

Abstract—Degradation and shock are two common

mechanisms accounting for system failure. In this paper, we
assume that the system experiences both continuous smooth
degradation process and shock process, and the dependence of
them is that a higher degradation level will lead to a higher
probability of traumatic failure, which is caused by shock. After
system reliability model is obtained, a condition based
maintenance model is developed. The goal of the optimal
maintenance scheme is to minimize average long run cost rate
by properly choosing the preventive deterioration level and the
length of an inspection cycle. A numerical example is provided
to illustrate the application of the model, and the sensitivity
analysis about system parameters has been discussed .

Index Terms—Competing failure, degradation failure,
random shock, traumatic failure, condition based maintenance

I. INTRODUCTION
ITH the development of modern science and
manufacturing technology, there are more and more

products have the characters of high reliability. As a result, it
will cost too much of time or cost to fail a defective product
even under highly accelerate environments. In this case, if
there exits some quality characteristic that have correlation
with reliability, the reliability of a product can be analyzed by
the degradation data. There are several methods that can be
used to model the degradation data. Some of these models are
general degradation path models, Markov models, and
continuous-time stochastic processes.
The general degradation path model is a regression model

with random or fixed coefficients fitted to the degradation
observations. Both linear and nonlinear models are used to
model degradation. Lu and Meeker [1] introduced a nonlinear
mixed-effect model and used a two-stage method to obtain
the system reliability. Yuan and Pandey [2] developed an
advanced nonlinear mixed effect degradation model for
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unbalanced degradation inspection data. This model provided
improved degradation prediction by reducing the variance
associated with the degradation of each unit. Haghighi and
Nikulin [3] employed parametric and non-parametric
methods to estimate the survival function and its parameters
for a system with multiple conditionally independent failure
modes where the degradation path was in form of linear
multiplicative function.
Continuous-time models or continuous-time Markov

processes are helpful to model the continuous stochastic
degradation processes. Gamma processes, compound
Poisson processes, and Wiener processes are the typical
models of this type model. Lawless and Crowder [4]
developed a random effect gamma process with covariates to
capture the heterogeneity of the degradation path. Guo and
Tan [5] updated the parameter estimates of a gamma process
using the Bayesian approach. Wang [6] developed a
nonparametric method namely pseudo-likelihood to estimate
the unknown parameters of a non-stationary gamma process.
Barker and Newby [7] developed an optimal inspection

policy for a multi-component system where the degradation
path of each component was modeled by Wiener process.
Nicolai et al. [8] used three different stochastic models to
estimate the reliability of the organic coating systems
protecting steel structures, and compared them by different
criteria. Wang [9] modeled the degradation level of bridge
beams by a Wiener process with random drift and diffusion
parameters. He also used the maximum likelihood estimation
to estimate the associated parameters. Van Noortwijk [10]
introduced the successful maintenance applications of
gamma processes, the statistical properties of the gamma
process, methods for estimation, approximation, and
simulation of gamma processes were also reviewed.
Besides degradation process, shock is also an important

reason accounting for system failure. Many researchers have
focused on studying shock models. Esary and Marshall [11]
discussed the relation of the continuous life distribution and
the discrete failure distribution kP of not surviving the first
shock. Shanthikumar and Sumita [12] extended Poisson
shock to a general shock, and the reliability of the system was
obtained. Cha and Finkelstein [13] considered some new
classes of extreme shocks, and then the models survival
probabilities and some corollaries were obtained. Li and
Kong [14] generalized δ-shock model, the results of survival
function and some asymptotic properties were given.
Eryilmaz [15] developed a generalized run-related δ-shock

A Condition Based Maintenance for System
Subject to Competing Failure due to Degradation

and Shock

Wenping Huang, Jinglun Zhou, and Juhong Ning

w

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_12

(Advance online publication: 14 May 2016)

 
______________________________________________________________________________________ 



model in which the systems failed when the inter-arrival time
of k consecutive shocks was less than certain threshold δ.
There has also been a growing interest in considering the

maintenance optimization with dependent competing risks in
recent years. Klutke and Yang [16] studied the average
availability of maintained systems subject to shocks and
graceful degradation with hidden failures. Wang and Pham
[17] assumed that systems were subject to multiple
degradation processes and random shock process, the
dependence of different degradation process is fitted by the
copula method, and the time-varying technique is used to
modulate the relationship between the shock process and the
degradation processes. In order to give a more explicit
dependent relationship, Chen [18] used the degradation level
as a variable of the arrival rate function of the fatal shock, and
an inspection/replacement policy was discussed based on the
proposed model. Castro [19] developed a dependent
relationship for two competing failure models in which the
non-maintainable failure number affects the maintainable
failure rate. The optimal number of preventive maintenance
and the interval between successive preventive maintenance
are determined with the objective of minimizing the expected
cost rate. Zequeira and Bérenguer [20] studied the imperfect
maintenance policies with the consideration of two
competing failure modes, where the hazard rate of the
maintainable failure mode depended on the hazard rate of the
non-maintainable failure mode. Deloux et al. [21] considered
a system with two failure mechanisms due to an excessive
deterioration level and a shock. The optimal maintenance
strategy was studied in an approach that combined statistical
process control and condition-based maintenance. Peng et al.
[22] presented a preventive maintenance policy for systems
subjected to multiple competing failures where the external
random shock contributes to the internal degradation. More
discussion about condition based maintenance can be
reference as [23-25].
The dependence assumption of the above papers mainly

concentrates on the shock process increases the degradation
process. However, in many practical situations, the shock
process is affected by the degradation level. Huynh et al. [26]
considered this case on the assumption that the shock arrival
times were influenced by the degradation level. That is,
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Where ( ( ))X t is traumatic failure rates, 1( )t and 2 ( )t
denote two continuous and non-decreasing failure rates at
time t with 1 2( ) ( )t t  , sM represents a fixed deterioration
level. Then, a reliability model and condition based
maintenance model were discussed. Under the condition of
(1), ( ( ))X t was affected by the degradation level only at
the point of ( ) sX t M . However, in actual situation, the
shock arrival times generally are not affected by the
degradation level. When the system is subjected to a shock, it
is more prone to failure with the increasing of the system
degradation level. In this paper, under the assumption of the
above case, we develop the competing failure reliability
model and discuss the condition based maintenance

optimization.
The remainder of this paper is organized as follows. In

section II, we briefly introduce the system assumptions and
present the system reliability model of the dependent
competing failure, where degradation process is assumed the
gamma processes, and traumatic failure is adopted by the
shock processes. We then provide a condition based
maintenance model, and derive the minimal average long run
maintenance cost rate in section III. In section IV, an
illustrative example is provided to elaborate on the benefits of
our model.

II. RELIABILITYMODEL

A. System Assumption
In this paper, we consider a system subject to two

dependent failure processes. The following assumptions are
made. The rationale of each assumption is explained in the
corresponding sections.

1. We use the gamma process to model the degradation
process. When the degradation level exceeds the
failure threshold, the system is regarded as failure.
We call this kind of failure as degradation failure.

2. Random shock arrival process follows a
homogeneous Poisson process with arrival rate  .
The shock, may result in the system fails
immediately, We call this kind of failure as traumatic
failure, or it has no harm to the system.

3. The degradation process and random shock process
are dependent. For an arriving random shock, a
higher degradation level will lead to a higher
probability of traumatic failure.

4. The system is inspected periodically, in each
inspection time point, if the system fails, it will be
replaced with a new one. Otherwise, the degradation
level is measured, if the degradation level exceeds
some threshold M , the system will be replaced by a
new one; or the system will be run continuously
without any maintenance action until next periodical
inspection time.

5. If the system fails, it remains idle and no
maintenance actions are taken until next scheduled
inspection.

6. The measurement and replacement are assumed to be
instantaneous, perfect and non-destructive.

B. Modeling for Degradation Failure
In many practical engineer situations, the system

deterioration often possesses the characteristic of gradual
damage monotonically accumulating over time in a sequence
of tiny increments. In addition, temporal variability must be
taken into account during the system degradation process.
Gamma process is a stochastic process with independent
increments, and it is the best model for monotonic and gradual
deterioration process [27-29], so we use the gamma process to
model the degradation process.

Let ( )X t denote the degradation level of the gamma
process at time t with shape parameter  , scale parameter  ,
which has the following properties:

1) (0) 0X  with the probability one;
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2) ( )X t has independent increment;

3) ( ) ( ) ~ ( ( ), )X t X v Ga t v   for all 0t v  .

Where ( | ( ), )Ga x t v  is the gamma distribution, and the
probability density function is given by

( )
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( ), ( ) , 0
( ( ))

t v
t v x

t vf x x e x
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where 1

0
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     .the expectation of the gamma

process is ( ( ))E X t 


 , and its variance is 2Var( ( ))X t 


 .

For ( )X t is continuous and monotonically, the system
fails if ( )X t exceeds the threshold L . Let dT be the failure
time of degradation process, the lifetime distribution only
considering with degradation process can then be given by

,
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function for 0x  and 0  .
The probability density function of the dT is
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where ( )  is the derivative of the logarithm of the gamma
function

( ) log ( )( )
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The reliability function of the system only considering the
degradation process is

( , )( ) 1 ( ) 1
( )d d
t LR t F t
t

 



   


. (5)

C. Modeling for Traumatic Failures
In engineering applications, shock is common cause of

products failure when the products are under the
environments of external shock, which has been
extensively studied by many authors. In the literatures,
random shock models are mainly classified by six
categories [30].
The degradation process and shock process are dependent .

However, Most of the proposed models assume that the
shock process is independent of the degradation process. In
practical situations, with the degradation process, the higher
the degradation level, the more the system is vulnerable to the
shocks.

In this paper, we assume that the shock arrival process
follows a homogeneous Poisson process with arrival rate  ,
let ( )N t denote the number of random shocks that have
arrived by time t. According to the stochastic process theory,
we have follow expression

 
( ( ) ) , 0,1, 2,

!

nte t
P N t n n

n

 

    .

According to the assumption 2, when there is the arriving of
a random shock, it will make system fail immediately or no
effect on system. Let ( )p t denote the probability of each
random shock causes the system fail at time t. it is clearly that
( )p t is increasing with the degradation level raising. That is,

the ( )p t is affected by the degradation level ( )X t , so we use
( ( ))p X t to denote the traumatic failure probability under the

condition of degradation level ( )X t . We assume that
( ( )) 1 exp( ( ))p X t b ax t   , where ( )X t is the system

degradation level at time t, ,a b are constant coefficients with
0a  , 0 1b  , which can be determined by the analysis of

the system failure physics or the experiment.
We then let 1( )N t denote the number of random shock that

cause the system traumatic failure at time t, 2 ( )N t denote the
number of random shock that have no effect on the system at
time t. Based on the decomposition theory of Poisson process
[31], the two processes are independent homogeneous Poisson
process, ( ( ))p x t and (1 ( ( )))p x t  are their arrival rate
respectively.
Let tT be the traumatic failure time, the reliability function

of a system is only subject to the extreme shock process can be
derived as

 

,0

1
10

1

0 0

( )

( | ( ) ) ( )

( ( ) 0 ( ) )
( )

exp ( )
( )

t

t t

t
t x

tt t x

R t

P T t X t x f x dx

P N t X t x x e dx
t

p x wdw x e dx
t

 


 


 









  

  

  

  


 






 

  1

0 0
exp (1 exp( ))

( )

tt t xb ax wdw x e dx
t


 


     

  . (6)

The lifetime distribution function of the system only
considering the random shock process is

  1

0 0
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1 exp (1 exp( ))
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.(7)

D. System Reliability Model
When the fatal shock arrives or the degradation level is

beyond the threshold L , the system fails immediately.
Denote by min{ , }s d tT T T the system failure time. Then the
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system reliability function is

1
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Applying (2) and (6), we have
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When the system degradation level exceeds the failure
threshold L, but no fatal shock happens until time t, the
degradation failure happens. In this case, the failure
probability distribution is given by
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Another special case of the problem under study is when
there is a fatal shock, but the system degradation level stays
below the failure threshold L until time t. In this case, the
failure probability distribution is given by

0
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III. MAINTENANCEMODEL AND OPTIMIZATION
Fig. 1 illustrates a sample behavior of the condition based

maintenance model. In the figure, the system degradation
level exceeds degradation failure threshold L in the fourth
inspection cycle, then it is acted by corrective maintenance.
The system fails due to the random shock in the sixth
inspection cycle. The system is replaced for its degradation
level exceeds the preventive maintenance threshold M
although it is not exceeds the degradation failure threshold L
in the ninth inspection cycle, the rest of other 6 inspection
cycle is adopted no any action to the system.
There are many optimal maintenance policies, such as the

minimal average long run maintenance cost rate, the maximal
system availability and the maximal mean residual life etc
[32]. In this paper, we use the average long run maintenance
cost rate model.
We define a replacement cycle as the time interval

between two consecutive replacements, which is denoted by
r . Let ( )C t be the cumulative maintenance cost until time t .
Based on the renewal theory [33], we have the average long
run maintenance cost rate as

( ) ( )
lim

( )t
r

C t E TC
t E 

 ,

where ( )E TC is expected maintenance cost incurred in a
replacement cycle, ( )rE  is the expected length of a
replacement cycle.
The optimal objective of maintenance model is to

minimize the average long run maintenance cost rate, which
is determined by the decision variables periodic interval T
and the preventive maintenance threshold M .
The maintenance cost in a replacement cycle includes the

replacement cost, inspection cost and the cost due to the
system idle during the system failure period. In addition, we
assume that the cost of preventive replacement and the cost of
corrective replacement are different. Then the expected
maintenance costs incurred in a cycle can be expressed as

( ) [ ] [ ]p p c c d r iE TC C P C P C E W C E R    , (11)

where pC is the cost of a preventive replacement; cC is the
cost of a corrective replacement; dC is the unit cost of system
inactivity; iC is the cost of each inspection; pP is the
probability of a preventive replacement in a replacement
cycle; cP is the probability of a corrective replacement in a
replacement cycle. [ ]rE W is the expected system down time
in a replacement cycle; [ ]E R is the expected inspection
number in a replacement cycle.
For the complexity of the derivation ( )E TC and ( )rE  , in

the following subsections, we first calculate the preventive
maintenance probability pP and according corrective

maintenance probability cP , expected down time [ ]rE W and
expected length of a replacement cycle respectively.

Fig. 1. Condition based maintenance model for the competing failure.
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A. Preventive Maintenance Probability
Just as shown in Fig 1, the preventive maintenance action

can only be taken in scheduled inspection time point kT. Let
(( 1) )pP k T denote the preventive maintenance probability

of the (k+1)th (k=0,1,2,…) inspection cycle,
As the preventive maintenance probability pP is the sum

of the different inspection cycle preventive maintenance
probability (( 1) )pP k T , so we have

0
(( 1) )p p

k
P P k T





  . (12)

Now, we turn to analyze the expression of (( 1) )pP k T .
We define the event (( 1) )A k T as

 1(( 1) ) ( ) , (( 1) ) , (( 1) ) 0A k T X kT M M X k T L N k T       

Then, we can see that the preventive maintenance action is
taken in the (k+1)th inspection cycle only and if only the
event (( 1) )A k T occurs. So can get (( 1) )pP k T as

1

1

(( 1) )
( ( 1) )
( ( ) , ( 1) , ( 1) 0)
( ( 1) , ( 1) 0 | ( ) )
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Applying (2) and (6), we have
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(13)

Then, equation (13) can be derived by the equation (12)
directly.

B. Corrective Maintenance Probability
A corrective maintenance is performed at time (k+1)T as

the system fails in (k+1)th inspection cycle. That is, the
system suffers from fatal shock or the system degradation
level first time exceeds the degradation failure threshold L in
the time intervals [kT, (k+1)T], but there is no fatal shock
before time kT and the degradation level is below M at
inspection time kT. We can express the event as following
two mutually exclusive events

 1 1(( 1) ) ( ) , ( ) 0, (( 1) ) 0B k T X kT M N kT N k T      ,

and

 1(( 1) ) ( ) , (( 1) ) , (( 1) ) 0C k T X kT M X k T L N k T      
.

Let (( 1) )cP k T denote the corrective maintenance

probability at time ( 1)k T for 0,1, 2,k   . Then, we can
get the (( 1) )cP k T as

(( 1) )
( (( 1) ) (( 1) ))
( (( 1) )) ( (( 1) )).

cP k T
P B k T C k T
P B k T P C k T



  
   



To get the expression of the (( 1) )cP k T , we firstly derive
the following events probabilities.
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Then, we can get
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Now，the corrective maintenance probability is

0
(( 1) )c c

k
P P k T





  . (15)
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Where (( 1) )cP k T is given by (14)

C. Expected Down Time in a Replacement Cycle
When the system fails in the time intervals [kT, (k+1)T],

there are two kinds of failure: degradation failure caused by
degradation process and traumatic failure caused by random
shock. Let Wd((k+1)T) be the expected system down time in
the (k+1)th inspection cycle [kT, (k+1)T] caused by
degradation failure, Ws((k+1)T) be the expected system down
time in the (k+1)th inspection cycle [kT, (k+1)T] caused by
traumatic failure.
Then Wd((k+1)T) can be expressed as

1

0

( 1)

(( 1) ) .
( )

. (( 1) ) ( ),
d

kTM kT u
d

k T

TkT
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where ( )
dT

F t is given by (9).

Ws((k+1)T) can be expressed as
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where ( )
sT

F t is given by (10).

Now, we can get the expectation of the system down time
as
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D. Expected Number of Inspections in a Replacement Cycle
If the system is performed preventive maintenance or

corrective maintenance in the kth inspection cycle, then the
system inspection time length is kT. Therefore, the expected
length of a cycle is

1
( ) ( ( ) ( )).r p c

k
E kT P kT P kT





  (17)

Where ( )pP kT and ( )cP kT are given by (7) and (8)

respectively.
Considering the expected number of inspections in a

replacement cycle [ ]E R is given by

( )[ ] .rEE R
T


 (18)

Let ( , )C T M be the average long run maintenance cost
rate. Applying (11) and (12), we can get

[ ] [ ]
( , ) .

( )
p p c c d r i

r

C P C P C E W C E R
C T M

E 
  

 (19)

Where , , [ ], [ ]p c rP P E W E R and ( )rE  are given by (13),

(15), (16), (17) and (18) respectively.
The optimization problem for this maintenance scheme is

reduced to find the values T andM that minimize the function
( , )C T M given by (19), that is

 ( , ) inf ( , ), 0,0 .opt optC T M C T M T M L    (20)

For the complexity of the (19), we cannot get the analytical
solution of the optT and optM . However, we can obtain the
solution by the computing software, such as MATLAB etc.

IV. ILLUSTRATIVE EXAMPLE
To demonstrate the reliability and maintenance models in

the paper, the example of Micro-Electro-Mechanical Systems
(MEMS) devices is given in this section. MEMS have been
effectively used in many commercial products and critical
applications. According to reliability test experimental data
conducted by Sandia National Laboratories[34], MEMS
experiences degradation failures due to continuous
degradation over time and debris from shock loads and
traumatic failures due to spring fracture, it satisfies the model
assumptions in this paper.

A. Optimal Maintenance Policy
We adopt the model parameter from [9] and [13], some

parameter is assumed in the paper. The random shock process
follows a homogeneous Poisson process with rate
  2.5× 10-5, a=0.0005. The degradation processes is
modeled according to a gamma process with   1.02×10-4,
  1.2× 104, the system fails when its degradation level
exceeds L  1.25×10-3 um3. We assume that the sequent of
costs is iC 7$ , dC 34$ , pC 50$ , cC 100$ .
A solution has been numerically found by simulation, the

simulation model has been implemented in MATLAB
software. A grid of size 500 in the interval (0,106) has been
considered for T, similarly, a grid of size 51 10 in the
interval 3(0, 1.5 10 ) has been considered forM. As a result,

optT  48.47 10 , optM  44.65 10 are obtained. The
minimal average long run maintenance cost rate is
( , )opt optC T M  35.67$.
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B. Sensitivity Analysis of the System Parameters
This subsection concentrates on analyze the varying of the

optimal average long run maintenance cost rate with the
different system parameters. The gamma process parameters
,  , the degradation failures threshold L and the arrival

rate of random shock  are considered respectively.
The values of the gamma process parameters are modified

according to the following specification:

( %) 1
100i

i
V

v
      

, ( %) 1
100j

j
V

v
 

 
  

 
Where iv and jv are respectively the thi and thj position

of the vector ( 10, 5, 1,0,1,5,10)v     . Then, the parameter
values for ,  can be simultaneous and independently
modified both for increasing and decreasing changes.
Let ( %) ( %),V Vi j

C  be the minimal expected cost rate obtained
by varying the gamma process parameters simultaneously.
Then, a relative measure is defined as
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Where ( , )opt optC T M is the minimal expected cost rate, which
is previously calculated with the original parameter value
,  .

For fixed i and j, ( %) ( %),V Vi j
V  measures the relative

difference between the current optimal cost and the optimal
cost that has been calculated by suing the modified parameter
values. If this quantity is multiplied by 100, the result is
expressed in percentage. The closer to zero, the less influence
on the solutions the modified parameter values have.
Table I shows the relative variation percentages. Each cell

represents ( %) ( %),V Vi j
V  multiplied by 100. The results also

show that the parameter  has greater effects on ( %) ( %),V Vi j
V 

than the parameter  .

When L increases from 31.1 10 um3 to 31.5 10 um3 as
shown in .Table II, the optimal average long run maintenance
cost rate increases from 33.57$ to 36.797$, and the optimal
preventive replacement threshold M increases from

46.85 10 to 47.29 10 . This indicates that a larger failure
threshold value L results in a larger preventive replacement
threshold M . whereas the optimal inspection cycle T is
insensitive to the variation of L .
As shown in Table III, when the random shock rate 

varies from 51.0 10 to 55.0 10 , The optimal average long
run maintenance cost rate ranges from 27.54$ to 43.87$. In
addition, it indicates that the optimal inspection cycle T
decreases with the increase of the random shock rate  , the
MEMS should be inspected more frequency, whereas the

optimal M is insensitive to the variation of  .

V. CONCLUSION
In this article, we consider two dependent failure processes:

degradation failure caused by continuous smooth degradation
with the gamma process and traumatic failure caused by the
random shock process. The dependent of the two processes
lies in that with the degradation level increasing the

probability of traumatic failure caused by the random shock
is increasing. Optimal maintenance settings were determined
based on minimizing the average long run cost rate. In
addition, we discussed how the different parameters effect on
the optimal M and T, and it indicated that the proposed
reliability and maintenance models are robust and valid.
For future research directions, we can consider the more

complicated case, such as random degradation failure
threshold. Furthermore, in this paper, we had not considered
the random shock process affected the degradation process,
so the international maintenance model is also an interesting
direction.
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