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Abstract—In this paper, we present a new preconditioner
which generalizes two known preconditioners proposed by
Wang et al. (2009) and A. J. Li (2011), and prove that the
convergence rate of the AOR method with the new precondi-
tioner is faster than the preconditioners introduced by Wang
et al. Moreover, we propose other two new preconditioners and
study the convergence rates of the new preconditioned AOR
methods for solving linear systems. Comparison results show
that the new preconditioned AOR methods are better than those
of the preconditioned AOR methods presented by J. H. Yun
(2011) and A. J. Li (2012). Finally, numerical experiments are
provided to confirm the theoretical results studied in this paper.

Index Terms—preconditioner, preconditioned AOR method,
Linear system, AOR method, L-matrices.

I. INTRODUCTION

SOLUTIONS of linear systems arise from the scientific
computing and engineering technique, such as solv-

ing the steady incompressible Navier-Stokes problem [1],
preconditioning techniques for large sparse systems arising
in finite element limit analysis [2], multigrid method for
linear complementarity problem and its implementation on
GPU [3], fourth-order singly diagonally implicit Runge-
Kutta method for solving one-dimensional Burgers’ Equation
[4] and so forth. So, research of methods for solving linear
systems has important theoretic significance and practical
applications. In this paper, by constructing three new pre-
conditioners and combining with the theories of nonnegative
matrices, we will conduct further research in preconditioned
AOR iterative methods for solving linear systems. In theory,
we prove that the convergence rates of the AOR method with
the new preconditioners are faster than the existing ones. To
illustrate our results, some numerical experiments are given.

Consider the following linear system

Ax = b, (1)

where A ∈ Rn×n, b ∈ Rn are given and x ∈ Rn is unknown.
For simplicity, we let A = I − L − U , where I is the

identity matrix, L and U are strictly lower and strictly upper
triangular matrices, respectively. Then the iteration matrix of
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the AOR iterative method [5] for solving the linear system
(1) is

Lr,w = (I − rL)−1[(1− w)I + (w − r)L+ wU ], (2)

where w and r are real parameters with w 6= 0.
In order to accelerate the convergence of iterative method

for solving the linear system (1), the original linear system
(1) is transformed into the following preconditioned linear
system

PAx = Pb, (3)

where P is called a preconditioner, is a nonsingular matrix.
The preconditioned system (3) with the different precondi-
tioners P have been proposed by many authors [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21].

In 2009, Wang and Li [6] and in 2011, A. J. Li [7]
presented preconditioners P̃ = I + S̃α,β and P̂ = I + Ŝα,β
for L-matrices, respectively, where

S̃α,β = (s̃ij)n×n =

{
−an1

α1
− β1, i = n, j = 1;

0, others.
,

Ŝα,β = (ŝij)n×n =

{
−a1nα2

− β2, i = 1, j = n;

0, others.
.

In 2011, J. H. Yun [8] obtained a preconditioner P1 =
I + S1 for L-matrices, where

S1 = (s1ij)n×n =

{
−αiai,i+1, i = 1, · · · , n− 1;
0, others.

.

In 2012, A. J. Li [9] proposed another preconditioner P2 =
I + S2 for L-matrices, where

S2 = (s2ij)n×n =

{
−βi+1ai+1,i, i = 1, · · · , n− 1;
0, others.

.

Let

Ãx = b̃, Âx = b̂, A1x = b1, A2x = b2, (4)

where Ã = (I+ S̃α,β)A, b̃ = (I+ S̃α,β)b, Â = (I+ Ŝα,β)A,
b̂ = (I + Ŝα,β)b, A1 = (I + P1)A, b1 = (I + P1)b, A2 =
(I + P2)A, b2 = (I + P2)b. Let

Ã = D̃ − L̃− Ũ , Â = D̂ − L̂− Û ,
Ai = Di − Li − Ui(i = 1, 2), (5)

where D̃, −L̃, −Ũ and D̂, −L̂, −Û are diagonal, strictly
lower and strictly upper triangular matrices of Ã and Â, re-
spectively, moreover, Di, −Li, −Ui (i = 1, 2) are diagonal,
strictly lower and strictly upper triangular matrices of Ai
(i = 1, 2). ρ(A) denotes the spectral radius of A.
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Applying the AOR method to the preconditioned linear
systems (4), we get the corresponding preconditioned AOR
(PAOR) iterative methods and their iterative matrices are

L̃r,w = (D̃ − rL̃)−1[(1 − w)D̃ + (w − r)L̃+ wŨ ], (6)
L1,r,w = (D1 − rL1)−1[(1 − w)D1 + (w − r)L1 + wU1], (7)
L2,r,w = (D2 − rL2)−1[(1 − w)D2 + (w − r)L2 + wU2], (8)

respectively, where w and r are real parameters with w 6= 0.
In this paper, we continue this research on the precon-

ditioned AOR method for linear system and consider the
new preconditioners P̄ = I + S̄α,β = I + S̃α,β + Ŝα,β ,
P ∗
1 = I + S∗

1 = I + S1 + S̃∗, P ∗
2 = I + S∗

2 = I + S2 + Ŝ∗,
where

S̃∗ =


0 · · · 0 −αna1n
...

...
...

...
0 · · · 0 0
0 · · · 0 0

 , Ŝ∗ =


0 0 · · · 0
0 0 · · · 0
...

...
...

...
−β1an1 0 · · · 0

 ,

and the corresponding preconditioned linear systems are

Āx = b̄, A∗
1x = b∗1, A

∗
2x = b∗2, (9)

where Ā = (I + S̄α,β)A, b̄ = (I + S̄α,β)b, A∗
1 = (I +S∗

1 )A,
b∗1 = (I+S∗

1 )b, A∗
2 = (I+S∗

2 )A and b∗2 = (I+S∗
2 )b. Similar

to (5), let

Ā = D̄ − L̄− Ū ,
A∗

1 = D∗
1 − L∗

1 − U∗
1 , A

∗
2 = D∗

2 − L∗
2 − U∗

2 , (10)

where D̄, −L̄, −Ū are diagonal, strictly lower and strictly
upper triangular matrices of Ā, respectively. Moreover, D∗

1 ,
−L∗

1, −U∗
1 and D∗

2 , −L∗
2, −U∗

2 are diagonal, strictly lower
and strictly upper triangular matrices of A∗

1 and A∗
2, respec-

tively. The iterative matrices of AOR method for solving (10)
are

L̄r,w=(D̄ − rL̄)−1[(1 − w)D̄ + (w − r)L̄+ wŪ ], (11)
L∗

1,r,w=(D∗
1 − rL∗

1)−1[(1 − w)D∗
1 + (w − r)L∗

1 + wU∗
1 ],(12)

L∗
2,r,w=(D∗

2 − rL∗
2)−1[(1 − w)D∗

2 + (w − r)L∗
2 + wU∗

2 ].(13)

The rest of the paper is organized as follows. In Section
II, we collect some needed known concepts and lemmas. In
Section III, we prove that, for the PAOR iteration, the new
preconditioner P̄ = I+S̄α,β can make the iteration converge
faster than the preconditioner P̃ = I + S̃α,β . Furthermore,
the new preconditioners P ∗

1 = I + S∗
1 and P ∗

2 = I + S∗
2

make the iteration converge faster than the preconditioners
P1 = I + S1 and P2 = I + S2, respectively. In Section IV,
we give several numerical examples to illustrate the obtained
results in Section III. In Section V, we give the conclusions.

II. PRELIMINARIES

We shall use the following lemmas and results.
For a vector x ∈ Rn, x ≥ 0(x > 0) denotes that all

components of x are nonnegative (positive). For two vectors
x, y ∈ Rn, x ≥ y(x > y) means that x − y ≥ 0(x − y >
0). These definitions carry immediately over to matrices. A
matrix A = (aij) ∈ Rn×n is called a Z-matrix if aij ≤ 0
for i 6= j, an L-matrix if A is a Z-matrix and aii > 0 for
i = 1, 2, · · · , n, and a nonsingular M -matrix if A is a Z-
matrix and A−1 ≥ 0. A matrix A is called irreducible if the
directed graph of A is strongly connected [22].

Lemma 2.1 [22] Let A ≥ 0 be an irreducible matrix. Then
(a) A has a positive eigenvalue equal to ρ(A).
(b) A has an eigenvector x > 0 corresponding to ρ(A).
(c) ρ(A) is a simple eigenvalue of A.

Lemma 2.2 [23] Let A ≥ 0 be a matrix. Then the
following hold.
(a) If Ax ≥ βx for a vector x ≥ 0 and x 6= 0, then ρ(A) ≥ 0.
(b) If Ax ≤ γx for a vector x > 0, then ρ(A) ≤ γ. Moreover,
if A is irreducible and if βx ≤ Ax ≤ γx, equality excluded,
for a vector x ≥ 0 and x 6= 0, then β < ρ(A) < γ and
x > 0.
(c) If βx < Ax < γx for a vector x > 0, then β < ρ(A) < γ.

Lemma 2.3 Let A = (aij)n×n be an L-matrix with 0 <
a1nan1 < α1(α1 > 1), 0 < a1nan1 < α2(α2 > 1) and β1 ∈
(−an1

α1
+ 1

a1n
,−an1

α1
)
⋂

((1− 1
α1

)an1,−an1

α1
), β2 ∈ (−a1nα2

+
1
an1

,−a1nα2
)
⋂

((1− 1
α2

)a1n,−a1nα1
) and 0 ≤ r ≤ w ≤ 1(w 6=

0 and r 6= 1), then the iteration matrix L̄r,w defined by (11)
is nonnegative and irreducible.
Proof.

Ā = (I + S̄α,β)A =


g1 g2 · · · g3
a21 1 · · · a2n

...
...

. . .
...

g4 g5 · · · g6

 , (14)

where g1 = 1− (a1nα2
+ β2)an1, g2 = a12 − (a1nα2

+ β2)an2,
g3 = (1− 1

α2
)a1n−β2, g4 = (1− 1

α1
)an1−β1, g5 = an2−

(an1

α1
+β1)a12 and g6 = 1−(an1

α1
+β1)a1n. Since β1 < −an1

α1
,

β2 < −a1nα2
, we have β1 + an1

α1
< 0, β2 + a1n

α2
< 0. Thus,

since A is a L-matrix, we have

(Ā)1i = a1i − (β1 +
an1
α1

)ani ≤ a1i ≤ 0

(i = 2, 3, · · · , n− 1),

(Ā)nj = anj − (β2 +
a1n
α2

)a1j ≤ anj ≤ 0

(j = 2, 3, · · · , n− 1).

Moreover, β1 > (1− 1
α1

)an1, β2 > (1− 1
α2

)a1n, so we can
get

(Ā)1n = (1− 1

α2
)a1n − β2 < 0,

(Ā)n1 = (1− 1

α1
)an1 − β1 < 0.

By Equation (14), we obtain (Ā)ij = (A)ij(i = 2, 3, · · · , n−
1, j = 1, 2, · · · , n). Since A is irreducible, we infer that Ā
is also irreducible. Inasmuch as A is a L-matrix, L̄ ≥ 0,
Ū ≥ 0, and β1 > −an1

α1
+ 1

a1n
, β2 > −a1nα2

+ 1
an1

, we have
(an1

α1
+β1)a1n < 1, (a1nα2

+β2)an1 < 1, which means that D̄
is a positive diagonal matrix. From Equation (11), we have

L̄r,w

= (D̄ − rL̄)−1[(1− w)D̄ + (w − r)L̄+ wŪ ]

= (I − rD̄−1L̄)−1[(1− w)I + (w − r)D̄−1L̄+ wD̄−1Ū ]

= (I + rD̄−1L̄+ (rD̄−1L̄)2 + · · ·+ (rD̄−1L̄)n−1)

×[(1− w)I + (w − r)D̄−1L̄+ wD̄−1Ū ]

= (1− w)I + w(1− r)D̄−1L̄+ wD̄−1Ū + T, (15)

where

T = rD̄−1L̄[(w − r)D̄−1L̄+ wD̄−1Ū ] +

[(rD̄−1L̄)2 + · · ·+ (rD̄−1L̄)n−1]×
[(1− w)I + (w − r)D̄−1L̄+ wD̄−1Ū ] ≥ 0.
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So L̄r,w ≥ 0. Since Ā is irreducible and 0 < w ≤ 1, 0 ≤ r <
1, (1−w)I +w(1− r)D̄−1L̄+wD̄−1Ū is also irreducible.
Thus, L̄r,w is nonnegative and irreducible.

Lemma 2.4 Let A = (aij)n×n be an L-matrix with
αiai,i+1ai+1,i < 1 and 0 ≤ αi < 1 for all 1 ≤ i ≤ n− 1.
Assume that αiai,i+1 6= 0 for some i < n and a1n 6= 0,
0 < αn < min{ 1−α1a12a21

a1nan1
, 1 − α1a12a2n

a1n
}. and 0 ≤ r ≤

w ≤ 1(w 6= 0 and r 6= 1), then the iteration matrix L∗
1,r,w

defined by (12) is nonnegative and irreducible.
Proof.

A∗
1 = (I + S∗

1 )A =


h1 h2 · · · h3
h4 h5 · · · h6
...

...
. . .

...
an1 an2 · · · 1

 ,

where h1 = 1−α1a12a21−αna1nan1, h2 = (1−α1)a12−
αna1nan2, h3 = (1 − αn)a1n − α1a12a2n, h4 = a21 −
α2a23a31, h5 = 1 − α2a23a32 and h6 = a2n − α2a23a3n.
Since αiai,i+1ai+1,i < 1 for all 1 ≤ i ≤ n− 1, and 0 <
αn < min{ 1−α1a12a21

a1nan1
, 1− α1a12a2n

a1n
}, we have

(A∗
1)ii = 1− αiai,i+1ai+1,i > 0, (i = 2, 3, · · · , n− 1),

(A∗
1)nn = 1 > 0,

(A∗
1)11 = 1− α1a12a21 − αna1nan1 > 0.

Thus, D∗
1 is a positive diagonal matrix.

Moreover, since 0 < αn < min{ 1−α1a12a21
a1nan1

, 1 −
α1a12a2n
a1n

}, 0 ≤ αi < 1 for all 1 ≤ i ≤ n− 1 and A is
a L-matrix, we have

(A∗
1)1i = a1j − α1a12a2j − αna1nanj ≤ a1j ≤ 0

(i = 2, 3, · · · , n− 1),

(A∗
1)12 = (1− α1)a12 − αna1nan2 ≤ (1− α1)a12 ≤ 0,

(A∗
1)1n = (1− αn)a1n − α1a12a2n < 0,

(A∗
1)ij = aij − αiai,i+1ai+1,j ≤ aij ≤ 0

(i = 2, 3, · · · , n− 1; j = 1, 2, · · · , n; i 6= j, i+ 1 6= j),

(A∗
1)ij = (1− αi)aij ≤ 0

(i = 2, 3, · · · , n− 1; j = 1, 2, · · · , n; i+ 1 = j),

(A∗
1)nj = anj ≤ 0 (j = 1, 2, · · · , n− 1).

Since A is irreducible, we deduce that A∗
1 is also irre-

ducible. Since A is a L-matrix, L∗
1 ≥ 0, U∗

1 ≥ 0. It follows
from Equation (12) that

L∗
1,r,w

= (D∗
1 − rL∗

1)−1[(1− w)D∗
1 + (w − r)L∗

1 + wU∗
1 ]

= (I − r(D∗
1)−1L∗

1)−1 ×
[(1− w)I + (w − r)(D∗

1)−1L∗
1 + w(D∗

1)−1U∗
1 ]

= (1− w)I + w(1− r)(D∗
1)−1L∗

1 + w(D∗
1)−1U∗

1 + T1,

(16)

where T1 ≥ 0. So L∗
1,r,w ≥ 0. Since A∗

1 is irreducible
and 0 < w ≤ 1, 0 ≤ r < 1, (1 − w)I + w(1 −
r)(D∗

1)−1L∗
1 + w(D∗

1)−1U∗
1 is also irreducible. Therefore,

L∗
1,r,w is nonnegative and irreducible.
Similar to the proof of Lemma 2.4, we obtain the following

lemma.
Lemma 2.5 Let A = (aij)n×n be an L-matrix with

0 < βiai,i−1ai−1,i < 1, βiai,i−1 6= 0 and 0 < βi ≤ 1
for 2 ≤ i ≤ n. Assume that an1 6= 0, 0 < β1 <

min{ 1−βnan,n−1an−1,n

a1nan1
, 1 − βnan,n−1an−1,1

an1
}. and 0 ≤ r ≤

w ≤ 1(w 6= 0 and r 6= 1), then the iteration matrix L∗
2,r,w

defined by (13) is nonnegative and irreducible.
Lemma 2.6 [24] Let A = (aij) ∈ Rn×n be an upper

triangular matrix or a lower triangular matrix, then A is a
nonsingular M -matrix if and only if A is a L-matrix.

Lemma 2.7 [24] If A is a nonsingular M -matrix, then
A−1 ≥ 0.

III. COMPARISON THEOREMS FOR PRECONDITIONED
AOR METHODS

In this section, we present some theorems to compare
the convergence rates of the preconditioned AOR methods
proposed in this paper with the methods in [6], [8], [9].

Under the above assumptions, we easily get the following
equations.
(E1) S̄α,β = S̃α,β + Ŝα,β ;
(E2) D̄ = D̃ + D̂ − I , L̄ = L̃, Ū = Û , L̂ = L, Ũ = U ;
(E3) D̃− L̃ = I + S̃α,β −L− S̃α,βU , D̂− Û = I + Ŝα,β −
U − Ŝα,βL;
(E4) S̃α,βL = 0, Ŝα,βU = 0, S̃α,βL̃ = 0, Ŝα,βÛ = 0;
(E5) D̄− Ū = D̃+ Ŝα,β−U − Ŝα,βL, D̄− L̄ = D̂+ S̃α,β−
L− S̃α,βU ;
(E6) U = Û − Ŝα,βL+ Ŝα,β + Ŝα,βS11, L = L̃− S̃α,βU +
S̃α,β + S̃α,βS22, where

S11 =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
−an1 0 · · · 0

 , S22 =


0 0 · · · −a1n
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ;

(E7) D1 = I − D́1, L1 = L + Ĺ1, U1 = U − S1 + S1U ,
S1L = D́1 + Ĺ1, where D́1 and Ĺ1 are diagonal, strictly
lower triangular matrices of S1L;
(E8) D∗

1 = I − D́1 − D̀1 = D1 − D̀1, L∗
1 = L + Ĺ1 = L1,

U∗
1 = U − S1 + S1U + Ù1 − S̃∗ = U1 + Ù1 − S̃∗,

S̃∗L = D̀1 + Ù1, where D̀1 and Ù1 are diagonal, strictly
upper triangular matrices of S̃∗L;
(E9) D2 = I − D́2, L2 = L − S2 + S2L, U2 = U + Ú2,
S2U = D́2 + Ú2, where D́2 and Ú2 are diagonal, strictly
upper triangular matrices of S2U ;
(E10) D∗

2 = I − D́2 − D̀2 = D2 − D̀2,
L∗
2 = L − S2 + S2L − Ŝ∗ + L̀2 = L2 − Ŝ∗ + L̀2,

U∗
2 = U + Ú2 = U2, Ŝ∗U = D̀2 + L̀2, where D̀2 and L̀2

are diagonal, strictly lower triangular matrices of Ŝ∗L.

We first compare the covergence rate of the preconditioned
AOR method defined by Equation (11) with that of the
preconditioned AOR method defined by Equation (6).

Lemma 3.1 Let A = (aij)n×n be an L-matrix with 0 <
a1nan1 < α1(α1 > 1), β1 ∈ (−an1

α1
+ 1

a1n
,−an1

α1
)
⋂

((1 −
1
α1

)an1,−an1

α1
) and 0 ≤ r ≤ w ≤ 1(w 6= 0, r 6= 1). x̃ =

(x̃1, x̃2, · · · , x̃n)T > 0 be the positive Perron vector of L̃r,w
with respect to its spectral radius λ̃ = ρ(L̃r,w). Then

(w − 1 + λ̃)x̃1 + w
n∑
j=2

a1j x̃j = 0. (17)

Proof. Since L̃r,wx̃ = λ̃x̃, we have

[(1− w)D̃ + (w − r)L̃+ wŨ ]x̃ = λ̃(D̃ − rL̃)x̃. (18)

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_10

(Advance online publication: 14 May 2016)

 
______________________________________________________________________________________ 



Consider the first entry of (18), we have (1 − w)x̃1 −
w

n∑
j=2

a1j x̃j = λ̃x̃1, i.e.,

(w − 1 + λ̃)x̃1 + w
n∑
j=2

a1j x̃j = 0.

Theorem 3.1 Let L̃r,w and L̄r,w be the iteration ma-
trices of the AOR method given by (6) and (11), respec-
tively. If 0 ≤ r ≤ w ≤ 1(w 6= 0 and r 6= 1)
and A is an irreducible L-matrix with 0 < a1nan1 <
α1(α1 > 1), 0 < a1nan1 < α2(α2 > 1) and β1 ∈
(−an1

α1
+ 1

a1n
,−an1

α1
)
⋂

((1− 1
α1

)an1,−an1

α1
), β2 ∈ (−a1nα2

+
1
an1

,−a1nα2
)
⋂

((1− 1
α2

)a1n,−a1nα1
), then

(i) ρ(L̄r,w) < ρ(L̃r,w) < ρ(Lr,w) < 1, if ρ(Lr,w) < 1;
(ii) ρ(L̄r,w) = ρ(L̃r,w) = ρ(Lr,w) = 1, if ρ(Lr,w) = 1;
(iii) ρ(L̄r,w) > ρ(L̃r,w) > ρ(Lr,w) > 1, if ρ(Lr,w) > 1.
Proof. By Lemma 2.3 and Lemma 3 in [6], it is clear that
the iteration matrices L̄r,w and L̃r,w are nonnegative and
irreducible. So there is a positive Perron vector x̃, such that

L̃r,wx̃ = λ̃x̃, (19)

where λ̃ = ρ(L̃r,w). By Equations (18) and (E2), we have

wUx̃ = wŨx̃ = (λ̃− 1 + w)D̃x̃+ (r − w − λ̃r)L̃x̃. (20)

Combining (19) with (20) results in

L̄r,wx̃− λ̃x̃
= (D̄ − rL̄)−1[(1− w)D̄ + (w − r)L̄+ wŪ − λ̃(D̄ − rL̄)]x̃

= (D̄ − rL̄)−1[(1− λ̃)D̄ − r(1− λ̃)L̄− w(D̄ − Ū) + wL̄]x̃

= (D̄ − rL̄)−1[(1− λ̃)D̄ − r(1− λ̃)L̄−
w(D̃ + Ŝα,β − U − Ŝα,βL) + wL̄]x̃

= (D̄ − rL̄)−1[(1− λ̃)D̄ − r(1− λ̃)L̄−
w(D̃ + Ŝα,β − Ŝα,βL) + wL̄

+(λ̃− 1 + w)D̃ + (r − w − λ̃r)L̃]x̃

= (D̄ − rL̄)−1[(1− λ̃)D̄ +

(λ̃− 1)D̃ + (w − r + λ̃r)(L̄− L̃)− w(Ŝα,β − Ŝα,βL)]x̃

= (D̄ − rL̄)−1[(1− λ̃)(D̄ − D̃)− w(Ŝα,β − Ŝα,βL)]x̃

= (D̄ − rL̄)−1[(1− λ̃)(D̄ − D̃)− wŜα,β +

wŜα,β(L̃− S̃α,βU + S̃α,β + S̃α,βS22)]x̃.

According to Equation (18), we derive L̃x̃ = 1
w−r+λ̃r [(λ̃ −

1 + w)D̃ − wŨ ]x̃. Thus

L̄r,wx̃− λ̃x̃
= (D̄ − rL̄)−1[(1− λ̃)(D̄ − D̃)− wŜα,β

+wŜα,β(L̃− S̃α,βU + S̃α,β + S̃α,βS22)]x̃

= (D̄ − rL̄)−1[(1− λ̃)(D̄ − D̃)− wŜα,β
+wŜα,βL̃+ wŜα,β(S̃α,βS22 + S̃α,β − S̃α,βU)]x̃

= (D̄ − rL̄)−1[(1− λ̃)(D̄ − D̃)− wŜα,β
+

w

w − r + λ̃r
Ŝα,β [(λ̃− 1 + w)D̃ − wŨ ]

+wŜα,β(S̃α,βS22 + S̃α,β − S̃α,βU)]x̃

= (D̄ − rL̄)−1[(1− λ̃)(D̄ − D̃)− wŜα,β

+
w(λ̃− 1 + w)

w − r + λ̃r
Ŝα,βD̃

+wŜα,β(S̃α,βS22 + S̃α,β − S̃α,βU)]x̃

= (D̄ − rL̄)−1[(1− λ̃)(D̄ − D̃)

+wŜα,β(S̃α,βS22 + S̃α,β − S̃α,βU − I)

+
w(λ̃− 1 + w)

w − r + λ̃r
Ŝα,βD̃]x̃ = (D̄ − rL̄)−1Cx̃, (21)

where C = (1 − λ̃)(D̄ − D̃) + wŜα,β(S̃α,βS22 + S̃α,β −
S̃α,βU − I) + w(λ̃−1+w)

w−r+λ̃r Ŝα,βD̃. Let C = (cij)n×n, then the
matrix C satisfies the following properties:

c11 = w(
a1n
α2

+ β2)(
an1
α1

+ β1)− (1− λ̃)(
a1n
α2

+ β2)an1,

c1j = w(
a1n
α2

+ β2)(
an1
α1

+ β1)a1j , (j = 2, 3, · · · , n− 1),

c1n = w(
a1n
α2

+ β2)− w(λ̃− 1 + w)

w − r + λ̃r
×

(
a1n
α2

+ β2)[1− (
an1
α1

+ β1)a1n],

cij = 0, (i = 2, 3, · · · , n, j = 1, 2, · · · , n).

By Lemma 3.1, we have (w − 1 + λ̃)x̃1 +w
n∑
j=2

a1j x̃j = 0,

so we get

(w − 1 + λ̃)(
a1n
α2

+ β2)(
an1
α1

+ β1)x̃1

+w

n∑
j=2

(
a1n
α2

+ β2)(
an1
α1

+ β1)a1j x̃j = 0.

Further, we have

(Cx̃)1 = c11x̃1 +
n−1∑
j=2

c1j x̃j + c1nx̃n

=w(
a1n
α2

+ β2)(
an1
α1

+ β1)x̃1 − (1− λ̃)(
a1n
α2

+ β2)an1x̃1

+w
n−1∑
j=2

(
a1n
α2

+ β2)(
an1
α1

+ β1)a1j x̃j + w(
a1n
α2

+ β2)x̃n

−w(λ̃− 1 + w)

w − r + λ̃r
(
a1n
α2

+ β2)[1− (
an1
α1

+ β1)a1n]x̃n

−(w − 1 + λ̃)(
a1n
α2

+ β2)(
an1
α1

+ β1)x̃1

−w
n∑
j=2

(
a1n
α2

+ β2)(
an1
α1

+ β1)a1j x̃j

= (λ̃− 1)(
a1n
α2

+ β2)[(1− 1

α1
)an1 − β1]x̃1

+
w(1− λ̃)(1− r)
w − r + λ̃r

(
a1n
α2

+ β2)[1− (
an1
α1

+ β1)a1n]x̃n

= (λ̃− 1){(a1n
α2

+ β2)[(1− 1

α1
)an1 − β1]x̃1

− w(1− r)
w − r + λ̃r

(
a1n
α2

+ β2)[1− (
an1
α1

+ β1)a1n]x̃n}

= (λ̃− 1)e, (22)

where e = (a1nα2
+ β2)[(1 − 1

α1
)an1 − β1]x̃1 −

w(1−r)
w−r+λ̃r (a1nα2

+ β2)[1 − (an1

α1
+ β1)a1n]x̃n. Since β1 ∈

(−an1

α1
+ 1

a1n
,−an1

α1
)
⋂

((1− 1
α1

)an1,−an1

α1
), β2 ∈ (−a1nα2

+
1
an1

,−a1nα2
)
⋂

((1 − 1
α2

)a1n,−a1nα1
), we have a1n

α2
+ β2 <

0, (1− 1
α1

)an1 − β1 < 0, 1− (an1

α1
+ β1)a1n > 0.

Thus, by conditions 0 ≤ r ≤ w ≤ 1(w 6= 0, r 6= 1), we
have e > 0. Moreover, by Lemma 2.3, we can obtain that
D̄ is a positive diagonal matrix and L̄ ≥ 0, then by Lemma
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2.6, we obtain that D̄−rL̄ is a nonsingular M -matrix, so by
Lemma 2.7 we have (D̄−rL̄)−1 ≥ 0 and ((D̄−rL̄)−1)ii > 0
for i = 1, 2, · · · , n, so we have

(i) If 0 < λ = ρ(Lr,w) < 1, by Theorem 1 in [6], we have
0 < λ̃ < λ < 1, then (Cx̃)1 < 0, so, we have L̄r,wx̃−λ̃x̃ ≤ 0
but is not equal to the null vector. Therefore L̄r,wx̃ ≤ λ̃x̃.
By Lemma 2.2, we get ρ(L̄r,w) < ρ(L̃r,w) < ρ(Lr,w) < 1;

(ii) If λ = ρ(Lr,w) = 1, by Theorem 1 in [6], we have λ̃ =
λ = 1, then (Cx̃)1 = 0, so, we have L̄r,wx̃ − λ̃x̃ = 0, i.e.,
L̄r,wx̃ = λ̃x̃. By Lemma 2.2, we get ρ(L̄r,w) = ρ(L̃r,w) =
ρ(Lr,w) = 1;

(iii) If λ = ρ(Lr,w) > 1, by Theorem 1 in [6], we have
λ̃ > λ > 1, then (Cx̃)1 > 0, so, we have L̄r,wx̃ − λ̃x̃ ≥ 0
but is not equal to the null vector. Therefore L̄r,wx̃ ≥ λ̃x̃.
By Lemma 2.2, we get ρ(L̄r,w) > ρ(L̃r,w) > ρ(Lr,w) > 1.

From Theorem 3.1, it can be seen that the rate of conver-
gence of the preconditioned AOR method defined by (11) is
better than that of the preconditioned AOR method defined
by (6) under some conditions whenever the latter one is
convergent.

We next compare the covergence rate of the preconditioned
AOR method defined by Equation (12) with that of the
preconditioned AOR method defined by Equation (7).

Theorem 3.2 Let A = (aij)n×n be an L-matrix with
αiai,i+1ai+1,i < 1 and 0 ≤ αi < 1 for all 1 ≤ i ≤ n− 1.
Assume that αiai,i+1 6= 0 for some i < n and a1n 6= 0,
0 < αn < min{ 1−α1a12a21

a1nan1
, 1− α1a12a2n

a1n
}. If 0 ≤ r ≤ w ≤

1(w 6= 0 and r 6= 1), then the following holds.
(a) ρ(L∗

1,r,w) < ρ(L1,r,w) < ρ(Lr,w), if ρ(Lr,w) < 1;
(b) ρ(L∗

1,r,w) = ρ(L1,r,w) = ρ(Lr,w), if ρ(Lr,w) = 1;
(c) ρ(L∗

1,r,w) > ρ(L1,r,w) > ρ(Lr,w), if ρ(Lr,w) > 1.
Proof. By Lemma 2.4 and Theorem 3.4 in [8], it is clear
that the matrices L1,r,w and L∗

1,r,w are nonnegative and
irreducible. So there is a positive Perron vector x1, such that

L1,r,wx1 = λ1x1, (23)

where λ1 = ρ(L1,r,w). In view of Equation (23), we have

[(1 − w)D1 + (w − r)L1 + wU1]x1 = λ1(D1 − rL1)x1, (24)

i.e.,

[(1− w − λ1)D1 + (w − r + λ1r)L1 + wU1]x1 = 0. (25)

Using Equations (E7), (E8), (12) and (25), we obtain

L∗
1,r,wx1 − λ1x1

= (D∗
1 − rL∗

1)−1[(1− w)D∗
1 + (w − r)L∗

1 + wU∗
1

−λ1(D∗
1 − rL∗

1)]x1

= (D∗
1 − rL∗

1)−1[(1− w − λ1)D∗
1

+(w − r + λ1r)L
∗
1 + wU∗

1 ]x1

= (D∗
1 − rL∗

1)−1[(1− w − λ1)(D1 − D̀1)

+(w − r + λ1r)L1 + w(U1 + Ù1 − S̃∗)]x1

= (D∗
1 − rL∗

1)−1[(λ1 − 1 + w)D̀1 + w(Ù1 − S̃∗)]x1

= (D∗
1 − rL∗

1)−1[(λ1 − 1)D̀1 + w(D̀1 + Ù1 − S̃∗)]x1

= (D∗
1 − rL∗

1)−1[(λ1 − 1)D̀1 + w(S̃∗L− S̃∗)]x1

= (D∗
1 − rL∗

1)−1[(λ1 − 1)D̀1 + wS̃∗(L− I)]x1.

Notice that S̃∗L = S̃∗L1, S̃
∗ = S̃∗I = S̃∗D1, S̃

∗U1 = 0,
and by Equation (24), we have

w(L1 + U1 −D1)x1 = (λ1 − 1)(D1 − rL1)x1, (26)

which implies that

wS̃∗(L− I)x1 = wS̃∗(L1 + U1 −D1)x1

= (λ1 − 1)S̃∗(D1 − rL1)x1.

Then, we have

L∗
1,r,wx1 − λ1x1

= (D∗
1 − rL∗

1)−1[(λ1 − 1)D̀1 + wS̃∗(L− I)]x1

= (D∗
1 − rL∗

1)−1[(λ1 − 1)D̀1 + (λ1 − 1)S̃∗(D1 − rL1)]x1

= (λ1 − 1)(D∗
1 − rL∗

1)−1[D̀1 + S̃∗(D1 − rL1)]x1. (27)

By Equation (24) and 0 ≤ r ≤ w ≤ 1(w 6= 0, r 6= 1), we
have

(D1 − rL1)x1

=
1

λ1
[(1− w)D1 + (w − r)L1 + wU1]x1 ≥ 0. (28)

From Theorem 3.4 in [8], we get A1 is irreducible, so 1
λ1

[(1−
w)D1 + (w − r)L1 + wU1]x1 6= 0. If the n-th entry of
1
λ1

[(1−w)D1 + (w− r)L1 +wU1]x1 is a positive number,
it is easy to get

S̃∗(D1 − rL1)x1

=
1

λ1
S̃∗[(1− w)D1 + (w − r)L1 + wU1]x1 ≥ 0,

S̃∗(D1 − rL1)x1

=
1

λ1
S̃∗[(1− w)D1 + (w − r)L1 + wU1]x1 6= 0.

If w = 1, the n-th entry of (w−r)L1x1 is a positive number
because of r 6= 0; In addition, if w = r, the n-th entry of
(1 − w)D1 is 1 − w > 0 because of w = r 6= 1. Under
the above discussions and D̀1 ≥ 0, we obtain that [D̀1 +
S̃∗(D1 − rL1)]x1 ≥ 0, [D̀1 + S̃∗(D1 − rL1)]x1 6= 0. By
Lemma 2.4, we know that D∗

1 is a positive diagonal matrix
and L∗

1 ≥ 0, then by Lemma 2.6 we obtain that (D∗
1 −

rL∗
1) is a nonsingular M -matrix, so by Lemma 2.7 we have

(D∗
1 − rL∗

1)−1 ≥ 0 and ((D∗
1 − rL∗

1)−1)11 > 0, then (D∗
1 −

rL∗
1)−1[D̀1 + S̃∗(D1 − rL1)]x1 ≥ 0, (D∗

1 − rL∗
1)−1[D̀1 +

S̃∗(D1 − rL1)]x1 6= 0.
(a) If 0 < λ = ρ(Lr,w) < 1, by Theorem 3.4 in

[8], we have 0 < λ1 < λ < 1, by Equation (27), we
have L∗

1,r,wx1 − λ1x1 ≤ 0 but is not equal to the null
vector. Therefore L∗

1,r,wx1 ≤ λ1x1. By Lemma 2.2, we get
ρ(L∗

1,r,w) < ρ(L1,r,w) < ρ(Lr,w) < 1;
(b) If λ = ρ(Lr,w) = 1, by Theorem 3.4 in [8], we have

λ1 = λ = 1, by Equation (27), we have L∗
1,r,wx1−λ1x1 = 0,

i.e., L∗
1,r,wx1 = λ1x1. By Lemma 2.2, we get ρ(L∗

1,r,w) =
ρ(L1,r,w) = ρ(Lr,w) = 1;

(c) If λ = ρ(Lr,w) > 1, by Theorem 3.4 in [8], we have
λ1 > λ > 1, by Equation (27), we have L∗

1,r,wx1−λ1x1 ≥ 0
but is not equal to the null vector. Therefore L∗

1,r,wx1 ≥
λ1x1. By Lemma 2.2, we get ρ(L∗

1,r,w) > ρ(L1,r,w) >
ρ(Lr,w) > 1.

Finally, We prove that the following comparison theorem
for the preconditioned AOR method defined by Equation (13)
with that defined by Equation (8).

Theorem 3.3 Let A = (aij)n×n be an L-matrix with
0 < βiai,i−1ai−1,i < 1, βiai,i−1 6= 0 and 0 < βi ≤ 1
for 2 ≤ i ≤ n. Assume that an1 6= 0, 0 < β1 <
min{ 1−βnan,n−1an−1,n

a1nan1
, 1− βnan,n−1an−1,1

an1
}. If 0 ≤ r ≤ w ≤
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1(w 6= 0 and r 6= 1), then the following holds.
(a) ρ(L∗

2,r,w) < ρ(L2,r,w) < ρ(Lr,w), if ρ(Lr,w) < 1;
(b) ρ(L∗

2,r,w) = ρ(L2,r,w) = ρ(Lr,w), if ρ(Lr,w) = 1;
(c) ρ(L∗

2,r,w) > ρ(L2,r,w) > ρ(Lr,w), if ρ(Lr,w) > 1.
Proof. By Lemma 2.5 and Theorem 3.1 in [9], it is clear
that the matrices L2,r,w and L∗

2,r,w are nonnegative and
irreducible. So there is a positive Perron vector x2, such that

L2,r,wx2 = λ2x2, (29)

where λ2 = ρ(L2,r,w). By Equation (29), we have [(1 −
w)D2 + (w − r)L2 + wU2]x2 = λ2(D2 − rL2)x2, i.e.,

[(1− w − λ2)D2 + (w − r + λ2r)L2 + wU2]x2 = 0. (30)

Using Equations (E9), (E10), (13) and (30), we obtain

L∗
1,r,wx2 − λ2x2

= (D∗
2 − rL∗

2)−1[(1− w)D∗
2 + (w − r)L∗

2 + wU∗
2

−λ2(D∗
2 − rL∗

2)]x2

= (D∗
2 − rL∗

2)−1[(1− w − λ2)D∗
2

+(w − r + λ2r)L
∗
2 + wU∗

2 ]x2

= (D∗
2 − rL∗

2)−1[(1− w − λ2)(D2 − D̀2)

+(w − r + λ2r)(L2 − Ŝ∗ + L̀2) + wU2]x2

= (D∗
2 − rL∗

2)−1[(λ2 − 1 + w)D̀2

+(w − r + λ2r)(L̀2 − Ŝ∗)]x2

= (D∗
2 − rL∗

2)−1[(λ2 − 1)D̀2 + r(λ2 − 1)(L̀2 − Ŝ∗)

+w(D̀2 + L̀2 − Ŝ∗)]x2

= (D∗
2 − rL∗

2)−1[(λ2 − 1)D̀2 + r(λ2 − 1)(L̀2 − Ŝ∗)

+w(Ŝ∗U − Ŝ∗)]x2

= (D∗
2 − rL∗

2)−1[(λ2 − 1)D̀2 + r(λ2 − 1)(L̀2 − Ŝ∗)

+wŜ∗(U − I)]x2.

Notice that Ŝ∗U = Ŝ∗U2, Ŝ
∗ = Ŝ∗I = Ŝ∗D2, Ŝ

∗L2 = 0,
and by Equation (30), we have w(L2 +U2−D2)x2 = (λ2−
1)(D2 − rL2)x2, which yields that

wŜ∗(U − I)x2 = wŜ∗(L2 + U2 −D2)x2

= (λ2 − 1)Ŝ∗(D2 − rL2)x2.

Then, we have

L∗
2,r,wx2 − λ2x2

= (D∗
2 − rL∗

2)−1[(λ2 − 1)D̀2 + r(λ2 − 1)(L̀2 − Ŝ∗)

+wŜ∗(U − I)]x2

= (D∗
2 − rL∗

2)−1[(λ2 − 1)D̀2 + r(λ2 − 1)(L̀2 − Ŝ∗)

+(λ2 − 1)Ŝ∗(D2 − rL2)]x2

= (λ2 − 1)(D∗
2 − rL∗

2)−1[D̀2 + r(L̀2 − Ŝ∗)

+Ŝ∗(D2 − rL2)]x2

= (λ2 − 1)(D∗
2 − rL∗

2)−1[D̀2 + r(L̀2 − Ŝ∗) + Ŝ∗D2]x2

= (λ2 − 1)(D∗
2 − rL∗

2)−1[D̀2 + r(L̀2 − Ŝ∗) + Ŝ∗]x2

= (λ2 − 1)(D∗
2 − rL∗

2)−1[D̀2 + rL̀2 + (1− r)Ŝ∗]x2.(31)

Since Ŝ∗ ≥ 0 and Ŝ∗ 6= 0, D̀2 ≥ 0, L̀2 ≥ 0, 0 ≤ r ≤ w ≤
1(w 6= 0, r 6= 1), [D̀2 + rL̀2 + (1 − r)Ŝ∗]x2 ≥ 0, [D̀2 +
rL̀2 + (1− r)Ŝ∗]x2 6= 0. By Lemma 2.5 and similar to the
proof of Lemma 2.4, we can obtain that D∗

2 is a positive
diagonal matrix and L∗

2 ≥ 0, then by Lemma 2.6, we obtain
that (D∗

2−rL∗
2) is a nonsingular M -matrix, so by Lemma 2.7

we have (D∗
2 − rL∗

2)−1 ≥ 0 and ((D∗
2 − rL∗

2)−1)ii > 0 for
i = 1, 2, · · · , n, so we have (D∗

2 − rL∗
2)−1[D̀2 + rL̀2 + (1−

r)Ŝ∗]x2 ≥ 0, (D∗
2 − rL∗

2)−1[D̀2 + rL̀2 + (1− r)Ŝ∗]x2 6= 0.
(a) If 0 < λ < 1, by Theorem 3.1 in [9], we have λ2 <

λ < 1, by Equation (31), we have L∗
2,r,wx2−λ2x2 ≤ 0 but is

not equal to the null vector. Therefore L∗
2,r,wx2 ≤ λ2x2. By

Lemma 2.2, we get ρ(L∗
2,r,w) < ρ(L2,r,w) < ρ(Lr,w) < 1;

(b) If λ = ρ(Lr,w) = 1, by Theorem 3.1 in [9], we have
λ2 = λ = 1, by Equation (31), we have L∗

2,r,wx2 = λ2x2. By
Lemma 2.2, we get ρ(L∗

2,r,w) = ρ(L2,r,w) = ρ(Lr,w) = 1;
(c) If λ = ρ(Lr,w) > 1, by Theorem 3.1 in [9], we have

λ2 > λ > 1, by Equation (31), we have L∗
2,r,wx2−λ2x2 ≥ 0

but is not equal to the null vector. Therefore L∗
2,r,wx2 ≥

λ2x2. By Lemma 2.2, we get ρ(L∗
2,r,w) > ρ(L2,r,w) >

ρ(Lr,w) > 1.
From Theorems 3.2-3.3, it can be seen that the rates of

convergence of the preconditioned AOR methods defined by
(12) and (13) are better than those defined by (7) and (8)
under some conditions, respectively, whenever the latter ones
are convergent.

IV. NUMERICAL EXAMPLES

In this section, we provide numerical experiments to
illustrate the theoretical results in Section III.

Example 4.1 This example is a numerical example intro-
duced in [6]. The coefficient matrix A of (1) is given by:

A =


1 − 1

n×1100
··· − 1

3×1100
− 1

22

− 1
n×10+1

1 ··· − 1
(n−1)×10+2

− 1
n×10+2

...
... ···

...
...

− 1
3×10+1

− 1
(n−2)×10+(n−1)

··· 1 − 1
n×10+(n−1)

− 100
7

− 1
(n−1)×10+n

··· − 1
2×10+n

1

 .

Table I displays the spectral radii of the corresponding
iteration matrices with some randomly chosen parameters w,
r, α1, α2, β1, β2, and parameters α1, α2, β1, β2 satisfy the
conditions of Theorem 3.1, where ρ = ρ(Lr,w), ρ̃ = ρ(L̃r,w),
ρ̄ = ρ(L̄r,w). All numerical experiments were carried out
using Matlab 6.5 with α1 = α2.

TABLE I
SPECTRAL RADII OF THE AOR AND PRECONDITIONED AOR ITERATION

MATRICES

n w r α1 = α2 β1 β2 ρ ρ̃ ρ̄

10 0.9 0.85 100 -14.142857 -0.0449 0.7250 0.1698 0.1681
15 0.9 0.8 100 -14.142857 -0.0449 0.7350 0.1905 0.1891
20 0.95 0.7 50 -13.999999 -0.0444 0.7387 0.1726 0.1711
30 0.95 0.85 200 -14.214285 -0.0451 0.7090 0.1584 0.1579

From Table I, it can be seen that ρ̄ < ρ̃ < ρ when ρ < 1.
These numerical results are in accordance with the theoretical
results in Theorem 3.1 (i).

Example 4.2 This example is a numerical example intro-
duced in [7] and [9]. The coefficient matrix A of (1) is given
by:

A =


1 −0.2 −0.3 −0.1 −0.2
−0.1 1 −0.1 −0.3 −0.1
−0.2 −0.1 1 −0.1 −0.2
−0.2 −0.1 −0.1 1 −0.3
−0.1 −0.2 −0.2 −0.1 1

 .

Table II and Table III display the spectral radii of the
corresponding iteration matrices with some randomly chosen
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parameters w, r, where ρ = ρ(Lr,w), ρ2 = ρ(L2,r,w), ρ∗2 =
ρ(L∗

2,r,w). All numerical experiments were carried out using
Matlab 6.5 with β1 = 1, β2 = 0.1, β3 = 0.2, β4 = 0.1,
β5 = 0.3 in Table II and β1 = 1.1, β2 = 1, β3 = 1, β4 = 1,
β5 = 1 in Table III, respectively.

TABLE II
SPECTRAL RADII OF THE AOR AND PRECONDITIONED AOR ITERATION

MATRICES

w r ρ ρ2 ρ∗2

1 0 0.6551 0.6480 0.6370
0.2 0.1 0.9288 0.9274 0.9251
0.3 0.2 0.8896 0.8876 0.8839
0.6 0.5 0.7531 0.7495 0.7408
0.6 0.6 0.7423 0.7389 0.7295
0.8 0.7 0.6400 0.6358 0.6223
0.9 0.5 0.6297 0.6242 0.6112

From Tables II-III, it can be seen that ρ∗2 < ρ2 < ρ when
ρ < 1. These results are in accordance with the theoretical
results in Theorem 3.3 (a).

TABLE III
SPECTRAL RADII OF THE AOR AND PRECONDITIONED AOR ITERATION

MATRICES

w r ρ ρ2 ρ∗2

1 0 0.6551 0.6205 0.6043
0.2 0.1 0.9288 0.9221 0.9187
0.3 0.2 0.8896 0.8798 0.8746
0.6 0.5 0.7531 0.7395 0.7241
0.6 0.6 0.7423 0.7262 0.7139
0.8 0.7 0.6400 0.6203 0.6030

Example 4.3 [10] The coefficient matrix A of (1) is given
by:

A =



1 q r s q · · ·

s 1 q r
. . . q

q s 1 q
. . . s

r q s 1
. . . r

s
. . . . . . . . . . . . q

· · · s r q s 1


,

where q = −p/n, r = −p/(n + 1), s = −p/(n + 2). For
n = 6 and p = 1, Table IV displays the spectral radii of the
corresponding iteration matrix with some randomly chosen
parameters w, r, where ρ = ρ(Lr,w), ρ1 = ρ(L1,r,w), ρ∗1 =
ρ(L∗

1,r,w). All numerical experiments were carried out using
Matlab 6.5 with α1 = 0.9, α2 = 0.9, α3 = 0.9, α4 = 0.9,
α5 = 1.

TABLE IV
SPECTRAL RADII OF THE AOR AND PRECONDITIONED AOR ITERATION

MATRICES

w r ρ ρ1 ρ∗1

0.9 0.8 0.6519 0.5849 0.5773
0.95 0.8 0.6325 0.5618 0.5538
0.8 0.7 0.7083 0.6554 0.6481
0.7 0.65 0.7517 0.7078 0.7012

From Table IV, it can be seen that ρ∗1 < ρ1 < ρ when
ρ < 1. These numerical results are in accordance with the
theoretical results in Theorem 3.2 (a).

V. CONCLUSIONS

In this paper, we proposed three new preconditioners and
studied the convergence rates of the new preconditioned
AOR methods for solving linear system (1). Comparison
results given in Section III show that the new preconditioned
AOR methods are better than those proposed by Wang et
al. [6], J. H. Yun [8] and A. J. Li [9] whenever these
methods are convergent. It can also be seen that all the
numerical examples given in Section IV are consistent with
the theoretical results given in Section III (Tables I-IV).

It would be nice if we can find optimal values of r and
w for which the convergence rate of the new preconditioned
AOR methods is best. Moreover, by these numerical exam-
ples, we found that the relations among ρ̄, ρ∗1, ρ∗2 are not only
related to the matrix, but also the seletion of parameters αi,
βi for i = 1, 2, · · · , n in the preconditioners P̄ , P ∗

1 and P ∗
2 .

And it is difficult and complicated to find the conditions.
Future work will include numerical or theoretical studies
for finding the optimal values of r and w and the optimal
parameters of αi, βi for i = 1, 2, · · · , n.
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