concept in the classical recursion

theory, namely in Post’s problem. Later, immune sets relative
to complexity classes are studied in the complexity theory
[18]. Given a class C of languages, an infinite language A

Manuscript received September 13, 2015; revised January 14 and Febru-
ary 7, 2016. This work was partially supported by Japan Society for the
Promotion of Science (JSPS) KAKENHI (C) 22540146.

Department of Mathematics and Information Sciences,
Tokyo Metropolitan University, Minami-Ohsawa, Hachioji,
Tokyo 192-0397, Japan. e-mail: toshio-suzuki@tmu.ac.jp (see
http://researchmap.jp/read0021048/?lang=english).

is C-immune if no infinite subset of A belongs to C. Flajolet
and Steyaert observed that L3eq is CFL-immune. Being C-
immune is a much stronger condition than non-membership
in C. Thus, the above observation shows that L3eq, a member
of CFL(2), is far from belonging to CFL.

We consider another condition stronger than non-
membership in a given class C. It is the non-membership
in a non-uniform version of C. In the usual mathematical
model of computation, a fixed algorithm processes all the
inputs. Such a type of computation is called uniform. In the
case where the inputs are classified according to a certain
parameter, typically the input size, and a hardware is assigned
to each parameter, we need a stronger model. Such a type of
computation is called non-uniform. A typical case is given
by a family of circuits. Here, the family is not necessarily
computable. Non-uniform computation has meaningful ap-
plications. For example, in the studies of cryptography, non-
uniform computation plays a role of a powerful adversary
[5].

A nice formulation of non-uniform computation is
achieved by a computation with an advice function. An
advice function is a function of a natural number to a string.
An advice function is not necessarily computable. With an
input, the advice at the length of the input is provided to a
fixed algorithm. Pippenger [13] characterizes computational
power of polynomial-sized circuits by advice functions. Karp
and Lipton [9] establish the foundation of computation with
an advice function. Roughly speaking, given a class C of
languages and a size-bound β for advice functions, a non-
uniform class C/β is defined. In most cases, even if all the
members of C are computable languages, C/β contains non-
computable languages. Thus, C/β is much larger than C.
Damm and Holzer [4] investigate, in the style of Karp and
Lipton, finite automata that take advice. In section IV, we
shall review their definitions.

Tadaki et al. [15] investigate computation with advice in
slightly different style from that of Karp and Lipton. Given
a class C of languages, we define C/n as follows. Suppose
that L is a language over an alphabet Σ. Suppose that Γ is

another alphabet. We introduce an extended alphabet
[

Σ
Γ

]
.

It consists of all symbols of the form
[
x
a

]
for x ∈ Σ

and a ∈ Γ. Given two strings x = x1 · · ·xn ∈ Σn and

a = a1 · · · an ∈ Γn of the same length, we let
[
x
a

]
denote

the string
[
x1
a1

]
· · ·

[
xn
an

]
∈
[

Σ
Γ

]n
.

Definition 1. (Tadaki et al. [15]) A language L belongs to
C/n if and only if there exist a language L′ ∈ C and a
function h : N→ Γ∗ such that for every x ∈ Σ∗, the length

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_08

(Advance online publication: 14 May 2016)

__

of h(|x|) is the same as that of x and the following holds.

x ∈ L ⇔
[

x
h(|x|)

]
∈ L′

Then, h is called an advice function. h(n) is the advice at
length n.

Here, the n of CFL/n denotes that the length of advice
is same as the input length. The following are examples
on DCFL, the class of languages accepted by deterministic
pushdown automata, and REG, the regular languages. In
section IV, we will review more precise definition of DCFL.

(i) Let Leq denote the set of all strings of the form 0n1n,
where n is a natural number. Then Leq belongs to DCFL ∩
REG/n and is REG-immune [6].

(ii) Let Pal# denote the palindromes whose center symbol
is the separator symbol #. Then Pal# belongs to DCFL −
REG/n and is REG-immune [17].

The CFL-immune set L3eq given in [6] belongs to CFL(2)
∩ CFL/n; in order to verify that L3eq ∈ CFL/n, consider
an advice function h(3n) = 0n1n2n. Thus, it is natural
and interesting to ask whether there is a CFL-immune set
in CFL(2) − CFL/n.

Yamakami’s problem Yamakami [17] raised a problem
whether there is a CFL-immune set in CFL(2) - CFL/n.

The best known so far is that LSPACE - CFL/n has a
CFL-immune set [17], where LSPACE denotes the class
of languages recognized by deterministic Turing machines
with a single read-only input tape and a logarithmic-space
bounded work tape.

What is the difficult point in the problem of Yamakami?
A classical method of showing that a language is not context
free is the pumping lemma for CFL (Bar-Hillel’s lemma [2]).
However, the pumping lemma destroys the advice h(n).

Our main theorem is an affirmative solution to the prob-
lem of Yamakami. Two key concepts of our proof are the
overlapped palindrome and Yamakami’s swapping lemma.
The swapping lemma is applicable to the setting where the
pumping lemma does not work. Our proof is an example
showing how useful the swapping lemma is. We show our
main theorem in section III.

In the setting of Damm and Holzer [4], the arrangement of
the advice and the input is serial. In section IV, we observe
that the same result as our main theorem holds for the advised
language class of Damm and Holzer.

In the remainder of Section IV, we show some separation
results between non-uniform classes with parallel-advice and
those with serial advice. Among others, in the case of
realtime deterministic context-free languages, we show that
the parallel class is not a subset of the serial class. Our main
tool is Kolmogorov complexity. Finally, we present some
open problems.

II. PRELIMINARIES

A. Notation

For two sets A and B, their difference A−B is {x ∈ A :
x 6∈ B}. A ⊂ B denotes that A is a subset of B; A may equal
to B. N = {0, 1, 2, . . .} is the set of all natural numbers. For

a real number x, dxe denotes the minimal natural number
n ≥ x.

An alphabet denotes a finite set of characters. For an
alphabet Σ, the set of all strings is denoted by Σ∗. The set
of all non-empty strings is denoted by Σ+. Given a string
w, its length |w| denotes the total number of occurrences of
characters. The reverse of w = w1 · · ·wn, where n = |w|, is
wn · · ·w1. The reverse of w is denoted by wR.

REG (CFL, respectively) is the class of all regular
(context-free) languages [8]. Suppose that C is a given class
of languages such as REG or CFL. An advised class C/n is
defined in the introduction.

When we discuss acceptance of an input by a pushdown
automaton, we consider acceptance by final state. During the
computation, the head has to scan all the letters of the input
string. At the end of computation, the state is a final state.
We allow non-empty stack at the end of computation.

The class CFL/n is characterized by non-deterministic
pushdown automata with an advice function (Fig. 1). It has
a one-way read-only input tape and a pushdown memory
(stack). The input tape has two tracks. An input is given
on the first track. The advice at the length of the input is
given on the second track. Then the automaton works as a

non-deterministic automaton over the alphabet
[

Σ
Γ

]
.

In Fig. 1, zk · · · z1⊥ is the string in the pushdown memory
(stack). ⊥ denotes the symbol denoting the bottom of the
stack. ¢ is the left-end symbol. $ is the right-end symbol.
h(n) = a1 · · · an in the second track is the advice at length

n. The head is reading a symbol
[
x1
a1

]
. q0 is the current

state.

zk · · · z1 ⊥

¢ x1 x2 · · · xn−1 xn $
a1 a2 · · · an−1 an
4
q0

Fig. 1. A non-deterministic pushdown automaton with advice

B. The Swapping Lemma for Context-free Languages

Ogden et al. [12] show the interchange lemma for context-
free languages. In some situation where the usual pumping
lemma does not work, the interchange lemma is a useful tool
for showing a given language is not context free. Examples
and expositions may be found in [3] and in [14]. The
swapping lemma of Yamakami has much in common with
the interchange lemma, but they are different results.

Suppose that n is a positive integer, S is a set of strings of
length n, i is a natural number, and that u is a string over Σ
such that i + |u| ≤ n. Yamakami [16] defines a subset Si,u
of S as follows.

Si,u = {v1 · · · vn ∈ S : vi+1 · · · vi+|u| = u}

The swapping lemma asserts that if the ratio |Si,u|/|S| is
small enough for any i and u (with certain properties), then
there exist two strings x, y ∈ S such that x′ and y′ belong
to L, where strings x′ and y′ are obtained by swapping the

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_08

(Advance online publication: 14 May 2016)

__

midsections of x and y, and such that the midsections are
different.

Lemma 1 (The Swapping Lemma for Context-free Lan-
guages [16]). Suppose that Σ has at least two letters, and
that L is an infinite context-free language over Σ. Then, there
exists a positive integer m, a swapping lemma constant, with
the following properties.

Suppose that n ≥ 2 is a natural number, S is a subset
of L ∩ Σn, and j0, k are natural numbers such that 2 ≤ j0,
2j0 ≤ k ≤ n, and such that for any positive integer i ≤ n−j0
and any string u ∈ Σj0 , we have:

|Si,u| < |S|/m(k − j0 + 1)(n− j0 + 1)

Then, there exist positive integers i, j and two strings x =
x1x2x3, y = y1y2y3 ∈ S with the following properties: i +
j ≤ n, j0 ≤ j ≤ k, |x1| = |y1| = i, |x2| = |y2| = j,
|x3| = |y3|, x2 6= y2, x1y2x3 ∈ L, and y1x2y3 ∈ L.

III. MAIN THEOREM AND ITS PROOF

Definition 2. We define our test language L2 as follows (the
suffix 2 is that of CFL(2)). Here, # is a letter that does not
belongs to {0, 1}.

L2 := {w#wR#w : w ∈ {0, 1}+}

Lemma 2. L2 belongs to CFL(2).

Proof: We define languages L2,1 and L2,2 as follows.
These are clearly context-free languages.

L2,1 := {w#wR#x : w ∈ {0, 1}+, x ∈ {0, 1}+}
L2,2 := {x#w#wR : w ∈ {0, 1}+, x ∈ {0, 1}+}

Then it holds that L2 = L2,1 ∩L2,2. Hence L2 belongs to
CFL(2).

Lemma 3. L2 is CFL-immune.

Proof: A standard argument based on Bar-Hillel’s
lemma shows that L2 is CFL-immune.

Theorem 4. (Main theorem) There exists a CFL-immune set
in CFL(2)− CFL/n.

Proof: By Lemmas 2 and 3, it is sufficient to show that
L2 does not belong to CFL/n. We work with Yamakami’s
swapping lemma for context-free languages [16]. Consult
Example 4.2 of [16] for a basic usage of the swapping
lemma. For a proof by contradiction, fix a function h and
a context-free language L such that ∀n |h(n)| = n, and
such that for any ξ ∈ {0, 1}∗, the following holds.

ξ ∈ L2 ↔
[

ξ
h(|ξ|)

]
∈ L

Let m be a swapping lemma constant for the context-free
language L. Let n > 0 be a multiple of 16 with the following
property.

2n/4 > (2mn2)4 (1)

We define a subset S of L as follows.

S :=

{[
ξ

h(n)

]
∈ L : ξ ∈ {0, 1}n

}

Since w#wR#w is uniquely determined by w ∈ {0, 1}+,
the following holds.

|S| = 2(n−2)/3 (2)

Let k and j0 be the followings. Here, the base of the
logarithm is 2.

k := n/4 (3)

j0 := 2(dlog(mn2)e+ 1) (4)

By (1) and (3), k = n/4 > 4(log(mn2) + 1). Since n/4
is a multiple of 4, k ≥ 4(dlog(mn2)e + 1). By (4), we get
the following.

k ≥ 2j0 (5)

Given a natural number i and a string u over the alphabet
of L such that i + j0 ≤ n and |u| = j0, we define Si,u as
follows.

Si,u = {v1 · · · vn ∈ S : vi+1 · · · vi+j0 = u}

In the case where
[
w#wR#w
h(n)

]
is in Si,u, some bits of

w are bound by u. We are going to estimate the number of
bits bound by u. The minimal number is achieved when u
spans the border of any two blocks (of the first track) with
the center of u at the border. Thus, at least d(j0− 1)/2e bits
of w are bound by u. Therefore, we have the following.

|Si,u| ≤ 2−(j0−1)/2|S| (6)

Now, we have the following.

|Si,u| < |S|/kmn (7)

This is shown as follows. 2(j0−1)/2 ≥
√

2mn2 [by (4)]
= 4
√

2kmn [by (3)] > kmn. Thus, 2(j0−1)/2 > kmn. By
(6), we have shown (7).

By (5) and (7), we can apply the swapping lemma for
context-free languages [16, Lemma 4.1] to the present set-
ting.

By the swapping lemma, there exist natural numbers i, j
and strings x, y ∈ S with the following properties.
• 1 ≤ i ≤ n− j and j0 ≤ j ≤ k(= n/4)
• x, y are of the form x = x1x2x3, y = y1y2y3, where

each x` and y` are strings, and it holds that |x1| =
|y1| = i, |x2| = |y2| = j, |x3| = |y3|, x2 6= y2,
x1y2x3 ∈ L and y1x2y3 ∈ L.

Let ξ, η, ξ` and η` (` = 1, 2, 3) be the projections of
x, y, x` and y` to the first track, respectively. For example,

x =

[
ξ

h(n)

]
, y =

[
η

h(n)

]
.

Since x belongs to L and the second component is h(n),
it holds that ξ ∈ L2. Therefore ξ is of the form w#wR#w
for some string w of length (n − 2)/3. Here, it holds that
2 < |ξ2| < |w|. The first inequality is shown as follows:
2 < j0 [by (4)] ≤ j = |ξ2|. The second inequality is shown
as follows: |ξ2| = j ≤ k = n/4 < (n− 2)/3 = |w|.

Therefore, ξ2 is not included by #. ξ2 is included by one
of w#, wR# and (the rightmost) w; or by consecutive two
of them. The same holds for η2.

Fig. 2 demonstrates the case of i+ j ≤ (n+ 1)/3. Here,
ξ2 is included by w#. Fig. 3 demonstrates the case of i ≤

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_08

(Advance online publication: 14 May 2016)

__

ξ1 ξ2 ξ3 η1 η2 η3

©C N�� 5© ♦B ©C N�� 5© ♦B

x1 x2 x3 y1 y2 y3

swap
→

ξ1 η2 ξ3 η1 ξ2 η3

©C N�� 5© ♦B ©C N�� 5© ♦B

x1 y2 x3 y1 x2 y3

h(n) =©C N�� 5©♦B

Fig. 4. The invariance of the second track under swapping

ξ1 ξ2 ξ3

i i+ j

=
w# wR#w

(n+ 1)/3

Fig. 2. The case of i+ j ≤ (n+ 1)/3

ξ1 ξ2 ξ3

i i+ j

=
w# wR# w

(n+ 1)/3 2(n+ 1)/3

Fig. 3. The case of i ≤ (n+ 1)/3 < i+ j

(n + 1)/3 < i + j. Here, ξ2 is included by w#wR#. The
other cases are similar.

The swapping of x2 and y2 does not affect the second
components h(n) of x and y (Fig. 4). Thus both ξ1ξ2ξ3
and ξ1η2ξ3 belong to L2, and ξ2 6= η2. Hence, we get a
contradiction.

Thus, we have shown that L2 does not belong to CFL/n.
Hence, we have shown the theorem.

IV. SERIAL ADVICES

A. A Variation of the Main Theorem

In the definition of Damm and Holzer [4], the arrangement
of the advice and the input is serial, while in that of Tadaki
et al., it is parallel. In this subsection, we show that the same
result as our main theorem holds for the advised language
class in the sense of Damm and Holzer.

Definition 3. (Damm and Holzer [4]) Given a class C of
languages, the advised language class C/n in the sense of
Damm and Holzer is defined as follows. Suppose that Σ
and Γ0 are alphabets. Suppose that L is a language over Σ.
Then, L belongs to C/n (in the sense of Damm and Holzer)
if and only if there exist a language L′′ ∈ C and a function

g : N → Γ∗0 such that ∀n |g(n)| = n, and such that the
following holds.

x ∈ L ⇔ g(|x|) x ∈ L′′

Here, g(|x|) x is the concatenation of g(|x|) and x. Then,
g is called an advice function. g(n) is the advice at length
n.

In the remainder of the paper, C/n denotes the advised
class in the sense of Tadaki, Yamakami and Lin [15], that is,
the parallel one defined in Introduction. On the other hand,
(C/n)serial denotes the advised class defined in this section.
The following is a variation of our main theorem. The proof
is similar to that of the main theorem.

Theorem 5. There exists a CFL-immune set in CFL(2) −
(CFL/n)serial.

B. Parallel versus Serial: Finite Automaton

In this subsection, we discuss separation of parallel advice
classes and serial advice classes.

In general, the two concepts of advised classes do not
coincide. Recall that REG denotes the class of all regular
languages.

Example 1. REG/n is not a subset of (REG/n)serial. A
proof is as follows. Damm and Holzer show that the language
Leq = {0n1n : n ∈ N} does not belong to (REG/n)serial
[4, Propositions 1 and 7]. On the other hand, let h(n) be
0n/21n/2 if n is even; 2n otherwise. Then, by means of the
advice function h, Leq is shown to be in REG/n.

Example 2. (REG/n)serial is a subset of REG/n. A proof
is as follows. Suppose L is an element of (REG/n)serial.
Let L′′ and g be a regular language and an advice function
satisfying the requirements in Definition 3. Let M be a
deterministic finite automaton that accepts L′′. Given a
natural number n, let q(n) be the state when M has read g(n).
Provided that q(n) is given, without knowing what g(n) is,
we can simulate the moves of M after reading g(n). Then,
we define h(n) as to be q(n) 0n−1. The 0s in the tail are
just for adjusting the length of h(n). Let Γ be the union
of {0} and the set of the states of M . Now, it is easy to
define a regular language L′ satisfying the requirements in

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_08

(Advance online publication: 14 May 2016)

__

Definition 1 with respect to Γ and h. Therefore, L belongs
to REG/n.

A direct proof of Example 1 is given by means of prefix-
free Kolmogorov complexity.

Definition 4. [11]
• A string u = u1 · · ·um is a prefix of a string v =
v1 · · · vn if m ≤ n and for each i ≤ m it holds that
ui = vi. A set S of strings is prefix-free if for each
u, v ∈ S such that u 6= v, u is not a prefix of v. A
partial function M : {0, 1}∗ → {0, 1} is called a prefix-
free machine if M is a partial recursive function and
the domain of M is a prefix-free set.

• For a prefix-free machine M , its descriptive complexity
KM : {0, 1}∗ → N ∪ {∞} is defined as follows.
Suppose x ∈ {0, 1}∗. If there exists σ ∈ {0, 1}∗ such
that M(σ) = x then KM (x) is the length of a shortest
such σ. If there is no such σ then KM (x) is ∞.

• A prefix-free machine R is an optimal prefix-free
machine if for each prefix-free machine M , there is
a constant d (depending on M) such that for each
x ∈ {0, 1}∗, KR(x) ≤ KM (x) + d.

It is known that there exists an optimal prefix-free machine
[11, Proposition 2.2.7]. We fix such a machine R, and let K
denote KR. For an infinite binary string Z : N→ {0, 1} and
a natural number n, we let Z � n denote Z(0)Z(1) · · ·Z(n−
1). It is known that there exists a binary string Z of the
following property [11, section 3.2].

∃b ∈ N ∀n ∈ N [K(Z � n) > n− b] (8)

Example 3 is a refinement of the proof by Damm and
Holzer [4] that Leq = {0n1n : n ∈ N} 6∈ (REG/n)serial.

Example 3. A direct proof that REG/n is not a subset of
(REG/n)serial. Let Z be an infinite binary string satisfying
(8). Let L := {Z � n : n ∈ N}.

By means of an advice function h(n) = Z � n, L is shown
to be in REG/n.

We are going to show that L does not belong to
(REG/n)serial. Assume that L belongs to it. Suppose that
L′′ and g are a regular language and an advice function
satisfying the requirements in Definition 3. Suppose that M
is a deterministic finite automaton that accepts L′′. Let Q be
its set of states. For each n, let q(n) be the state when M
has read g(n).

We define a deterministic Turing machine N as follows.
An input is an ordered pair (q, n) ∈ Q × N. For each y ∈
{0, 1}n, simulate the moves of M as follows. Set the state
(of the virtual M) being q. Let M read y. If M accepts y,
return y and halt. If the for-loop finishes without any output,
then N does not halt.

By the definition of L′′ and g, for the input (q(n), n), N
outputs Z � n. In addition, by a certain appropriate coding,
we may assume that the domain of N is a prefix free set.
For example, code an ordered pair (u1 · · ·um, v1 · · · v`) by
a string u1u1 · · ·umum01v1v1 · · · v`v`01.

Therefore, KN (Z � n) is in the order of the length of
(q(n), n). Thus, it is O(log2(n)). Hence, by the definition of
an optimal machine, K(Z � n) ≤ KN (Z � n) + O(1) =
O(log2 n). This contradicts to the assumption of (8).

C. Parallel versus Serial: Realtime Deterministic Pda

If a context-free language is recognized by a cetain de-
terministic automaton, it is called a deterministic context-
free language. The class of all such languages is denoted by
DCFL. DCFL is a basic and important subclass of CFL,
and has various applications (for example, see [10]).

In this subsection, we review DCFL and its subclass
RDCFL. We are going to observe that there exists a
CFL-immune set in RDCFL(2) − CFL/n. In this sense,
RDCFL(2) is a much larger class than CFL.

Main result of this subsection is that RDCFL/n is not a
subset of (RDCFL/n)serial. Finally, we will state some open
problems.

Recall that an ε-move (ε-transion) is a move of a push-
down automaton without advancing the head: In an ε-move,
operations on the state and the stack are allowed [8].

Definition 5. Suppose that Σ is an alphabet for input strings
and M is a pushdown automaton over Σ.
• [7], [8] M is a deterministic pushdown automaton

(dpda, for short) if for each state q and each stack
letter X , the following (i) and (ii) hold: (i) If for some
a ∈ Σ, a move for (q, a,X) is possible, then M does not
perform an ε-move for (q,X). (ii) For each a ∈ Σ∪{ε},
M has at most one possible move for (q, a,X).

• [1] M is a realtime pushdown automaton (rpda, for
short) if M does not have an ε-rule: For any input string,
at any move, M advances the head a step further, to the
right cell.

• M is a realtime deterministic pushdown automaton
(rdpda, for short) if M is a dpda and rpda.

• We let DCFL (RDCFL, respectively) denote the class
of all languages accepted by dpdas (rdpdas, respec-
tively).

Example 4. Languages L2,1 and L2,2 itroduced in the proof
of Lemma 2 are in RDCFL. Therefore, the language L2

itroduced in Definition 2 is in RDCFL(2). By Theorem 4,
there exists a CFL-immune set in RDCFL(2)−CFL/n. By
Theorem 5, there exists a CFL-immune set in RDCFL(2)−
(CFL/n)serial.

Example 5. In Introduction, we observe language L3eq =
{0n1n2n : n ∈ N}. This belongs to (RDCFL/n)serial. In
order to verify this, define a serial advice g(3n) as to be
2n1n0n. Consider an rdpda that works as follows. The rdpda
pushes the advice into the stack. Then, it pops letters one by
one from the stack, and compares them with the letters from
the input string.

Example 5 suggests that separation of RDCFL/n from
(RDCFL/n)serial requires different approach from Exam-
ple 1. By extending the method of Example 3, we show the
following.

Theorem 6. RDCFL/n is not a subset of (RDCFL/n)serial.

Proof: Let Z be an infinite binary string satisfying (8).
Let L := {w Z � n wR : n ∈ N, w ∈ {2, 3}∗, |w| = d

√
ne}.

In the right-hand side, 2 and 3 are considered to be letters.
By means of an advice function h(2d

√
ne + n) =

2d
√
n eZ � n 2d

√
ne, L is shown to be in RDCFL/n.

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_08

(Advance online publication: 14 May 2016)

__

In order to show that L does not belong to
(RDCFL/n)serial, suppose that L belongs to
(RDCFL/n)serial. Take an rdpda M and an advice
function g that witness that L is in the serial class.

Suppose that n and m are positive integers such that m =
2d
√
ne+n and that w is a string over {2, 3} of length d

√
ne.

Suppose that g(m) w Z � n wR is given as an input of M
and that s is an accepting path. Let g(m) w Z � n wR =
u1 · · ·u2m.

By our assumption that M does not per-
form ε-moves, s is expressed as a sequence
(r1, s1), (r2, s2), . . . , (r2m, s2m), (r2m+1, s2m+1) of the
following properties. r1 is the initial state. s1⊥ is the
initial stack string, where s1 is the empty string, and ⊥ is
the symbol for the bottom of the stack (Fig. 5). For each
i ∈ {1, . . . , 2m}, in the state ri with the stack string si⊥,
M reads the input symbol ui; then M performs an action,
and the resulting state and stack string are ri+1 and si+1⊥,
respectively (Figs. 6, 7). .

For each i, let `(i) denote the length of si. For each i
such that `(i) > 0, suppose that si = si`(i) · · · s

i
1. Here, si`(i)

is the top letter of the stack when M is going to perform the
action for the head at ui.

⊥

← g(m) → ← w Z � n wR →
¢ u1 · · · um um+1 · · · u2m $
4
r1

Fig. 5. An rdpda

← si →
si`(i) · · · si1 ⊥

¢ u1 · · · ui ui+1 · · · u2m $
4
ri

Fig. 6. Before the action for ui

← si+1 →
si+1
`(i+1) · · · si+1

1 ⊥

¢ u1 · · · ui ui+1 · · · u2m $
4
ri+1

Fig. 7. After the action for ui

We investigate the interval m < i ≤ m + d
√
ne, in other

words, that during the head is touching letters of w.
Suppose that α is an integer such that the minimum value

of `(i) in the interval is achieved when i = α, in other words,
when M is going to perform the action for the head at uα;
in addition, suppose that α is the maximum possible value
with this property.

Next, we look at i = m+ d
√
ne. In other words, we look

at the instance when M is going to perform the action for
the head at the last letter of w. Then sm+d

√
ne is of the form

tsα⊥ for some string t.

Claim 1 There exists β such that m + d
√
ne < β ≤

m+d
√
ne+n and sβ = sα. In other words, during the head

is touching letters of Z � n, there is an instance when t is
completely removed.

Proof of Claim 1: If t is not completely removed during
the head is touching letters of Z � n, we can find Z � n by
using the following: (1) M , (2) ri for i = m + d

√
ne, that

is, the state when M is going to perform the action for the
head at the last letter of w, (3) t, (4) the substring s′ of sα

consisting of the d
√
ne letters from the closest to the top,

and (5) wR.
A procedure finiding Z � n is as follows. For each string

x of length n, simulate M from the following settiing. The
state is ri of (2); the stack string is ts′⊥, where t is the
string of (3) and s′ is the string of (4); and the input tape is
holding xwR, with the head at the leftmost letter. The virtual
M accepts x only in the case when x = Z � n. Thus, we
can find Z � n.

We can produce t by the following: n, M , rα(the state
when M is going to perform the action for uα), w, and α−m
(the relative position of the head in w). These parameters are
coded via a binary string of length O(

√
n). Therefore, we

can code (1)–(5) in the previous paragraph via a binary string
of length O(

√
n).

Then in a way similar to Example 3, the assumption that
t is not removed derives a contradiction. Hence, t must be
completely removed during the head is touching letters of
Z � n. Q.E.D.(Claim 1)

Let β be the maximum possible β with the property in
Claim 1.

Hence, we can find wR by n, M , rβ (the state when M
is going to perform the action for uβ), Z � n, β−d

√
ne−m

(the relative position of the head in Z � n) and sβ(= sα).

Claim 2 We can find sα by M , g(m) and `(α) (the
length of sα).

Proof of Claim 2: When M has finished to perform the
action for the head at the last letter of g(m), the stack string
sm+1 is of the form t′sα for some string t′. Thus, sα is the
substring of sm+1 consisting of `(α) letters from the closest
to the bottom. Q.E.D.(Claim 2)

Hence, we can find wR by the following : (i) n, (ii) M ,
(iii) Z � n, (iv) g(m), (v) rβ , (vi) β − d

√
ne −m, and (vii)

`(α).
Under the setting that n, M , Z and g are fixed, wR is

determined by (v)–(vii). With respect to (v), the number of
choices is at most the number of states of M . Since (vi) is
a relative position in Z � n, (vi) is a natural number at most
n.

Remind that M does not perform ε-moves. Thus, the
length of t′sα (= sm+1, see the proof of Claim 2) is O(m),
and therefore O(n). Since `(α) ≤ |t′sα|, `(α) of (vii) is a
natural number at most O(n).

Hence, there are at most O(n2) choices for the values of
the parameters determining wR. However, there are 2d

√
ne

choices for w. By the pigeonhole principle, we get a contra-
diction.

Hence, L does not belong to (RDCFL/n)serial.

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_08

(Advance online publication: 14 May 2016)

__

To our knowledge, we do not know whether the following
hold.

1) (RDCFL/n)serial ⊂ RDCFL/n ?
2) DCFL/n ⊂ (DCFL/n)serial ?
3) (DCFL/n)serial ⊂ DCFL/n ?
4) CFL/n ⊂ (CFL/n)serial ?
5) (CFL/n)serial ⊂ CFL/n ?

ACKNOWLEDGMENT

We thank Tomoyuki Yamakami, Masahiro Kumabe and
Yuki Mizusawa for helpful discussions. We would like to
thank the anonymous referee for valuable comments on the
earlier version (arXiv:1502.00367v1).

REFERENCES

[1] Autebert, J.-M., Berstel, J. and Boasson, L., “Context-free languages
and pushdown automata,” In: Rosenberg, G. and Salomaa, A. eds.
Handbook of formal languages: Volume 1. Word, Language, Gram-
mar, pp.111-174, Springer, 1997.

[2] Bar-Hillel, Y., M. Perles, and E. Shamir, “On formal properties of
simple phrase structure grammars,” Zeitschrift für Phonetik, Sprach-
wissenschaft und Kommunikationsforschung, 14 pp.143–172 (1961).

[3] Berstel, J. and L. Boasson, “Context-free languages,” In: van
Leeuwen, J., eds., Handbook of Theoretical Computer Science, Vol-
ume B: Formal Models and Semantics, pp.59–102, Elsevier, 1990.

[4] Damm, C. and M. Holzer, “Automata that take advice,” In: Proc.
20th Symposium on Mathematical Foundations of Computer Sciences,
Lecture Notes in Comput. Sci., 969 pp.149–158, Springer, 1995.

[5] Feige, U. and A. Shamir, “Zero knowledge proofs of knowledge in
two rounds,” In: Advances in Cryptography - CRYPTO ’89, Lecture
Notes in Comput. Sci., 435 pp.526–544 Springer, 1990.

[6] Flajolet, P. and J.M. Steyaert, “On sets having only hard subsets,”
In: Proc. 2nd International Colloquium on Automata, Languages,
and Programming, Lecture Notes in Comput. Sci., 14 pp.446–457,
Springer, 1974.

[7] Ginsburg, S. and Greibach, S., “Deterministic context free languages,”
Inform. Control, 9 pp.620–648 (1966).

[8] Hopcroft, J.E. and J.D. Ullman, “Introduction to Automata Theory,
Languages, and Computation,” Addison-Wesley, 1979.

[9] Karp, R.M. and R. Lipton, “Turing machines that take advice,”
L’Enseignement Math., 28 pp.191–209 (1982).

[10] Nakano, R., “Error correction of enumerative induction of determin-
istic context-free,” L-system grammar. IAENG International Journal
of Computer Science, 40 pp.47–52 (2013).

[11] Nies, A., “Computability and Randomness,” Oxford, 2009.
[12] Ogden, W., R.J. Ross and K. Winklmann, “An interchange lemma for

context-free languages,” SIAM J. Comput., 14 pp.410–415 (1985).
[13] Pippenger, N., “On simultaneous resource bounds,” In: Proc. 20th

IEEE Symp. on Foundations of Computer Science, pp.307–311,
Springer, 1979.

[14] Shallit, J., “A Second Course in Formal Languages and Automata
Theory,” Cambridge University Press, 2009.

[15] Tadaki, K., T. Yamakami and J.C.H. Lin, “Theory of one-tape linear-
time Turing machines,” Theoret. Comput. Sci., 411 pp.22–43 (2010).

[16] Yamakami, T., “Swapping lemmas for regular and context-free
languages,” preprint, arXiv:0808.4122v2 (2009). The version 1 is
arXiv:0808.4122v1 (2008).

[17] Yamakami, T., “Immunity and pseudorandomness of context-free
languages,” Theoret. Comput. Sci., 412 pp.6432–6450 (2011).

[18] Yamakami, T. and T. Suzuki, “Resource bounded immunity and
simplicity,” Theoret. Comput. Sci., 347 pp.90–129 (2005).

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_08

(Advance online publication: 14 May 2016)

__

