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The Properties of Stochastic Mutualism Model
with Time-lagged Delays

Huizhen Qu, Xiaorong Gan and Tianwei Zhang

Abstract—Sufficient conditions are gained for almost sure
permanence, global asymptotic stability and mean square peri-
od of the stochastic mutualism model with time-lagged delays

dN1(t) = ri(t)Ni(?) {Kl(t)lj,of\};zj_\]é5772) - N (t)} dt
+01N1(t)d By,
dNa(t) = ra(t)Na(t) | K2prsatdaltor) — Nz(tﬂ &

—‘rO'QNQ(t)dBQt,

where 7;(t), K;(t),a;(t) € C(R,RT) and o;(t) > K;(t),i =
1,2. This paper implies that under the condition %a? <
r; k; ,© = 1,2, the intensity of white noise has a negative impact
on almost sure permanence, but in any case, it makes no dif-
ference on global asymptotic stability. And the system is mean

square periodic if w is the period of r;(t), K;(t), a;(t),i = 1,2.

Index Terms—Stochastic mutualism model; Almost sure
permanence; Ité formula; Global asymptotic stability; Mean
square period.

I. INTRODUCTION

Onsider the mutualism model

dN. Ki+aiN:
W = ()| S

Nl(t)} (1.1)

dNs (t KotasNi(t
dzt( ) = r2Na( )[ 21+1\?1(t)( :

- NQ(t):l .

where «o;, K;,7; € RT are constants and «; > K;,i = 1,2.
Counting on the nature of K;(i = 1,2), we classify system
(1.1) as facultative, obligate or a combination of both. We
refer to Dean[1], Boucher[2], Vandermeer and Boucher[3],
Wolin and Lawlor[4], and Boucher et al.[5] for more details
of mutualistic interactions. A modification of system (1.1)
leads to the time-lagged model

d 3 )
J\Qt(t) =71 Ny (1) [IM

o (t)} | (1.2)

dN: KatagMili—r
(1), N (t) [m B

N2(t)} ;

where 71,72 € [0,00) are constants. The cooperative or
mutualistic effects in system (1.2) are not immediately
realized, but happened with time goes on. However, due
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to environmental noise, may point out that the random
fluctuation[6] should be showed by the rate of growth in the
mutualism model. Assume that environmental noise disturbs
the growth rate r with

r—>r+oBt,

where o is the intensity of white noise and B; is a standard
Brownian motion. Then we obtain the stochastic model:

N (t)] dt

ANy (t) = 1Ny (1) {W

-|—0'1N1 (t)dB1t7

Ko oN1(t—71
dNy(t) = raNa(t) [ﬂw“ﬂ

-|—O'2N2 (t)dBQt

- Ng(t)] dt

Actually, the natural growth rate of many populations varies
with ¢, such as, due to the temperature. Therefore it is
significant and reasonable to consider the stochastic non-
autonomous logistic model

AN (0) = )M 1) St

Ny (t)|dt + o1 N1(t)d By,
(1.3)

ANL(0) = ralt)Na(s)| Eetpttiony

N2 :|dt+0'2N2 )dBQt,

where «;(t), K;(t),r;(t) € C(R,RT) and o;(t) >
K;(t),i =1, 2. In recent years, Eq.(1.3) has been researched
intensively, see e.g.[7, 8,9, 10, 11].

It is well-know that, in mathematical ecology, permanence
is a very important and interesting subject, which means that
a population system will survive forever. Generally speaking,
a definitive population system is permanent, if a system has
the following property

0 < N <liminfz;(t) <limsupz;(t) < M < oo,
t—o0 t—o00
while : =1,2,...,n

On the other hand, studies on mutualism model not only
involve permanence but also involve other dynamic behaviors
such as stability and periodicity. In recent years, on the
basis of permanence result, many scholars studied the global
asymptotic stability and the positive periodic solutions of
some kinds of nonlinear ecosystems by using periodic theory.
For more details we refer to [12, 13,14, 15, 16] and the ref-
erences therein. However, according to nowaday’s literature,
there are few people obtain the permanence of system (1.3).
Therefore, the main purpose of this paper is to establish some
new sufficient conditions for the global asymptotic stability
and positive periodic solutions of system(1.3).
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Since all species suffer from the fluctuation of the en-
vironment such as food supplies, harvest and seasonal ef-
fects of weather etc. So it is usual to assume the periodic
parameters in the system. However, in application, if the
various constituent components of the temporally nonuni-
form environment are in commensurable periods, then one
has to consider the temporally environment to be mean
square periodic. Hence, if we consider the effects of the
environment factors, mean square periodicity is sometimes
more realistic and more general than periodicity. Recent-
ly, there are many papers dealing with periodic solution-
s [17,18,19,20,21,22,23] and the references therein. It
deserves to be mentioned that there have no results on
mutualism model with mean square periodic solutions.

We set

r = sup r(t), v = inf r;(¢),
P =S ), 7 ot (t)
kN = sup ki(t), ki = inf k;
! te(0,00) ®) t€(0,00) ®),
af = sup i(t), o = inf o(t),
t€(0,00) t€(0,00)

where © = 1, 2.

Definition 1. A stochastic population system is said to be
almost surely stochastically permanent if for any initial value
xo € R7, the solution z(t) = (x1(t), x2(t), ..., 7, (t))T has
the property

0 < N; <liminf|z;(t)| < limsup |z;(t)| < M; < oo,
t—o0 t—o0

while i =1,2,...,n

Lemma 1. [24] Brownian motion satisfies the law of iterated
B® —0,a>1

to

logarithm, that is lim
t— 00

Remark 1. Setting o = 1, we get hm ﬁ = 0. Therefore,

for Ve > 0, it exists positive constant To such that | B(t)] < et
for all ¢ > Tj.

Remark 2. By Remark 1 and the continuity of Brownian
motion, for Ve > 0, there exists [ € RT, such that |B;| <
et +1, vVt € RT.

In Section 2, through the prove of Lemma 2 and Lemma
3, we yield the Theorem 1, i.e., assuming 20 <r;k;
1,2, almost sure permanence of the stochastic mutuahsm
model is considered, in Section 3, we study the global
asymptotic stability of system (1.3), in Section 4, we discuss
the system’s mean square period, in Section 5, we give an
example to illustrate the main results in the section 2 and 3.
Finally, we close the paper with conclusions.

II. PERMANENCE

Lemma 2. If O’ < 7+a+, i = 1,2, then the solution to
Eq.(1.3) scmsﬁes the following inequalities

- - 129
rra; — so
lim sup N (¢t) < At 27l g,
t—o00 (8]
. Ty 0y — 303
lim sup Ny(¢) < — = M.

t—o0 To

Proof: Denote Ni(t) = #(t), by It6 formula to the

first equation of E¢.(1.3), we obtain

diL'l (t) = — dN1 (t)

e N A0

1 . (t){Kl( ) + a1 () No(t — 2)
Ni(t) ! 14 No(t — 1)

—Nl(t):| dt — Ulf(t)
_ Ki(t) + a1 (t)Nao(t — 72
= —T (t)xl(t) 1+ Ng(t — 7'2)
+7r1 (t)dt — O'l.Il( )dBlt + O'%Il(t)dt
—Tl(t) 1( ) ( )dt-f—?“l( )dt—O’lxl(t)dBlt
+U%l’1( )dt

1
dBy; + afmdt

)dt

v

Thus

dxl(t) + (’1“1 (t)al(t) — O'%)lj(t)dt + lel(t)dBlt
> (D)t (2.1)
Setting
dxl(t) + [rl(t)al (t) — Ul]l‘l( )dt + 0'1.%1( )dBu =0.

We rewrite the above equation as

1
901( ) (77ﬂ1(t)a

By Itd formula, it follows

d:cl( ) 1(t) + Uf)dt — O'ldBlt. (22)

—_

)~ 57

dlnzq(t) = (dz1 ()%

1
— 2.3
From (2.2) and (2.3), it leads

1
= dlnz(t) + a’f’dt

= (-n()a

1
——dx (t
Z‘l(t) 1( )
( ) —+ Ul)dt — O’ldBlf
Then

1
aq(t) + §af)dt — 01dBy;.

dlnzq(t) = (—ri(t)

Integrating both sides from 0 to ¢ gets

t
z1(t) = 21(0)exp{— [ 71 (w)a;(u)du+ %a%t
2.4)

From (2.1) and (2.4), it yields

K 1
dz1(t) exp { / r1(u)aq (u)du — 50%15 + O’lBlt} >
0

¢
r1(t) exp { / r1(u)aq (u)du — %J%t + O’lBlt}dt(Z.S)
0

Since B, is Brown motion, hm Bt~ = 0. So there exists

€ > 0 small enough and TO TO( ) > 0 such that |By;| <

et, Yt > Tj. Letting
X1(Ty) = xl(To)eXp{/ ri(u)oq (u)du — 5‘71TO
0

+0131To}~
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Hence, integrating (2.5) from T} to ¢ leads to

¢
x1(t) exp { / r1(u)aq (u)du — %U%t + ealt}
0

v

¢ 1
x1(t) exp { / r1(u)aq (u)du — iaft + 01|Blt|}
0

v

¢
x1(t) exp { / r1(u)aq (u)du — %U%t + JlBlt}
0

v

X1(To) + /t r1(s) exp { /08 r1(uw)aq (u)du

To
1
_§a%s + UlBls}dS

t

Y

X\ (Ty) + /T 0 rl(s)exp{ /0 1 () () du

1
75(7%5 - 01|B13|}d5

v

X1 (To) + /t r1(s) exp { /OS r1(u)as (u)du

To

1
—50%8 — eals}ds,

which yields

x1(t) > Xl(To)eXp{ —/0 r1(uw)aq (u)du + %Uft

—ealt} + /T t Tl(s)exp{ /t 1 () () du

1

—icrf(s —t) —eop(t + 3)}ds

1
> X4 (1)) exp {(20% —rfai)t - ealt}
¢ 1
+ry / exp {rfaf(s —t)— 50%(5 —t)
To
—eo1(s + t)}ds
Letting t — oo follows

1
liminfzq(t) > lim {X (To)exp{(2 P —riaf

t—o0 t—o0

—eal)t} o | Cexp{riaq (s — 1

To

_%a%(s —t)—eoi(s+ t)}ds}

t
= lim r{ / exp{rlal(s—t)

t—o0 Ty
L 5
—391 (s—1t)pds

"
- - 12"
Ty — 307

Consequently
: 1 rior — 301
1 Ni(t) = < = M.
l?isol.jp 1(t) liminf 2 () — & 1

t—o00

(Hy) ry K; > 102

By the same way, we get

NO|—=

- 2
Ty Qg — 505

limsup Na(t) < ———=2= 1= M,.

t— o0 9
This completes the proof. [ ]

In the following, we give a crucial assumption for the
permanence of system (1.3):

lo2,i=1,2.

From (H;), there exists ¢y > 0 small enough, such that

— g 2
7'1- Kl — 50'14
By Remarks 1-2, there must exist 7y > 0 and [; > 0 such
that

—€p0; >0, 1=1,2.

|Bit| < eot forall t > Ty, |By| <egt+1; forallt >0,

where I; ;== sup |Bis|,i=1,2.
SE[O7TO]

Lemma 3. If (Hy) holds, then the solution to Eq.(1.3)
satisfies the following inequalities

fret 1 2

o ri K" — 0% — €go1
liminf Ny (¢t) > 1] +2 L = Ny,

t—o00 7“1 eUlll

+ 7+ 1.2

o ro Ko — =05 — €902
lim inf Ny(¢t) > 22 +2 2 = Ns.
t—o00 TS eO’le

Proof: Denote N;(t) = #(t), by It6 formula to the
first equation of Eq.(1.3) it leads

dIl(t) = le( )

1
_ 1 i )[Kl( )+a1(t)N2(t—7'2)
N () 1+N2(t772)
1
—Nl(t):|dt— N ( )d 1t + —— N () dt
1 OB — N (1))
1
(t

< —
s 0

1
—0’1N )d 1t+N() dt

—r1 () K1 (t)21 (8)dt + 71 (£)dt + o521 (t)de
—01$1(t)dBlt.

Thus

K (t) — of]ey (t)dt + oy21 (t)d By
S T1 (t)dt

dxq (t) + [7‘1 (t)

That is
¢ 1
dxzq(t) exp { / r1(u) Ky (u)du — iaft + 0'131,5}
0
¢ 1
< ri(t)exp { / r1(u) Ky (u)du — §U%t + O’lBlt}dt.
0
Integrating both sides from 7j to ¢t obtains

21(t) exp { /t () Ky (1) — %Uft + olBlt} _Xy(Th)

0

t s 1
< / r1(s) exp { / r1(u) Ky (u)du — —o? + alBls}ds,
To 0 2
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where
X (To) = o (To) exp { | nwgiwdu - ot
0
—+01 BlTU }
By Remark 2, it follows that

z1(t) < X1(To) exp{ 7/0 r1(u) Ky (u)du + %O’%t

013”}+ /T t o (s) exp{ /t () K ()

1
—50%(8 —t) 4+ 01(Bis — Blt)}ds

IA

1 S
X1(To) exp {(20% —ry K7 )t + eoolt}

¢
1
+reoth / exp(r Ki — 391 0? —egoy)(s — t)ds

To
1
=X (To)exp{2 —ry Ky —1—600'1}
N riesth {1 B
rf K — %a% — €001

1
exp [— (rf'Kfr — 50% —ego1)(t — To)} }

Letting t — oo, we get

rfe"lll
limsupxy(t) < .
t—00 ®) Tfo‘ - %0% — €901
Consequently
1 rT K — 102 —¢po
lim inf NV, (t) = - > 11 +2 A
t—00 lim sup 1 (t) rieoth
t— o0
= Nj.
By the same way, we get
+r+ 1.2
ra KT — =05 — €goa
liminf Np(t) > 2222 072 .— N,
t—o00 5 eaglg
This completes the proof. ]

According to Lemma 2 and Lemma 3, we obtain the
following theorem.

Theorem 1. If (Hy) holds, then the solution to Eq. (1.3) is
almost surely stochastically permanent, that is,
+ 7+ 1 _2
ri Ki" — 07 — €g0
Ny = L 201 PO i inf Ny (8)
t—o0

rf‘e"lll

1.2

< limsup N (¢t) < M = My, (2.6)
t—00 7’1

+ o+ 1.2
ro K — =05 — €goa L
Ny= 22 22 < lim inf Ny(t)
t—o0

+ o2l
ry eo2lz

: X
<limsup Np(t) < —=—==:= M,. 2.7

t—o0 Ty

III. GLOBAL ASYMPTOTIC STABILITY

Theorem 2. Assume that
(H2) there exists two positive constant A1 and o such that

Iy = ry —dory (K5 +a3) >0,

Iy = )\27“2_ — /\17“?_(}({’_ +041i_) > 0.

Then system (1.3) is globally asymptotically stable.

Proof: Assuming (N (t), No(t))Tand (N (t), No(t))T
are any two solutions of Fq.(1.3). Let (y1,12)7 =
(ln N1 (t), In Ng(t))T and (gl, yg)T = (ln Nl (t), In Ng(t))T
Denote y1(t) = In N1 (t), by Itd formula to the first equation
of system (1.3) , we obtain

dya(t) = %(t)le(t) - %%(le(t)f

1 1
- mle(t) - 5a%oht
Kl(t) + Oél(t)Ng(t — 7'2)

= () 1+ No(t— 1)

~Ny(8)|dt

1
+01dBy; — §afdt,

by the same way, it transforms system (1.3) into the
following system,

dys(t) = ra(t) | FUEGIOR0=T) N (1) | de

—|—0’1d:Blt — *O’ldt

dys(t) = ra(t) | F2UESDIL=T) - Ny (#) | dt

-|—O'2d:BQt — %O’%dt,

‘ 1 6D
dg () = (1) | SRR - N (1) |
—|—0'1d:Blt — %O’%dt, :
dga(t) = ra(t) | F2ERRAE= — Ny (2)| dt
+0’2d-B2t — %O’gdt i
Define
V(t) =Vo(t) + Vi(t) + Va(t), (3.2)
where

Vo(t) = Aafyr(t) — g1 ()] + A2fy2(t) — 52(2)],
V) = [ UG +0f)INi(s) = Ns)ds,

t
Va(t) = Ay / rF (I + o )| Na(s) — Na(s)|ds.
t—T7o

Calculating the upper right derivative of V;(¢) along system
(3.1),

D¥Vo(t) = Misgnlyr () — 51 (0)] [y (¢) — 7,.(1)]
+A2sgnlya(t) — (t)][y (t) — U (2)]
=171 ()| N1 (t) — Ni(t)]

+Ar (8)[K1 () + ax (B)][ N2 (t — 72)

—Na(t — 72)| = Aara ()| Na(t) — Na(t)]
+Aora () [K2(t) + a2 ()] [ N1 (t — 1)

—Ni(t —11)|

A7y [Ny (t) — Nu(t)]

+>\1rf(Kfr + af)|N2(t —73) — Na(t — )|
—Xary [Na(t) — Na(t)]

+Aord (K +af)|Ni(t — 1)
~Ni(t—m7)|. (3.3)

IN

IN

(Advance online publication: 14 May 2016)
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Further, calculating the upper right derivative of Vi (t), Va(t)
along system (3.1), it follows that

DYVi(t) = dory (K3 + of )|N1(t) — N1 (1)
—AQT;_(K; + Oé;_)‘Nl(t — T1)

—Ny(t — 1)l (3.4)
D¥Va(t) = Ay (K + af )[Na(t) — Na(t)]
Ml (K + o) | Na(t — 1)
—Ny(t — 7)) (3.5)
Together with (3.2) — (3.5), for V¢ € R, we get
DYV (t) < [=Aury + Xorg (K5 + a3 )][INi(t) = Nu(t)]
H=Aory + Aur{ (K + af )] [ N2(t) — Na(t)]

IN

—T1 [Ny (t) — No(t)] = T2 Na(t) — Na(t)],

Hence, for V¢t € R, V/(t) is nonincreasing, integrating the
above formula from 0 to ¢ yields

+F1/ | V1 (s
+F2/ |N2

implies that,

(s)|ds

(s)|ds < V(0) < 400, V>0,

[N1(s) — Ni(s)|ds < +o0,
t —
|Na(s) — Na(s)|ds < 400,
0
that is,
Jlim [Ni(s) = Nals)| = lim_|Na(s) — Na(s)] = 0.
This completes the proof. [ ]

Remark 3. The theorem illustrates that the intensity of white
noise has a negative impact on almost sure permanence, but
it makes no difference on global asymptotic stability.

IV. PERIODIC SOLUTION

In this section, we assume that

(H3) there exists a positive constant w such that

ri(t+w) =ri(t), Ki(t+w)=Kt),
a;(t+w)=a(t), i=1,2.
(Hy) max{ ’?01'2317 ‘??ZBZ} < 1, where

Alzri;PVHKr—%n (M, o)
+aﬂ,

By = — [t (M + (KT — )P,

Ao = 2 (5 - 03 )P + 40§ (Mo + 0]
2 =2
+a§},

By = — i (M + O(KS — o)

Definition 2. A function f is called mean square periodic if
there exists a positive constant w such that

BIN:(t +w) = Ni(t)* =0,

E|Ny(t +w) — No(t)]* = 0,Vt € R.

Theorem 3. Assume that (Hs) and (Hy) hold, and for any
€ > 0, there exists t > Ty, such that N;(t) < M;+e€,i=1,2,
then system (1.3) is mean square periodic, that is

E|INi(t +w) = Ni(t)* =0,

BINa(t +w) = Nao(t)|* = 0.

Proof: From the first equation of system (1.3), we get

Kl(t) + Oél(t)NQ(t — 7'2)
1+ Ng(t — Tg)

le(t) = 7’1(t)N1(t)|:

—N1 (t):| de -+ 0'1N1 (t)dBlt

=r(t)a
+r1(t)1+N2(t_5_2))N1(t)dt —ry(t)N2(t)dt

=17 (t)a1 (t)Nl (t)dt + f(t)dt +o01N1 (t)dBlt,

1(t)N1(t)dt + UlNl(t)dBlt
Kl(t) — t

Ki(t) —aa(t)

1+ No(t — Tg)Nl(t)

— 1 (t) N (1)
Therefore

ANy (t+w) = r1(t + w)aq (t + w) Ny (t + w)dt
+f(t + w)dt + 0'1N1( + W)dBl (t4w)

= r1(t)ar (t) N1(t + w)dt + f(t + w)dt
+o 1 N1 (t + w)dBy (¢4
So
dN;(t +w) — dNy(¢)
= ri(t)ar () [N1(t +w) — N1 ()]t + [f(t +w) — f(?)]dt
+01[N1(t + w)d By (440) — N1(t)dBye]. 4.1

Setting Y;(t)
get

= N;(t +w) — N;(t),i = 1,2, from (4.1) we

dYi(t) = ri(t)ar()Y1(t)dt + [f(t +w) —
-|—O'1 [Nl (t + w)dBlt — N1 (t)dBlt]y

f@)at

~ d
where B1; = Biyq — By = By — Big = By
Then, it follows

dv; (t)e_ f(; ri(s)aq(s)ds
= e TinCmEOb (1 +w) - f(o)dt
+oi1e” Joris)en(s)ds [Ny (t + w)dBy, — Ny(t)dBy,].
Integrating both sides from ¢ to T gets

Yi(Tp)e™ i ri@ea s _

To
= [ e ) — (s)as

t

Yl( )6 JEri(s)on(s)ds

toy / e~ Jo ri(w)ar (u)du [Ny (s + w)dBy,
t
—Ni(s)dBis],

(Advance online publication: 14 May 2016)
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that is

Va(t) = Va(Ty)e- I i oy
To ‘
_ / e~ I r1(u)a1(u)du[f($ n w) B f(S)]ds
t

To R

_ / gre” fi eI, (5 1 0)d By,
t

—N;p(s)dBys].

Letting Ty — +00, we obtain
+oo
Yi(t) = */ e~ Jim@entndulp(s 40y — f(s))ds
t

+00 2

_ / ore” JEri(w)an (u)du [Nl(s —+ W)dBls
t

—Ni(s)dBs).

Using Holder inequality and isometric transformation, it
follows

EY1(t)

400
5 /t e Ji ri(war(u)du [f(s +w)— f(S)]ds

+00 B
t

2

—Nl(s)dBls]
+o00 2
< 2E / e~ Jimbmeamduf(5 4 w) — f(s)]ds
t
too .
+2E|0y / e~ JimWaer(wdu N, (5 4 0)d By,
t

2
—Nl(S)dBls]

IA

+00 +00
2E/ e~ IN Tl(u)al(u)dUds/ e J7 r(w)aq (w)du
t t
+oo .
s+w)— J(s st + 20’2E e~ Ji T’l(u)al(u)duds
Lf( ) — f(s)] 1
t

+oo
« / o N rl(u)al(u)du[Nl (S + OJ) - Nl(s)]2d8
t

+oo
< " 2047 /t e‘rfo‘;(s_t)E[f(s +w) — f(s)]%ds
o / ey, (42)
where
[f(t+w) = F(1))?
Ny (t) 2 2 2
_HJVQ(t—Tz):l =71 (t)[ N (t +w) — N} (t)]}
< 20 (1) (K1 (1) — on (1)) [1 - ]J\Z 1((;:5)_ ~
2
_H]]\Eg)_m} + 2} (O[NPt + w) — NE(t)]?
< 2 T - )P e

1+N2(t+w—7'2)

2

W | a0t v )

_1+N2(t—7'2)

—N7 (1)) (4.3)

Since

Mt+w)  N@) r
|1+ No(t+w—72) 14 Na(t—m2)
[ 1

= | TG ra ) @) = M)

2
_Nl(t)ﬁ[]vg(t +w — T2) — Ng(t — 7'2)]:|

[N1(t +w) = N1(t)] = N1(8)[No(t + w — 72)

2

IN

—No(t —72)]

IN

2[Ny (t +w) — N1 (1))
F2NZ()[Na(t +w — 72) — Na(t — 1))
2YZ(t) + 2(My + €)*Y2(t — 1),

4.4)
where £ is between Na(t +w — 72) and No(t — 72), and
N2(t+w) — Ni(t)
= [Ni(t +w) + N1 (D)][N1(t +w) — N1(¢)]
< 2(Mi + )[Ni(t +w) — Ni(2)]
= 2(M1 + €)Y1(t)
From (4.3)-(4.5) we get
[f(t+w) = F@B)?
<2 (K — o )P2Y7 (1) + 2(My + €)*YZ (t — 7))
+2(r1)?[2(M; + €)Y (1)]?

[4[r1+<K1+ o)+ Al (M + e>12] Y2 (1)

4.5)

HA[rf (M + €)(Ky — oy )PY5(t — 7).
From (4.2) and (4.6) it leads

2 too
/ e (St)E{ {4[@([(;“
t

T o

o) 4 4l (M + e)}z] Y2 ()

(4.6)

Evi(t)* <

+4[rf (M + ) (K" — a7 )P YL (t — T2)}ds

+oo o
/ e " GO EY2(5)ds
t
+o0 o
= Al/ e "1 GO EY2(5)ds
t

+o0 o
+B, / e CTOEY2(s — 15)ds. (4.7)
t
By the same way, we obtain

+oo o
E|Y2(t)|? < A, / e "2 %2 O BY2(5)ds
t

+oo o
+B, / e "2 %2 O EY2(s — 1y)ds. (4.8)
t

Setting

XO = max {EYIQ(S)7EY22(8)}’

To<s<+oo
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from (4.7) and (4.8), we yield
+oo o
E|Yi(t))? < A, / e " 505X,
t

+o00 -
+B; / e~ o (57 qs X,
t

A+ B
- A2, 4.9)
Ty Qy
+oo o
E|Y(t)]? < Ay / e~ "2 %2 (5705 X,
' +o0o o
+B2/ e "2 % (515X,
t
Ay + B
-2t %y, (4.10)
To Qg
From (4.9) and (4.10), we have
2 2
o max {EM@F, EYa ()
A +B, A2+ B
< max{ 1_+_1, 2_+_2}X0,
T Qg Tg Gy
that is
A1 +B A2+ B
Xo < max{ 1:&-717 27+72}X0.
1 Tg Qg
By (H4) we get
Xo =0,
thus
Ei(t)? =0, E2(t)f =0,
that is
EIN:(t +w) = Ni(t)]* =0,
E|Ny(t 4+ w) — Na(t)]? = 0.
This completes the proof. [ |

V. AN EXAMPLE

In this section we use an example to illustrate the main
results. Consider the system

ANy (t) = (5 + 5 cos® ) N1 (1)

(3+4 cos? D+(3+1s cos? t) Na(t—e100)
1+ N3 (t—e—100)

—Ni(t)|dt + N1 (t)d By,
dN(t) = (3 + 3sin®¢)No(t)
(L+4 sin? )+ (L + 4% sin® t) Ny (t—e10)
T+ Ny (t—e—100)

(5.1)

—Ng(t)} dt + LNy (t)dBay,.

Since, 307 < r;k;,i = 1,2, satisfies the condition of
Theorem 1, we choose o; = é, l; < 1,7 =1,2. From system

(5.1) and (2.6), (2.7), we yield

+r+ 1.2
ri K" — 501 — €001 S 11

ool

N =: —e
! rieoih ~ 64 ’
ry K — 305 —eooa _ 11 _y
NQ = T Z -—e 8,
ryeo2l2 64
u Ty o — %a% 7
1= == =
Ty 64’

Ty Oy — 505 7

M, = _T

2 Ty 64

So,

11 7
6—467% < litrgngl(t) < lhtqisc}olel(t) < o
L ! inf Ny(t) < li N(t)<7
— imin im —.
64¢ T =G W = SRS 5y

Therefore, system(5.1) is almost surely stochastically per-
manent.
On the other hand, setting \; = A\ = 1, we yield

[y =M\r] — Xorgd (K +a3) >0,
Ty = Xory — M (K +af) >0,

therefore, system (5.1) is global asymptotic stability.

VI. CONCLUSION

This paper concerns the stochastic and time-lagged mutu-
alism model. We know that permanence is a very important
and interesting subject in mathematical ecology, which mean-
s that a population system will survive forever. A definition of
almost sure permanence is presented here, which is similar
to the definition in definitive models. Under the condition
102 <r;k;,i=1,2, the stochastic model (1.3) is almost
surely stochastically permanent and the intensity of white
noise has a negative impact on it, but makes no difference on
global asymptotic stability. And in some certain conditions,
we deduce the system (1.3) is mean square periodic.

REFERENCES

[1] A.M. Dean, ”A simple model of mutualism”, Amer. Natural. 121, 409-
417, 1983.

[2] D.H. Boucher, The Biology of Mutualism: Ecology and Evolution,
Croom Helm, London, 1985.

[3] J.H. Vandermeer and D.H. Boucher, ”Varieties of mutualistic interaction
models”, J. Theor. Biol. 74, 549-558, 1978.

[4] C.L. Wolin and L.R. Lawlor, "Models of facultative mutualism: density
effects”, Amer. Natural., 144, 843-862, 1984.

[5] D.H. Boucher, S. James and K.H. Keeler, "The ecology of mutualism”,
Ann. Rev. Syst. 13, 315-347, 1982.

[6] RM. May, Stability and Complexity in Model Ecosystems, Princeton
University Press, NJ, 2001.

[7] D. Jiang, N. Shi, X. Li, ”Global stability and stochastic permanence
of a non-autonomous logistic equnation with random perturbation”, J.
Math. Anal. Appl., 340, 588-597, 2006.

[8] M. Liu, K. Wang, “Persistence and extinction in stochastic non-
autonomous logistic systems”, J. Math. Anal. Appl. 375, 443-457, 2011.

[9] X. Li, X. Mao, "Population dynamical behavior of nonautonomous
Lotka-Volterra competition system with random perturbation”, Discrete
Contin. Dyn. Syst. 24, 523-545, 2009.

[10] M. Liu, K. Wang, “Stationary distribution, ergodicity and extinction
of a stochastic generaized logistic system”, Appl. Math. Lett. 25, 1980-
1985, 2012.

[11] Y.H. Fan, L.L. Wang, "Permanence for a discrete model with feedback
control and delay”, Discrete Dyn. Nat. Soc. 2008, Article ID 945109,
2008.

[12] X. Gu, Y.H. Xia, "Stability analysis in a nonlinear ecological model”,
Appl. Math. Comput. 39, 189-200, 2012.

[13] CJ. Xu, M.X. Liao, Stability and bifurcation analysis in a seir
epidemic model with nonlinear incidence rates”, IAENG International
Journal of Applied Mathematics, 41, 191-198, 2011.

[14] J. Zhou, J.P. Shi, "The existence, bifurcation and stability of positive
solutions of a diffusive leslie-gower predator-prey model with holling-
type II sunctional responses”, Math. Anal. Appl,, 405, 618-630, 2013.

[15] R.Z. Yang, J.J. Wei, "Stability and bifurcation analysis of a diffusive
prey-predator system in holling type III with a prey refuge” Nonlinear
Dynamics, 79, 631-646, 2015.

[16] Kazuyoshi MORI, “General parametrization of stabilizing controllers
with doubly coprime factorization over commutative rings”, JAENG
International Journal of Applied Mathematics, 44, 206-211, 2014.

(Advance online publication: 14 May 2016)



TAENG International Journal of Applied Mathematics, 46:2, [JAM 46 2 09

[17] K. Wang, “Periodic solutions to a delayed predator-prey model with
Hassell-Varley type functional response”, Nonlinear Anal.: RWA, 12,
137-145, 2011.

[18] M. Fazly, M. Hesaaraki, “Periodic solutions for predator-prey systems
with Beddington-DeAngelis functional response on time scales”, Non-
linear Anal.: RWA, 9, 1224-1235, 2008.

[19] C. Miao, Y. Ke, "Positive periodic solutions of a generalized Gilpin-
Ayala competitive system with time delays”, WSEAS Trans. Math., 12,
277-285, 2013.

[20] C.J. Xu, Y.S. Wu, L. Lu, ”On permanence and asymptotic periodic
solution of a delayed three-level food chain model with beddington-
deangelies”, IAENG International Journal of Applied Mathematics, 44,
163-169, 2014.

[21] Z. Zhou, X. Zou, “Stable periodic solutions in a discrete periodic
logistic equation”, Appl. Math. Lett. 16, 165-171, 2003.

[22] Y.K. Li, ”On a periodic mutualism model”, ANZIAM J. 42, 569-580,
2001.

[23] A.M.A, Abou-El-Ela, A.I. Sadek, A.M. Mahmoud “Existence and
uniqueness of a periodic solution for third-order delay differential
equation with two deviating arguments”, JAENG International Journal
of Applied Mathematics, 42, 7-12, 2012.

[24] S.G. Hu, C.M. Huang, FK. Wu, Stochastic Differential Equation,
Science publishing house, Beijing, 2008 (Chinese).

(Advance online publication: 14 May 2016)





