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Abstract—Sufficient conditions are gained for almost sure
permanence, global asymptotic stability and mean square peri-
od of the stochastic mutualism model with time-lagged delays

dN1(t) = r1(t)N1(t)

[
K1(t)+α1(t)N2(t−τ2)

1+N2(t−τ2)
−N1(t)

]
dt

+σ1N1(t)dB1t,

dN2(t) = r2(t)N2(t)

[
K2(t)+α2(t)N1(t−τ1)

1+N1(t−τ1)
−N2(t)

]
dt

+σ2N2(t)dB2t,

where ri(t),Ki(t), αi(t) ∈ C(R,R+) and αi(t) > Ki(t), i =
1, 2. This paper implies that under the condition 1

2
σ2
i <

r−i k
−
i , i = 1, 2, the intensity of white noise has a negative impact

on almost sure permanence, but in any case, it makes no dif-
ference on global asymptotic stability. And the system is mean
square periodic if ω is the period of ri(t),Ki(t), αi(t), i = 1, 2.

Index Terms—Stochastic mutualism model; Almost sure
permanence; Itô formula; Global asymptotic stability; Mean
square period.

I. INTRODUCTION

COnsider the mutualism model
dN1(t)

dt = r1N1(t)

[
K1+α1N2(t)

1+N2(t) −N1(t)

]
,

dN2(t)
dt = r2N2(t)

[
K2+α2N1(t)

1+N1(t) −N2(t)

]
,

(1.1)

where αi,Ki, ri ∈ R+ are constants and αi > Ki, i = 1, 2.
Counting on the nature of Ki(i = 1, 2), we classify system
(1.1) as facultative, obligate or a combination of both. We
refer to Dean[1], Boucher[2], Vandermeer and Boucher[3],
Wolin and Lawlor[4], and Boucher et al.[5] for more details
of mutualistic interactions. A modification of system (1.1)
leads to the time-lagged model

dN1(t)
dt = r1N1(t)

[
K1+α1N2(t−τ2)

1+N2(t−τ2) −N1(t)

]
,

dN2(t)
dt = r2N2(t)

[
K2+α2N1(t−τ1)

1+N1(t−τ1) −N2(t)

]
,

(1.2)

where τ1, τ2 ∈ [0,∞) are constants. The cooperative or
mutualistic effects in system (1.2) are not immediately
realized, but happened with time goes on. However, due
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to environmental noise, may point out that the random
fluctuation[6] should be showed by the rate of growth in the
mutualism model. Assume that environmental noise disturbs
the growth rate r with

r → r + σḂt,

where σ2 is the intensity of white noise and Bt is a standard
Brownian motion. Then we obtain the stochastic model:

dN1(t) = r1N1(t)

[
K1+α1N2(t−τ2)

1+N2(t−τ2) −N1(t)

]
dt

+σ1N1(t)dB1t,

dN2(t) = r2N2(t)

[
K2+α2N1(t−τ1)

1+N1(t−τ1) −N2(t)

]
dt

+σ2N2(t)dB2t.

Actually, the natural growth rate of many populations varies
with t, such as, due to the temperature. Therefore it is
significant and reasonable to consider the stochastic non-
autonomous logistic model

dN1(t) = r1(t)N1(t)

[
K1(t)+α1(t)N2(t−τ2)

1+N2(t−τ2)

−N1(t)

]
dt+ σ1N1(t)dB1t,

dN2(t) = r2(t)N2(t)

[
K2(t)+α2(t)N1(t−τ1)

1+N1(t−τ1)

−N2(t)

]
dt+ σ2N2(t)dB2t,

(1.3)

where αi(t),Ki(t), ri(t) ∈ C(R,R+) and αi(t) >
Ki(t), i = 1, 2. In recent years, Eq.(1.3) has been researched
intensively, see e.g.[7, 8, 9, 10, 11].

It is well-know that, in mathematical ecology, permanence
is a very important and interesting subject, which means that
a population system will survive forever. Generally speaking,
a definitive population system is permanent, if a system has
the following property

0 < N ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤M <∞,

while i = 1, 2, . . . , n.
On the other hand, studies on mutualism model not only

involve permanence but also involve other dynamic behaviors
such as stability and periodicity. In recent years, on the
basis of permanence result, many scholars studied the global
asymptotic stability and the positive periodic solutions of
some kinds of nonlinear ecosystems by using periodic theory.
For more details we refer to [12, 13, 14, 15, 16] and the ref-
erences therein. However, according to nowaday’s literature,
there are few people obtain the permanence of system (1.3).
Therefore, the main purpose of this paper is to establish some
new sufficient conditions for the global asymptotic stability
and positive periodic solutions of system(1.3).
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Since all species suffer from the fluctuation of the en-
vironment such as food supplies, harvest and seasonal ef-
fects of weather etc. So it is usual to assume the periodic
parameters in the system. However, in application, if the
various constituent components of the temporally nonuni-
form environment are in commensurable periods, then one
has to consider the temporally environment to be mean
square periodic. Hence, if we consider the effects of the
environment factors, mean square periodicity is sometimes
more realistic and more general than periodicity. Recent-
ly, there are many papers dealing with periodic solution-
s [17, 18, 19, 20, 21, 22, 23] and the references therein. It
deserves to be mentioned that there have no results on
mutualism model with mean square periodic solutions.

We set

r+
i = sup

t∈(0,∞)

ri(t), r−i = inf
t∈(0,∞)

ri(t),

k+
i = sup

t∈(0,∞)

ki(t), k−i = inf
t∈(0,∞)

ki(t),

α+
i = sup

t∈(0,∞)

αi(t), α−i = inf
t∈(0,∞)

αi(t),

where i = 1, 2.

Definition 1. A stochastic population system is said to be
almost surely stochastically permanent if for any initial value
x0 ∈ Rn+, the solution x(t) = (x1(t), x2(t), ..., xn(t))T has
the property

0 < Ni ≤ lim inf
t→∞

|xi(t)| ≤ lim sup
t→∞

|xi(t)| ≤Mi <∞,

while i = 1, 2, . . . , n.

Lemma 1. [24] Brownian motion satisfies the law of iterated
logarithm, that is lim

t→∞
B(t)
tα = 0, α > 1

2 .

Remark 1. Setting α = 1, we get lim
t→∞

B(t)
t = 0. Therefore,

for ∀ε > 0, it exists positive constant T0 such that |B(t)| < εt
for all t > T0.

Remark 2. By Remark 1 and the continuity of Brownian
motion, for ∀ε > 0, there exists l ∈ R+, such that |Bt| ≤
εt+ l, ∀t ∈ R+.

In Section 2, through the prove of Lemma 2 and Lemma
3, we yield the Theorem 1, i.e., assuming 1

2σ
2
i < r−i k

−
i , i =

1, 2, almost sure permanence of the stochastic mutualism
model is considered, in Section 3, we study the global
asymptotic stability of system (1.3), in Section 4, we discuss
the system’s mean square period, in Section 5, we give an
example to illustrate the main results in the section 2 and 3.
Finally, we close the paper with conclusions.

II. PERMANENCE

Lemma 2. If 1
2σ

2
i < r+

i α
+
i , i = 1, 2, then the solution to

Eq.(1.3) satisfies the following inequalities

lim sup
t→∞

N1(t) ≤
r−1 α

−
1 − 1

2σ
2
1

r−1
:= M1,

lim sup
t→∞

N2(t) ≤
r−2 α

−
2 − 1

2σ
2
2

r−2
:= M2.

Proof: Denote N1(t) = 1
x1(t) , by Itô formula to the

first equation of Eq.(1.3), we obtain

dx1(t) = − 1

N2
1 (t)

dN1(t) +
1

N3
1 (t)

(dN1(t))2

= − 1

N1(t)
r1(t)

[
K1(t) + α1(t)N2(t− τ2)

1 +N2(t− τ2)

−N1(t)

]
dt− σ1

1

N1(t)
dB1t + σ2

1

1

N1(t)
dt

= −r1(t)x1(t)
K1(t) + α1(t)N2(t− τ2)

1 +N2(t− τ2)
dt

+r1(t)dt− σ1x1(t)dB1t + σ2
1x1(t)dt

≥ −r1(t)α1(t)x1(t)dt+ r1(t)dt− σ1x1(t)dB1t

+σ2
1x1(t)dt.

Thus

dx1(t) + (r1(t)α1(t)− σ2
1)x1(t)dt+ σ1x1(t)dB1t

≥ r1(t)dt. (2.1)

Setting

dx1(t) + [r1(t)α1(t)− σ2
1 ]x1(t)dt+ σ1x1(t)dB1t = 0.

We rewrite the above equation as

1

x1(t)
dx1(t) = (−r1(t)α1(t) + σ2

1)dt− σ1dB1t. (2.2)

By Itô formula, it follows

d lnx1(t) =
1

x1(t)
dx1(t)− 1

2

1

x2
1(t)

(dx1(t))2. (2.3)

From (2.2) and (2.3), it leads

1

x1(t)
dx1(t) = d lnx1(t) +

1

2
σ2

1dt

= (−r1(t)α1(t) + σ2
1)dt− σ1dB1t.

Then

d lnx1(t) = (−r1(t)α1(t) +
1

2
σ2

1)dt− σ1dB1t.

Integrating both sides from 0 to t gets

x1(t) = x1(0) exp{−
∫ t

0

r1(u)α1(u)du+
1

2
σ2

1t

−σ1B1t}. (2.4)

From (2.1) and (2.4), it yields

dx1(t) exp

{∫ t

0

r1(u)α1(u)du− 1

2
σ2

1t+ σ1B1t

}
≥

r1(t) exp

{∫ t

0

r1(u)α1(u)du− 1

2
σ2

1t+ σ1B1t

}
dt.(2.5)

Since B1t is Brown motion, lim
t→∞

B1tt
−1 = 0. So there exists

ε > 0 small enough and T0 = T0(ε) > 0 such that |B1t| ≤
εt, ∀t ≥ T0. Letting

X1(T0) = x1(T0) exp

{∫ T0

0

r1(u)α1(u)du− 1

2
σ2

1T0

+σ1B1T0

}
.
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Hence, integrating (2.5) from T0 to t leads to

x1(t) exp

{∫ t

0

r1(u)α1(u)du− 1

2
σ2

1t+ εσ1t

}
≥ x1(t) exp

{∫ t

0

r1(u)α1(u)du− 1

2
σ2

1t+ σ1|B1t|
}

≥ x1(t) exp

{∫ t

0

r1(u)α1(u)du− 1

2
σ2

1t+ σ1B1t

}
≥ X1(T0) +

∫ t

T0

r1(s) exp

{∫ s

0

r1(u)α1(u)du

−1

2
σ2

1s+ σ1B1s

}
ds

≥ X1(T0) +

∫ t

T0

r1(s) exp

{∫ s

0

r1(u)α1(u)du

−1

2
σ2

1s− σ1|B1s|
}

ds

≥ X1(T0) +

∫ t

T0

r1(s) exp

{∫ s

0

r1(u)α1(u)du

−1

2
σ2

1s− εσ1s

}
ds,

which yields

x1(t) ≥ X1(T0) exp

{
−
∫ t

0

r1(u)α1(u)du+
1

2
σ2

1t

−εσ1t

}
+

∫ t

T0

r1(s) exp

{∫ s

t

r1(u)α1(u)du

−1

2
σ2

1(s− t)− εσ1(t+ s)

}
ds

≥ X1(T0) exp

{
(
1

2
σ2

1 − r+
1 α

+
1 )t− εσ1t

}
+r−1

∫ t

T0

exp

{
r−1 α

−
1 (s− t)− 1

2
σ2

1(s− t)

−εσ1(s+ t)

}
ds

Letting t→∞ follows

lim inf
t→∞

x1(t) ≥ lim
t→∞

{
X1(T0) exp

{
(
1

2
σ2

1 − r+
1 α

+
1

−εσ1)t

}
+ r−1

∫ t

T0

exp{r−1 α
−
1 (s− t)

−1

2
σ2

1(s− t)− εσ1(s+ t)}ds
}

= lim
t→∞

r−1

∫ t

T0

exp

{
r−1 α

−
1 (s− t)

−1

2
σ2

1(s− t)
}

ds

=
r−1

r−1 α
−
1 − 1

2σ
2
1

.

Consequently

lim sup
t→∞

N1(t) =
1

lim inf
t→∞

x1(t)
≤
r−1 α

−
1 − 1

2σ
2
1

r−1
:= M1.

By the same way, we get

lim sup
t→∞

N2(t) ≤
r−2 α

−
2 − 1

2σ
2
2

r−2
:= M2.

This completes the proof.

In the following, we give a crucial assumption for the
permanence of system (1.3):

(H1) r−i K
−
i > 1

2σ
2
i , i = 1, 2.

From (H1), there exists ε0 > 0 small enough, such that

r−i K
−
i −

1

2
σ2
i − ε0σi > 0, i = 1, 2.

By Remarks 1-2, there must exist T0 > 0 and li > 0 such
that

|Bit| ≤ ε0t for all t ≥ T0, |Bit| ≤ ε0t+ li for all t ≥ 0,

where li := sup
s∈[0,T0]

|Bis|, i = 1, 2.

Lemma 3. If (H1) holds, then the solution to Eq.(1.3)
satisfies the following inequalities

lim inf
t→∞

N1(t) ≥
r+
1 K

+
1 − 1

2σ
2
1 − ε0σ1

r+
1 e

σ1l1
:= N1,

lim inf
t→∞

N2(t) ≥
r+
2 K

+
2 − 1

2σ
2
2 − ε0σ2

r+
2 e

σ2l2
:= N2.

Proof: Denote N1(t) = 1
x1(t) , by Itô formula to the

first equation of Eq.(1.3) , it leads

dx1(t) = − 1

N2
1 (t)

dN1(t) +
1

N3
1 (t)

(dN1(t))2

= − 1

N1(t)
r1(t)

[
K1(t) + α1(t)N2(t− τ2)

1 +N2(t− τ2)

−N1(t)

]
dt− σ1

1

N1(t)
dB1t +

1

N1(t)
σ2

1dt

≤ − 1

N1(t)
r1(t)[K1(t)−N1(t)]dt

−σ1
1

N1(t)
dB1t +

1

N1(t)
σ2

1dt

= −r1(t)K1(t)x1(t)dt+ r1(t)dt+ σ2
1x1(t)dt

−σ1x1(t)dB1t.

Thus

dx1(t) + [r1(t)K1(t)− σ2
1 ]x1(t)dt+ σ1x1(t)dB1t

≤ r1(t)dt.

That is

dx1(t) exp

{∫ t

0

r1(u)K1(u)du− 1

2
σ2

1t+ σ1B1t

}
≤ r1(t) exp

{∫ t

0

r1(u)K1(u)du− 1

2
σ2

1t+ σ1B1t

}
dt.

Integrating both sides from T0 to t obtains

x1(t) exp

{∫ t

0

r1(u)K1(u)du− 1

2
σ2

1t+ σ1B1t

}
−X1(T0)

≤
∫ t

T0

r1(s) exp

{∫ s

0

r1(u)K1(u)du− 1

2
σ2

1 + σ1B1s

}
ds,
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where

X1(T0) = x1(T0) exp

{∫ T0

0

r1(u)K1(u)du− 1

2
σ2

1T0

+σ1B1T0

}
.

By Remark 2, it follows that

x1(t) ≤ X1(T0) exp

{
−
∫ t

0

r1(u)K1(u)du+
1

2
σ2

1t

−σ1B1t

}
+

∫ t

T0

r1(s) exp

{∫ s

t

r1(u)K1(u)du

−1

2
σ2

1(s− t) + σ1(B1s −B1t)

}
ds

≤ X1(T0) exp

{
(
1

2
σ2

1 − r−1 K
−
1 )t+ ε0σ1t

}
+r+

1 e
σ1l1

∫ t

T0

exp(r+
1 K

+
1 −

1

2
σ2

1 − ε0σ1)(s− t)ds

= X1(T0) exp

{
1

2
σ2

1 − r−1 K
−
1 + ε0σ1

}
t

+
r+
1 e

σ1l1

r+
1 K

+
1 − 1

2σ
2
1 − ε0σ1

{
1−

exp

[
− (r+

1 K
+
1 −

1

2
σ2

1 − ε0σ1)(t− T0)

]}
.

Letting t→∞, we get

lim sup
t→∞

x1(t) ≤ r+
1 e

σ1l1

r+
1 K

+
1 − 1

2σ
2
1 − ε0σ1

.

Consequently

lim inf
t→∞

N1(t) =
1

lim sup
t→∞

x1(t)
≥
r+
1 K

+
1 − 1

2σ
2
1 − ε0σ1

r+
1 e

σ1l1

:= N1.

By the same way, we get

lim inf
t→∞

N2(t) ≥
r+
2 K

+
2 − 1

2σ
2
2 − ε0σ2

r+
2 e

σ2l2
:= N2.

This completes the proof.
According to Lemma 2 and Lemma 3, we obtain the

following theorem.

Theorem 1. If (H1) holds, then the solution to Eq. (1.3) is
almost surely stochastically permanent, that is,

N1 =:
r+
1 K

+
1 − 1

2σ
2
1 − ε0σ1

r+
1 e

σ1l1
≤ lim inf

t→∞
N1(t)

≤ lim sup
t→∞

N1(t) ≤
r−1 α

−
1 − 1

2σ
2
1

r−1
:= M1, (2.6)

N2 =:
r+
2 K

+
2 − 1

2σ
2
2 − ε0σ2

r+
2 e

σ2l2
≤ lim inf

t→∞
N2(t)

≤ lim sup
t→∞

N2(t) ≤
r−2 α

−
2 − 1

2σ
2
2

r−2
:= M2. (2.7)

III. GLOBAL ASYMPTOTIC STABILITY

Theorem 2. Assume that
(H2) there exists two positive constant λ1 and λ2 such that

Γ1 = λ1r
−
1 − λ2r

+
2 (K+

2 + α+
2 ) > 0,

Γ2 = λ2r
−
2 − λ1r

+
1 (K+

1 + α+
1 ) > 0.

Then system (1.3) is globally asymptotically stable.

Proof: Assuming (N1(t), N2(t))T and (N̄1(t), N̄2(t))T

are any two solutions of Eq.(1.3). Let (y1, y2)T =
(lnN1(t), lnN2(t))T and (ȳ1, ȳ2)T = (ln N̄1(t), ln N̄2(t))T .
Denote y1(t) = lnN1(t), by Itô formula to the first equation
of system (1.3) , we obtain

dy1(t) =
1

N1(t)
dN1(t)− 1

2

1

N2
1 (t)

(dN1(t))2

=
1

N1(t)
dN1(t)− 1

2
σ2

1dt

= r1(t)

[
K1(t) + α1(t)N2(t− τ2)

1 +N2(t− τ2)
−N1(t)

]
dt

+σ1dB1t −
1

2
σ2

1dt,

by the same way, it transforms system (1.3) into the
following system,

dy1(t) = r1(t)

[
K1(t)+α1(t)N2(t−τ2)

1+N2(t−τ2) −N1(t)

]
dt

+σ1dB1t − 1
2σ

2
1dt,

dy2(t) = r2(t)

[
K2(t)+α2(t)N1(t−τ1)

1+N1(t−τ1) −N2(t)

]
dt

+σ2dB2t − 1
2σ

2
2dt,

dȳ1(t) = r1(t)

[
K1(t)+α1(t)N̄2(t−τ2)

1+N̄2(t−τ2)
− N̄1(t)

]
dt

+σ1dB1t − 1
2σ

2
1dt,

dȳ2(t) = r2(t)

[
K2(t)+α2(t)N̄1(t−τ1)

1+N̄1(t−τ1)
− N̄2(t)

]
dt

+σ2dB2t − 1
2σ

2
2dt.

(3.1)

Define

V (t) = V0(t) + V1(t) + V2(t), (3.2)

where

V0(t) = λ1|y1(t)− ȳ1(t)|+ λ2|y2(t)− ȳ2(t)|,

V1(t) = λ2

∫ t

t−τ1
r+
2 (K+

2 + α+
2 )|N1(s)− N̄1(s)|ds,

V2(t) = λ1

∫ t

t−τ2
r+
1 (K+

1 + α+
1 )|N2(s)− N̄2(s)|ds.

Calculating the upper right derivative of V0(t) along system
(3.1),

D+V0(t) = λ1sgn[y1(t)− ȳ1(t)][y
′

1(t)− ȳ
′

1(t)]

+λ2sgn[y2(t)− ȳ2(t)][y
′

2(t)− ȳ
′

2(t)]

≤ −λ1r1(t)|N1(t)− N̄1(t)|
+λ1r1(t)[K1(t) + α1(t)]|N2(t− τ2)

−N̄2(t− τ2)| − λ2r2(t)|N2(t)− N̄2(t)|
+λ2r2(t)[K2(t) + α2(t)]|N1(t− τ1)

−N̄1(t− τ1)|
≤ −λ1r

−
1 |N1(t)− N̄1(t)|

+λ1r
+
1 (K+

1 + α+
1 )|N2(t− τ2)− N̄2(t− τ2)|

−λ2r
−
2 |N2(t)− N̄2(t)|

+λ2r
+
2 (K+

2 + α+
2 )|N1(t− τ1)

−N̄1(t− τ1)|. (3.3)
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Further, calculating the upper right derivative of V1(t), V2(t)
along system (3.1), it follows that

D+V1(t) = λ2r
+
2 (K+

2 + α+
2 )|N1(t)− N̄1(t)|

−λ2r
+
2 (K+

2 + α+
2 )|N1(t− τ1)

−N̄1(t− τ1)|, (3.4)
D+V2(t) = λ1r

+
1 (K+

1 + α+
1 )|N2(t)− N̄2(t)|

−λ1r
+
1 (K+

1 + α+
1 )|N2(t− τ2)

−N̄2(t− τ2)|. (3.5)

Together with (3.2)− (3.5), for ∀t ∈ R, we get

D+V (t) ≤ [−λ1r
−
1 + λ2r

+
2 (K+

2 + α+
2 )]|N1(t)− N̄1(t)|

+[−λ2r
−
2 + λ1r

+
1 (K+

1 + α+
1 )]|N2(t)− N̄2(t)|

≤ −Γ1|N1(t)− N̄1(t)| − Γ2|N2(t)− N̄2(t)|,

Hence, for ∀t ∈ R, V (t) is nonincreasing, integrating the
above formula from 0 to t yields

V (t) + Γ1

∫ t

0

|N1(s)− N̄1(s)|ds

+Γ2

∫ t

0

|N2(s)− N̄2(s)|ds ≤ V (0) < +∞, ∀t ≥ 0,

implies that, ∫ t

0

|N1(s)− N̄1(s)|ds < +∞,∫ t

0

|N2(s)− N̄2(s)|ds < +∞,

that is,

lim
s→+∞

|N1(s)− N̄1(s)| = lim
s→+∞

|N2(s)− N̄2(s)| = 0.

This completes the proof.

Remark 3. The theorem illustrates that the intensity of white
noise has a negative impact on almost sure permanence, but
it makes no difference on global asymptotic stability.

IV. PERIODIC SOLUTION

In this section, we assume that
(H3) there exists a positive constant ω such that

ri(t+ ω) = ri(t), Ki(t+ ω) = Ki(t),

αi(t+ ω) = αi(t), i = 1, 2.

(H4) max{A1+B1

r−1 α
−
1

, A2+B2

r−2 α
−
2

} < 1, where

A1 =
2

r−1 α
−
1

[
4[r+

1 (K+
1 − α

−
1 )]2 + 4[r+

1 (M1 + ε)]2

+σ2
1

]
,

B1 =
8

r−1 α
−
1

[r+
1 (M1 + ε)(K+

1 − α
−
1 )]2,

A2 =
2

r−2 α
−
2

[
4[r+

2 (K+
2 − α

−
2 )]2 + 4[r+

2 (M2 + ε)]2

+σ2
2

]
,

B2 =
8

r−2 α
−
2

[r+
2 (M2 + ε)(K+

2 − α
−
2 )]2.

Definition 2. A function f is called mean square periodic if
there exists a positive constant ω such that

E|N1(t+ ω)−N1(t)|2 = 0,

E|N2(t+ ω)−N2(t)|2 = 0,∀t ∈ R.

Theorem 3. Assume that (H3) and (H4) hold, and for any
ε > 0, there exists t > T0, such that Ni(t) < Mi+ε, i = 1, 2,
then system (1.3) is mean square periodic, that is

E|N1(t+ ω)−N1(t)|2 = 0,

E|N2(t+ ω)−N2(t)|2 = 0.

Proof: From the first equation of system (1.3), we get

dN1(t) = r1(t)N1(t)

[
K1(t) + α1(t)N2(t− τ2)

1 +N2(t− τ2)

−N1(t)

]
dt+ σ1N1(t)dB1t

= r1(t)α1(t)N1(t)dt+ σ1N1(t)dB1t

+r1(t)
K1(t)− α1(t)

1 +N2(t− τ2)
N1(t)dt− r1(t)N2

1 (t)dt

= r1(t)α1(t)N1(t)dt+ f(t)dt+ σ1N1(t)dB1t,

where

f(t) = r1(t)
K1(t)− α1(t)

1 +N2(t− τ2)
N1(t)− r1(t)N2

1 (t).

Therefore

dN1(t+ ω) = r1(t+ ω)α1(t+ ω)N1(t+ ω)dt

+f(t+ ω)dt+ σ1N1(t+ ω)dB1(t+ω)

= r1(t)α1(t)N1(t+ ω)dt+ f(t+ ω)dt

+σ1N1(t+ ω)dB1(t+ω).

So

dN1(t+ ω)− dN1(t)

= r1(t)α1(t)[N1(t+ ω)−N1(t)]dt+ [f(t+ ω)− f(t)]dt

+σ1[N1(t+ ω)dB1(t+ω) −N1(t)dB1t]. (4.1)

Setting Yi(t) = Ni(t + ω) −Ni(t), i = 1, 2, from (4.1) we
get

dY1(t) = r1(t)α1(t)Y1(t)dt+ [f(t+ ω)− f(t)]dt

+σ1[N1(t+ ω)dB̃1t −N1(t)dB1t],

where B̃1t = B1t+ω −B1t = B1t −B10
d
= B1t.

Then, it follows

dY1(t)e−
∫ t
0
r1(s)α1(s)ds

= e−
∫ t
0
r1(s)α1(s)ds[f(t+ ω)− f(t)]dt

+σ1e
−

∫ t
0
r1(s)α1(s)ds[N1(t+ ω)dB̃1t −N1(t)dB1t].

Integrating both sides from t to T0 gets

Y1(T0)e−
∫ T0
0 r1(s)α1(s)ds − Y1(t)e−

∫ t
0
r1(s)α1(s)ds

=

∫ T0

t

e−
∫ s
0
r1(u)α1(u)du[f(s+ ω)− f(s)]ds

+σ1

∫ T0

t

e−
∫ s
0
r1(u)α1(u)du[N1(s+ ω)dB̃1s

−N1(s)dB1s],
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that is

Y1(t) = Y1(T0)e−
∫ T0
t r1(s)α1(s)ds

−
∫ T0

t

e−
∫ s
t
r1(u)α1(u)du[f(s+ ω)− f(s)]ds

−
∫ T0

t

σ1e
−

∫ s
t
r1(u)α1(u)du[N1(s+ ω)dB̃1s

−N1(s)dB1s].

Letting T0 → +∞, we obtain

Y1(t) = −
∫ +∞

t

e−
∫ s
t
r1(u)α1(u)du[f(s+ ω)− f(s)]ds

−
∫ +∞

t

σ1e
−

∫ s
t
r1(u)α1(u)du[N1(s+ ω)dB̃1s

−N1(s)dB1s].

Using Hölder inequality and isometric transformation, it
follows

E|Y1(t)|2

= E

∣∣∣∣ ∫ +∞

t

e−
∫ s
t
r1(u)α1(u)du[f(s+ ω)− f(s)]ds

+σ1

∫ +∞

t

e−
∫ s
t
r1(u)α1(u)du[N1(s+ ω)dB̃1s

−N1(s)dB1s]

∣∣∣∣2
≤ 2E

∣∣∣∣ ∫ +∞

t

e−
∫ s
t
r1(u)α1(u)du[f(s+ ω)− f(s)]ds

∣∣∣∣2
+2E

∣∣∣∣σ1

∫ +∞

t

e−
∫ s
t
r1(u)α1(u)du[N1(s+ ω)dB̃1s

−N1(s)dB1s]

∣∣∣∣2
≤ 2E

∫ +∞

t

e−
∫ s
t
r1(u)α1(u)duds

∫ +∞

t

e−
∫ s
t
r1(u)α1(u)du

[f(s+ ω)− f(s)]2ds+ 2σ2
1E

∫ +∞

t

e−
∫ s
t
r1(u)α1(u)duds

×
∫ +∞

t

e−
∫ s
t
r1(u)α1(u)du[N1(s+ ω)−N1(s)]2ds

≤ 2

r−1 α
−
1

∫ +∞

t

e−r
−
1 α
−
1 (s−t)E[f(s+ ω)− f(s)]2ds

+
2σ2

1

r−1 α
−
1

∫ +∞

t

e−r
−
1 α
−
1 (s−t)EY 2

1 (s)ds, (4.2)

where

[f(t+ ω)− f(t)]2

=

{
[r1(t)(K1(t)− α1(t))]

[
N1(t+ ω)

1 +N2(t+ ω − τ2)

− N1(t)

1 +N2(t− τ2)

]
− r1(t)[N2

1 (t+ ω)−N2
1 (t)]

}2

≤ 2[r1(t)(K1(t)− α1(t))]2
[

N1(t+ ω)

1 +N2(t+ ω − τ2)

− N1(t)

1 +N2(t− τ2)

]2

+ 2r2
1(t)[N2

1 (t+ ω)−N2
1 (t)]2

≤ 2[r+
1 (K+

1 − α
−
1 )]2

[
N1(t+ ω)

1 +N2(t+ ω − τ2)

− N1(t)

1 +N2(t− τ2)

]2

+ 2(r+
1 )2[N2

1 (t+ ω)

−N2
1 (t)]2. (4.3)

Since [
N1(t+ ω)

1 +N2(t+ ω − τ2)
− N1(t)

1 +N2(t− τ2)

]2

=

[
1

1 +N2(t+ ω − τ2)
(N1(t+ ω)−N1(t))

−N1(t)
1

(1 + ξ)2
[N2(t+ ω − τ2)−N2(t− τ2)]

]2

≤
[
[N1(t+ ω)−N1(t)]−N1(t)[N2(t+ ω − τ2)

−N2(t− τ2)]

]2

≤ 2[N1(t+ ω)−N1(t)]2

+2N2
1 (t)[N2(t+ ω − τ2)−N2(t− τ2)]2

= 2Y 2
1 (t) + 2(M1 + ε)2Y 2

2 (t− τ2), (4.4)

where ξ is between N2(t+ ω − τ2) and N2(t− τ2), and

N2
1 (t+ ω)−N2

1 (t)

= [N1(t+ ω) +N1(t)][N1(t+ ω)−N1(t)]

≤ 2(M1 + ε)[N1(t+ ω)−N1(t)]

= 2(M1 + ε)Y1(t). (4.5)

From (4.3)-(4.5) we get

[f(t+ ω)− f(t)]2

≤ 2[r+
1 (K+

1 − α
−
1 )]2[2Y 2

1 (t) + 2(M1 + ε)2Y 2
2 (t− τ2)]

+2(r+
1 )2[2(M1 + ε)Y1(t)]2

=

[
4[r+

1 (K+
1 − α

−
1 )]2 + 4[r+

1 (M1 + ε)]2
]
Y 2

1 (t)

+4[r+
1 (M1 + ε)(K+

1 − α
−
1 )]2Y 2

2 (t− τ2). (4.6)

From (4.2) and (4.6) it leads

E|Y1(t)|2 ≤ 2

r−1 α
−
1

∫ +∞

t

e−r
−
1 α
−
1 (s−t)E

{[
4[r+

1 (K+
1

−α−1 )]2 + 4[r+
1 (M1 + ε)]2

]
Y 2

1 (t)

+4[r+
1 (M1 + ε)(K+

1 − α
−
1 )]2Y 2

2 (t− τ2)

}
ds

+
2σ2

1

r−1 α
−
1

∫ +∞

t

e−r
−
1 α
−
1 (s−t)EY 2

1 (s)ds

= A1

∫ +∞

t

e−r
−
1 α
−
1 (s−t)EY 2

1 (s)ds

+B1

∫ +∞

t

e−r
−
1 α
−
1 (s−t)EY 2

2 (s− τ2)ds. (4.7)

By the same way, we obtain

E|Y2(t)|2 ≤ A2

∫ +∞

t

e−r
−
2 α
−
2 (s−t)EY 2

2 (s)ds

+B2

∫ +∞

t

e−r
−
2 α
−
2 (s−t)EY 2

1 (s− τ1)ds. (4.8)

Setting
X0 = max

T0≤s≤+∞
{EY 2

1 (s), EY 2
2 (s)},
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from (4.7) and (4.8), we yield

E|Y1(t)|2 ≤ A1

∫ +∞

t

e−r
−
1 α
−
1 (s−t)dsX0

+B1

∫ +∞

t

e−r
−
1 α
−
1 (s−t)dsX0

=
A1 +B1

r−1 α
−
1

X0, (4.9)

E|Y2(t)|2 ≤ A2

∫ +∞

t

e−r
−
2 α
−
2 (s−t)dsX0

+B2

∫ +∞

t

e−r
−
2 α
−
2 (s−t)dsX0

=
A2 +B2

r−2 α
−
2

X0, (4.10)

From (4.9) and (4.10), we have

max
T0≤t≤+∞

{E|Y1(t)|2, E|Y2(t)|2}

≤ max{A1 +B1

r−1 α
−
1

,
A2 +B2

r−2 α
−
2

}X0,

that is
X0 ≤ max{A1 +B1

r−1 α
−
1

,
A2 +B2

r−2 α
−
2

}X0.

By (H4) we get
X0 = 0,

thus
E|Y1(t)|2 = 0, E|Y2(t)|2 = 0,

that is

E|N1(t+ ω)−N1(t)|2 = 0,

E|N2(t+ ω)−N2(t)|2 = 0.

This completes the proof.

V. AN EXAMPLE

In this section we use an example to illustrate the main
results. Consider the system

dN1(t) = ( 1
2 + 1

2 cos2 t)N1(t)[
( 1
8 + 1

16 cos2 t)+( 1
8 + 1

16 cos2 t)N2(t−e−100)

1+N2(t−e−100)

−N1(t)

]
dt+ 1

8N1(t)dB1t,

dN2(t) = ( 1
2 + 1

2 sin2 t)N2(t)[
( 1
8 + 1

16 sin2 t)+( 1
8 + 1

16 sin2 t)N1(t−e−100)

1+N1(t−e−100)

−N2(t)

]
dt+ 1

8N2(t)dB2t.

(5.1)

Since, 1
2σ

2
i < r−i k

−
i , i = 1, 2, satisfies the condition of

Theorem 1, we choose σi = 1
8 , li ≤ 1, i = 1, 2. From system

(5.1) and (2.6), (2.7), we yield

N1 =:
r+
1 K

+
1 − 1

2σ
2
1 − ε0σ1

r+
1 e

σ1l1
≥ 11

64
e−

1
8 ,

N2 =:
r+
2 K

+
2 − 1

2σ
2
2 − ε0σ2

r+
2 e

σ2l2
≥ 11

64
e−

1
8 ,

M1 =:
r−1 α

−
1 − 1

2σ
2
1

r−1
=

7

64
,

M2 =:
r−2 α

−
2 − 1

2σ
2
2

r−2
=

7

64
.

So,
11

64
e−

1
8 ≤ lim inf

t→∞
N1(t) ≤ lim sup

t→∞
N1(t) ≤ 7

64
,

11

64
e−

1
8 ≤ lim inf

t→∞
N2(t) ≤ lim sup

t→∞
N2(t) ≤ 7

64
.

Therefore, system(5.1) is almost surely stochastically per-
manent.

On the other hand, setting λ1 = λ2 = 1, we yield

Γ1 = λ1r
−
1 − λ2r

+
2 (K+

2 + α+
2 ) > 0,

Γ2 = λ2r
−
2 − λ1r

+
1 (K+

1 + α+
1 ) > 0,

therefore, system (5.1) is global asymptotic stability.

VI. CONCLUSION

This paper concerns the stochastic and time-lagged mutu-
alism model. We know that permanence is a very important
and interesting subject in mathematical ecology, which mean-
s that a population system will survive forever. A definition of
almost sure permanence is presented here, which is similar
to the definition in definitive models. Under the condition
1
2σ

2
i < r−i k

−
i , i = 1, 2, the stochastic model (1.3) is almost

surely stochastically permanent and the intensity of white
noise has a negative impact on it, but makes no difference on
global asymptotic stability. And in some certain conditions,
we deduce the system (1.3) is mean square periodic.
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