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Abstract—A stochastic predator-prey system in-
volving time-varying delays is considered. Some
new sufficient conditions for existence, extinction and
global asymptotical stability are obtained. It is in-
teresting that the results are based on the variable
delays, which is different from the previous work (the
results are delay-independent). Some numerical sim-
ulations are introduced to support the analytical find-
ings.
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1 Introduction

This paper is devoted to investigating the following
stochastic differential system with variable delays:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1 = x1

(
r1(t) − a11(t)x1 − a12(t)x2(t − δ1(t))

)
dt

+σ1(t)x1dB1(t),

dx2 = x2

(
− r2(t) + a21(t)x1(t − δ2(t)) − a22(t)x2

)
dt

+σ2(t)x2dB2(t),
(SM)

on t ≥ 0 with initial data {(x1(θ), x2(θ))
� : −τ ≤ θ ≤

0} = ξ ∈ Cb
F0

([−τ, 0]; (0, +∞)×(0, +∞)). Here δi : R+ →
[0, τ ], i = 1, 2 is a continuous differentiable function, τ
is given positive constant, R+ = [0, +∞). In addition,
throughout the present paper, let (Ω,F , {Ft}t≥0, P ) be a
complete probability space with a filtration {Ft}t≥0 satis-
fying the usual conditions (i. e., it is right continuous and
F0 contains all P−null sets). Let |·| denote the Euclidean
norm in Rn. For given a constant τ > 0, let C([−τ, 0], Rn

+)
denote the family of all continuous Rn

+−valued func-
tions ξ with its norm ||ξ|| = sup{|ξ(θ)| : θ ∈ [−τ, 0]}.
Also, denote by Cb

F0
([−τ, 0]; Rn

+) the family of bounded,

F0−measurable, Cb
F0

([−τ, 0]; Rn
+)−valued random vari-

ables.

A classical predator-prey model with time delays can be
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expressed as follows:

⎧⎪⎪⎨
⎪⎪⎩

dx1

dt = x1

(
r1 − a11x1 − a12x2(t − δ1)

)
,

dx2

dt = x2

(
− r2 + a21x1(t − δ2) − a22x2

)
,

(M)

with initial conditions

xi(t) = φi(t) > 0, t ∈ [−τ, 0], i = 1, 2,

where x1 and x2 represent for the population sizes of
the prey and the predator, respectively; ri, aij , τ and
δi (i, j = 1, 2) are given positive constants. Owing to
its theoretical and practical significance, there is an ex-
tensive literature investigated model (M); see e.g., [4–6].
Recently, due to environmental noises, the authors [7]
studied a kind of stochastic predator-prey model with
time delays as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1 = x1

(
r1(t) − a11(t)x1 − a12(t)x2(t − τ1)

)
dt

+σ1(t)x1dB1(t),

dx2 = x2

(
− r2(t) + a21(t)x1(t − τ2) − a22(t)x2

)
dt

+σ2(t)x2dB2(t).

and obtained some existence and stability results. How-
ever, the delays in the above system are constants and
the results are independent on delays. For more re-
search methods for population dynamic system, see pa-
pers [8–13].

The main objective of this paper is to obtain sufficient
conditions for the existence-and-uniqueness, extinction
and global asymptotical stability of positive solutions for
system (SM). It is interesting that the results obtained in
this paper are based on the delays (or delay-dependent)
which is different from the previous works that are delay-
independent. Also, some numerical simulations are intro-
duced to support the analytical findings.

2 Global positive solution of system
(SM)

In this section, we will investigate the system (SM) with
initial value ξ ∈ C([−τ, 0], R2

+). In order for a stochastic
differential equation to have a unique global solution (i.e.,

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_14

(Advance online publication: 14 May 2016)

 
______________________________________________________________________________________ 



no explosion in a finite time) for any given initial value,
the coefficients of the equation are generally required to
satisfy the linear growth condition and local Lipschitz
condition, see e.g., [14]. However, the coefficients of (SM)
do not satisfy the above conditions, so the solutions of
(SM) may explode at finite time. It is therefore useful to
give some conditions under which the solution of (SM)
is not only positive but also not explode to infinite at
any finite time. For convenience of proof, if f(t) is a
continuous bounded function on R+, define

fu = sup
t∈R+

f(t), f l = inf
t∈R+

f(t).

The following theorem gives some sufficient conditions
for the existence and uniqueness of the global positive
solution of system (SM).
Theorem 2.1. For any given initial data
{(x1(θ), x2(θ))

� : −τ ≤ θ ≤ 0} = ξ ∈
Cb

F0
([−τ, 0]; (0, +∞) × (0, +∞)), if the population

sizes of x2 are no more than 1, there is an unique posi-
tive local solution (x1(t), x2(t)) on t ≥ 0 with satisfying
initial condition ξ and the solution will remain in R2

+

with probability 1.
Proof: By the biological meaning, we only focus on
the positive solutions to system (SM). Thus it is
reasonable to make the following change of variables,
x1(t) = eu(t), x2(t) = ev(t). By using Itô formula, system
(SM) can be reformulated in the following form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

du = [r1(t) − a11(t)e
u − a12(t)e

v(t−δ1(t)) − 1
2σ2

1(t)]dt
+σ1(t)dB1(t),

dv = [−r2(t) + a21(t)e
u(t−δ2(t)) − a22(t)e

v − 1
2σ2

2(t)]dt
+σ2(t)dB2(t),

u(θ) = lnx1(θ), v(θ) = lnx2(θ), θ ∈ [−τ, 0],
(SMA)

on t ≥ 0. It is easy to see that the coefficients of (SMA)
satisfy the local Lipschitz condition, then for any given
initial values u(θ), v(θ), θ ∈ [−τ, 0], there is a unique
maximal local solution u(t), v(t) on [0, τe), where τe is ex-
plosion time. By Itô formula, x1(t) = eu(t), x2(t) = ev(t)

is the positive local solution to (SMA) with the initial
value u(θ), v(θ), θ ∈ [−τ, 0]. In order to show this solu-
tion is global, we need to show that τe = ∞ a. s.. For
convenience of statement, let

F (x1, x2) = r1(t) − a11(t)x1 − a12(t)x2(t − δ1(t)),

G(x1, x2) = −r2(t) + a21(t)x1(t − δ2(t)) − a22(t)x2.

The following proof is motivated by the work of Li and
Mao [15]. Let n0 > 0 be sufficiently large for x1(θ) and
x2(θ) lying within the interval [ 1

n0
, n0]. For each integer

n > n0, define the stopping times:

τn = inf{t ∈ [0, τe] : x1(t) /∈ (
1

n
, n) or x2(t) /∈ (

1

n
, n)}.

Throughout this paper, we set inf ∅ = ∞. Obviously, τn

is increasing as n → ∞. Let τ∞ = limn→ τn, whence

τ∞ ≤ τe a. s.. Now, we only need to show τ∞ = ∞. If
this statement is false, there is a pair of constants T > 0
and ε ∈ (0, 1) such that P{τ∞ ≤ T } > ε. Consequently,
there exists an integer n1 ≥ n0 such that

P{τ∞ ≤ T } > ε, n ≥ n1. (2.1)

Define C2-function V : R2
+ → R+ by

V (x1, x2) = (
√

x1 − 1− 0.5 lnx1) + (
√

x2 − 1− 0.5 lnx2).

The nonnegativity of this function can be obtained from
u−1−lnu ≥ 0 on u > 0. If (x1, x2) ∈ R2

+, the Itô formula
shows that

dV (x1, x2) = 0.5(x−0.5
1 − x−1

1 )F (x1, x2)dt
+ 1

8 (−x0.5
1 + 2)σ2

1(t)dt + 0.5(x0.5
1 − 1)σ1(t)dB1(t)

+0.5(x−0.5
2 − x−1

2 )G(x1, x2)dt
+ 1

8 (−x0.5
2 + 2)σ2

2(t)dt + 0.5(x0.5
2 − 1)σ2(t)dB2(t).

(2.2)
Compute

(x−0.5
1 − x−1

1 )F (x1, x2) = (x−0.5
1 − x−1

1 )
×[r1(t) − a11(t)x1 − a12(t)x2(t − δ1(t))]
= r1(t)x

−0.5
1 − a11(t)x

0.5
1 − a12(t)x2(t − δ1(t))x

−0.5
1

−r1(t)x
−1
1 + a11(t) + a12(t)x2(t − δ1(t))x

−1
1

≤ ru
1 + au

11 =: K1

(2.3)
and

(x−0.5
2 − x−1

2 )G(x1, x2)
= (x−0.5

2 − x−1
2 )[−r2(t) + a21(t)x1(t − δ2(t)) − a22(t)x2]

= −r2(t)x
−0.5
2 + a21(t)x1(t − δ2(t))x

−0.5
2 − a22(t)x

0.5
2

+r2(t)x
−1
2 − a21(t)x1(t − δ2(t))x

−1
2 + a22(t)

≤ ru
2 + au

22 =: K2.
(2.4)

From (2.3) and (2.4), integrating both sides of (2.2) from
0 to τn ∧ T and then taking the expectation leads to

V (x1(τn ∧ T ), x2(τn ∧ T ))
≤ V (x1(0), x2(0))
+[0.5(K1 + K2) + 0.25(σu

1 )2 + 0.25(σu
2 )2]T.

(2.5)

Set Ωn = {τn ≤ T }, by (2.1) we have P (Ωn) ≥ ε. Note
that for each ω ∈ Ωn, there is some i such that xi(τn, ω)
equals n or 1

n for i = 1, 2. Hence V (x1(τn∧T ), x2(τn∧T ))
is no less than

min{√n − 1 − 0.5 lnn,
√

1/n− 1 − 0.5 ln 1/n}.
By (2.5) we have

V (x1(0), x2(0) + [0.5K1 + 0.5K2 + 0.25(σu
1 )2 + 0.25(σu

2 )2]T
≥ E[1Ωn

(ω)V (x1(τn), x2(τn))]

≥ ε min{√n − 1 − 0.5 lnn,
√

1/n− 1 − 0.5 ln 1/n},
where 1Ωn

is the indicator function of Ωn. Letting n → ∞,
leads to the contradiction

∞ > V (x1(0), x2(0)) + [0.5K1

+0.5K2 + 0.25(σu
1 )2 + 0.25(σu

2 )2]T = ∞.

The proof is completed.
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3 Extinction

One of the important issues in the study of population
systems is the extinction. In this section we shall in-
vestigate the extinction of system (SM). The following
theorem gives a sufficient criterion for the population ex-
tinct.
Theorem 3.1. Let conditions r1(t) − 0.5σ2

1(t) < 0 and
a21(t) − a11(t) < 0 hold. Then the populations x1 and
x2 with initial value {(x1(θ), x2(θ))

� : −τ ≤ θ ≤ 0} =
ξ ∈ Cb

F0
([−τ, 0]; (0, +∞)× (0, +∞)) by (SM) will become

extinct exponentially with probability one.
Proof: Applying Itô formula to system (SM), we have

d[ln(x1(t))] = (r1(t) − a11(t)x1 − a12(t)x2(t − δ1(t))
− 1

2σ2
1(t))dt + σ1(t)dB1(t)

(3.1)
and

d[ln(x2(t))] = (−r2(t) + a21(t)x1(t − δ2(t)) − a22(t)x2

− 1
2σ2

2(t))dt + σ2(t)dB2(t).
(3.2)

Integrating both sides of (3.1) and (3.2) from 0 to t leads
to

ln(x1(t)/x1(0))
t =

∫
t

0
[r1(s)−0.5σ2

1(s)]ds

t

−
∫

t

0
a11(s)x1(s)ds

t −
∫

t

0
a12(s)x2(s−δ1(s))ds

t +

∫
t

0
σ1(s)dB1(s)

t .
(3.3)

In the same way we can show that

ln(x2(t)/x2(0))
t =

∫
t

0
[−r2(s)−0.5σ2

2(s)]ds

t −
∫

t

0
a22(s)x2(s)ds

t

+

∫
t

0
a21(s)x1(s−δ2(s))ds

t +

∫
t

0
σ2(s)dB2(s)

t .
(3.4)

Set Mi(t) =
∫ t

θ σi(t)dBi(t), i = 1, 2. Then Mi(t) is a local
martingale whose quadratic variation is

〈Mi, Mi〉t =

∫ t

0

σ2
i (s)ds ≤ (σ2

i )ut.

By the strong law of large numbers for Martingales (see
e.g., [15]) we have

lim
t→+∞

Mi(t)

t
= 0 a.s.. (3.5)

From (3.3), (3.5) and r1(t) − 0.5σ2
1(t) < 0, we have

lim
t→+∞

sup
ln(x1(t))

t
≤

∫ t

0
[r1(s) − 0.5σ2

1(s)]ds

t
< 0 a.s..

From (3.4), we have

ln(x2(t))
t ≤

∫
t

0
a21(s)x1(s−δ2(s))ds

t −
∫

t

0
a11(s)x1(s)ds

t

+ ln(x2(0))
t + ln(x1(0))

t +

∫
t

0
σ1(s)dB1(s)

t +

∫
t

0
σ2(s)dB2(s)

t

≤ au
21τ ||ξ||

t +

∫
t

0
(a21(s)−a11(s))x1(s)ds

t

+ ln(x2(0))
t + ln(x1(0))

t +

∫
t

0
σ1(s)dB1(s)

t +

∫
t

0
σ2(s)dB2(s)

t .
(3.6)

From (3.5), (3.6) and a21(t) − a11(t) < 0, we have

lim
t→+∞

sup
ln(x2(t))

t
< 0 a.s..

Hence the populations x1 and x2 become extinct expo-
nentially with probability one.

4 Global asymptotical stability

In this section, we will establish sufficient criteria for the
global asymptotical stability of system (SM).
Definition 4.1. System (SM) is said to be global asymp-
totical stability if

lim
t→+∞

|x1(t) − x2(t)| = lim
t→+∞

|y1(t) − y2(t)| = 0 a.s.

for any two positive solutions (x1(t), y1(t)) and
(x2(t), y2(t)) of system (SM). To begin with, we
first give some lemmas.
Lemma 4.1. Let x1(t), x2(t) be a solution to (SM)
with initial value {(x1(θ), x2(θ))

� : −τ ≤ θ ≤ 0} = ξ ∈
Cb

F0
([−τ, 0]; (0, +∞) × (0, +∞)). If al

22 − au
21 > 0, then

for all t ≥ 0, p > 1, there exist constants L(p) and G(p)
such that

E[xp
1(t)] ≤ L(p), E[xp

2(t)] ≤ G(p).

Proof: For t ≥ 0, define V (u(t)) = up(t) for all u ∈
R+, p > 1. By the Itô formula, we have

dV (x1) = pxp−1
1 dx1 + 0.5p(p− 1)xp−2

1 (dx1)
2

= pxp
1[r1(t) − a11(t)x1 − a12(t)x2(t − δ1(t))

+0.5(p− 1)σ2
1(t)]dt + pxp

1σ1(t)dB1(t).

Making use of Itô formula again to etV (x1) results in

d[etV (x1)] = etV (x1)dt + etdV (x1)
= {etxp

1 + petxp
1[r1(t) − a11(t)x1

−a12(t)x2(t − δ1(t))
+0.5(p − 1)σ2

1(t)]}dt + petxpσ1(t)dB1(t).

Integrating both sides of the above equality from 0 to t
and taking expectations, we have

E[etxp
1(t)] ≤ xp

1(0)

+pE
∫ t

0
es{xp

1(s)[
1
p + ru

1 + 0.5(p − 1)(σ2
1)u − al

11x1]}ds

≤ xp
1(0) +

∫ t

0
esL1(p)ds = xp

1(0) + L1(p)(et − 1),

where L1(p) =
[1+ru

1 p+0.5p(p−1)(σ2
1)u]p+1

(p+1)p+1(al
11

)p . Thus there exists

a T > 0 such that E[xp
1(t)] ≤ 1.5L1(p) for all t ≥ T. At

the same time, an application of the continuity of E[xp
1(t)]

results in that there exists L̃1(p) > 0 such that E[xp
1(t)] ≤

L̃1(p) for all t ≤ T. Let L(p) = max{1.5L1(p), L̃1(p)},
then for all t ≥ 0, we have E[xp(t)] ≤ L(p). On the other
hand, we can show that

d[etV (x2)] = etV (x2)dt + etdV (x2)
= {etxp

2 + petxp
2[−r2(t) + a21(t)x1(t − δ2(t))

−a22(t)x2 + 0.5(p− 1)σ2
2(t)]}dt + petxp

2σ2(t)dB2(t)
≤ {etxp

2 + petxp
2[−r2(t) + au

21||ξ|| + au
21(t)x1(t)

−a22(t)x2 + 0.5(p− 1)σ2
2(t)]}dt + petxp

2σ2(t)dB2(t).
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Integrating both sides of the above inequality from 0 to
t and taking expectations, we have

E[etxp
2(t)] ≤ xp

2(0) + pE
∫ t

0
es{xp

2(s)[
1
p + 0.5(p− 1)(σ2

2)u

+au
21||ξ|| − al

22x2 + au
21x1(s)]}ds

≤ xp
2(0) + p

∫ t

0
esE

[
xp

2(s)[
1
p + 0.5(p− 1)(σ2

2)u

+au
21||ξ|| − al

22x2]
]
ds

+pau
21

∫ t

0
esE[xp+1

2 (s)] +
pau

21

p+1

∫ t

0
esE[xp+1

1 (s)]ds

= xp
2(0) + pE

∫ t

0
esxp

2(s)[
1
p + 0.5(p − 1)(σ2

2)u

+au
21||ξ|| − (al

22 − au
21)x2(s)]ds

+
pau

21

p+1

∫ t

0 esE[xp+1
1 (s)]ds

≤ xp
2(0) +

∫ t

0 esL2(p)ds +
pau

21

p+1 L(p + 1)
∫ t

0 esds

= xp
2(0) + [L2(p) +

pau
21

p+1 L(p + 1)](et − 1),

where L2(p) =
[1+0.5p(p−1)(σ2

2)u+pau
21||ξ||]

p+1

(p+1)p+1(al
22

−au
21

)p . Thus we get

lim
t→+∞

sup E[xp
2(t)] ≤ L2(p) +

pau
21

p + 1
L(p + 1) =: L3(p).

Then there exists a T > 0 such that E[xp
2(t)] ≤ 1.5L3(p)

for all t ≥ T. There also exists E[xp
2(t)] ≤ L̃3(p) for t < T.

Let G(p) = max{1.5L3(p), L̃3(p)}, then for all t ≥ 0,
E[xp

2(t)] ≤ G(p).

Lemma 4.2. Let (x1(t), x2(t)) be a solution of (SM)
with initial value {(x1(θ), x2(θ))

� : −τ ≤ θ ≤ 0} = ξ ∈
Cb

F0
([−τ, 0]; (0, +∞) × (0, +∞)). If al

22 − au
21 > 0, then

almost every sample path of (x1(t), x2(t)) is uniformly
continuous on t ≥ 0.
Proof: The first equation of system (SM) is equivalent to
the following stochastic equation

x1(t) = x1(0) +
∫ t

0 x1(s)(r1(s) − a11(s)x1

−a12(s)x2(s − δ1(s)))ds +
∫ t

0 σ1(s)x1(s)dB1(s).
(4.1)

Note that

E|x1[r1(t) − a11(t)x1 − a12(t)x2(t − δ1(t))]|p
= E[|x1|p|r1(t) − a11(t)x1 − a12(t)x2(t − δ1(t))|p]
≤ 0.5E|x1|2p + 0.5E|r1(t) − a11(t)x1

−a12(t)x2(t − δ1(t))|2p

≤ 0.5{L(2p) + 32p−1[(ru
1 )2p

+(au
11)

2pE|x2p
1 (t)| + (au

12 + ||ξ||)2pE|x2p
2 (t)|]}

≤ 0.5{L(2p) + 32p−1[(ru
1 )2p + (au

11)
2pL(2p)

+(au
12 + ||ξ||)2pG(2p)]} := K1(p).

(4.2)
Moreover, from the moment inequality for stochastic inte-
grals and Lemma 4.1 one can obtain that for 0 ≤ t1 ≤ t2
and p > 2,

E| ∫ t2
t1

σ1(s)x1(s)dB1(s)|p ≤ [(σ2
1)u]p[p(p−1)

2 ]p/2

×(t2 − t1)
(p−2)

∫ t2
t1

E|x1(s)|pds

≤ [(σ2
1)u]p[p(p−1)

2 ]p/2(t2 − t1)
p/2L(p).

(4.3)

Then for 0 < t1 < t2 < ∞, t2 − t1 ≤ 1, 1/p + 1/q = 1,
from (4.1)-(4.3) we have

E(|x1(t2) − x1(t1)|p) = E| ∫ t2
t1

x1(s)[r1(s) − a11(s)x1

−a12(s)x2(s − δ1(s))]ds

+
∫ t2

t1
σ1(s)x1(s)dB1(s)|p

≤ 2p−1E| ∫ t2
t1

x1(s)[r1(s) − a11(s)x1

−a12(s)x2(s − δ1(s))]ds|p
+2p−1E| ∫ t2

t1
σ1(s)x1(s)dB1(s)|p

≤ 2p−1(t2 − t1)
p/q| ∫ t2

t1
E|x1(s)[r1(s) − a11(s)x1

−a12(s)x2(s − δ1(s))]|pds

+2p−1[p(p−1)
2 ]p/2(t2 − t1)

p/2[(σ2
1)u]pL(p)

≤ 2p−1(t2 − t1)
p/q+1K1(p)

+2p−1[p(p−1)
2 ]p/2(t2 − t1)

p/2[(σ2
1)u]pL(p)

≤ 2p−1(t2 − t1)
p/2[(t2 − t1)

p/2 + (p(p−1)
2 )p/2]K2(p)

≤ 2p−1(t2 − t1)
p/2[1 + (p(p−1)

2 )p/2]K2(p),

where K2(p) = max{K1(p), [(σ2
1)u]pL(p)}. Then from

[16], almost every path of x1(t) is locally but uniformly
Hölder-continuous with exponent ϑ for every ϑ ∈ (0, (p−
2)/2p) and therefore almost every sample path of x1(t)
is uniformly continuous on t ≥ 0. In the same way we
can verify that almost every path of x2(t) is uniformly
continuous.

Lemma 4.3.(see e.g., [17])Let f be a non-negative func-
tion defined on R+ such that f is integrable and is uni-
formly continuous. Then limt→+∞ f(t) = 0.

Theorem 4.1. If al
22−au

21 > 0, al
11−au

21 > 0, al
22−au

12 >

0 and
∫ t

0
[a12(s) + a21(s)]ds < +∞, then system (SM) is

globally asymptotically stable.

Proof: Define

V (t) = | ln x1(t) − ln x2(t)| + | ln y1(t) − ln y2(t)|,
then V (t) continuous and positive function on t ≥ 0. A
direct calculation of the right differential d+V (t) of V (t),
then applying Itös formula yields

d+V (t) = sgn(x1 − x2){[dx1

x1
− (dx1)

2

2x2
1

] − [dx2

x2
− (dx2)

2

2x2
2

]}
+sgn(y1 − y2){[dy1

y1
− (dy1)

2

2y2
1

] − [dy2

y2
− (dy2)

2

2y2
2

]}
= sgn(x1 − x2){−a11(t)(x1 − x2) − a12(t)
×[y1(t − δ1(t)) − y2(t − δ1(t))]}dt
+sgn(y1 − y2){a21(t)[x1(t − δ2(t))
−x2(t − δ2(t))] − a22(t)(y1 − y2)}dt
≤ {−a11(t)|x1 − x2| + 2||ξ||(a12(t) + a21(t))
+a12(t)|y1 − y2| − a22(t)|y1 − y2| + a21(t)|x1 − x2|}dt.

Integrating both sides of the above inequality leads to

V (t) ≤ V (0) +
∫ t

0{[a21(t) − a11(t)]|x1 − x2|
+[a12(t) − a22(t)]|y1 − y2| + 2||ξ||[a12(t) + a21(t)]}ds.

Consequently, we have

V (t) +
∫ t

0
{[a11(t) − a21(t)]|x1 − x2|

+[a22(t) − a12(t)]|y1 − y2|}ds

≤ ∫ t

0 2||ξ||[a12(t) + a21(t)]ds + V (0) < ∞.
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From V (t) ≥ 0, al
11 − au

21 > 0, al
22 − au

12 > 0 and∫ t

0
[a12(s) + a21(s)]ds < +∞, we have

|x1(t) − x2(t)| ∈ L1[0,∞), |y1(t) − y2(t)| ∈ L1[0,∞).

Then the desired assertion follows from Lemmas 4.2 and
4.3 immediately.

5 Numerical simulations

Now let us use Milstein’s numerical method [18] to sup-
port our results. In Fig. 1(a), we choose r1 = 0.9, r2 =
0.1, a11 = a12 = 0.3, a21 = a22 = 0.2, δ1(t) = δ2(t) =
1, σ1(t) = σ2(t) = 0. Then

Δ = a11a22 + a12a21 = 0.12, Δ1 = r1a22 + r2a12 = 0.21,

Δ2 = r1a21 − r2a11 = 0.15 > 0.

Then by the work of Kuang [3], the positive equilibrium

x∗ = (
Δ1

Δ
,
Δ2

Δ
) = (1.75, 1.25)

is globally asymptotically stable. Fig. 1(a) confirms
these. In Fig. 1(b), we choose r1 = 0.8, r2 = 0.1, a11 =
0.5, a12 = 0.02 + 0.1 sin t, a21 = 0.2 + 0.1 sin t, a22 =
0.4, δ1(t) = δ2(t) = 2 − sin t, σ1(t) = σ2(t) = 0.5. By
Theorem 4.1, system (SM) is global asymptotically sta-
ble. See Fig. 1(b).

6 Conclusions and future directions

In this paper, a stochastic predator-prey system involv-
ing time-varying delays is considered. Some new sufficient
conditions for existence, extinction and global asymptot-
ical stability are obtained.

There are still many interesting and challenging questions
that need to study. In this paper, we only consider that
the white noise affects the growth rate ri(t), i = 1, 2,
for other parameters, for example, aij(t), i, j = 1, 2 are
affected by the white noise which not be studied. We wish
that such questions will be investigated by some authors.

References

[1] Carpenter, R.H.S., Movements of the Eyes, 2nd Edi-
tion, Pion Publishing, 1988.

[2] Franklin, G.F., Powel, J.D., Workman, M.L., Dig-
ital Control of Dynamic Systems, Second Edition,
Addison-Wesley, 1990.

[3] Oh, P.Y., Allen, P.K., “Design a Partitioned Visual
Feedback Controller,” IEEE Int Conf Robotics &
Automation, Leuven, Belgium, pp. 1360-1365 5/98

[4] K. Gopalsamy, “Global asymptotic stability in
Volterra’s population systems,” J. Math. Biol., V19,
pp. 157-168, 1984.

0 50 100 150 200 250 300
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Time
Po

pu
la

tio
n 

si
ze

s

x1
x2

0 50 100 150 200 250 300
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

Po
pu

la
tio

n 
si

ze
s

x1
x2

Figure 1: Solutions of system (SM) for r1 = 0.9, r2 =
0.1, a11 = a12 = 0.3, a21 = a22 = 0.2, δ1(t) =
δ2(t) = 1, σ1(t) = σ2(t) = 0 in Fig. 1(a), and r1 =
0.8, r2 = 0.1, a11 = 0.5, a12 = 0.02 + 0.1 sin t, a21 =
0.2+0.1 sin t, a22 = 0.4, δ1(t) = δ2(t) = 2−sin t, σ1(t) =
σ2(t) = 0.5 in Fig. 1(b). The horizontal axis represents
the time t, the vertical axis represents the population
sizes.

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_14

(Advance online publication: 14 May 2016)

 
______________________________________________________________________________________ 



[5] H. Freedman, P. Waltman, “Persistence in models of
three interacting predator-prey populations,” Math.
Biosci., V68, pp. 213-231, 1984.

[6] Y. Kuang, Delay Differential Equations with Appli-
cations in Population Dynamics, Academic Press,
Boston, 1993.

[7] M. Liu, H. Qiu, K. Wang, “A remark on a stochastic
predator-prey system with time delays,” Appl. Math.
Lett., V26, pp. 318-323, 2013.

[8] A. Lanzotti, F. Renno, M. Russo, R. Russo, and M.
Terzo, “Virtual Prototyping of an Automotive Mag-
netorheological Semi-Active Differential by means of
the Reverse Engineering Techniques,” Engineering
Letters, V23, pp. 115-124, 2015.

[9] A. Borhani, M. Patzold, “On the Spatial Configu-
ration of Scatterers for Given Delay-Angle Distribu-
tions,” Engineering Letters, V22, pp. 34-38, 2014.

[10] J. Zhao, “A Note on Hopfield Neural Network Sta-
bility,” IAENG International Journal of Computer
Science, V42, pp. 332-336, 2015.

[11] H. Lu, J. Kamruzzaman, “A Modified Immune Net-
work Optimization Algorithm,” IAENG Interna-
tional Journal of Computer Science, V41, pp. 231-
236, 2014.

[12] Y. Yang, T. Zhang, “Dynamics of a Harvesting
Schoener’s Competition Model with Time-varying
Delays and Impulsive Effects,” IAENG International
Journal of Applied Mathematics, V45, pp. 263-272,
2015.

[13] L. Pang, T. Zhang, “Almost Periodic Oscillation in a
Watt-type Predator-prey Model with Diffusion and
Time Delays,” IAENG International Journal of Ap-
plied Mathematics, V45, pp. 92-101, 2015.

[14] X. Mao, Stochastic Differential Equations and their
Applications, Horwood, Chichester, 1997.

[15] X. Li, X. Mao, “Population dynamical behavior of
non-autonomous Lotka-Volterra competitive system
with random perturbation,” Discrete Cont. Dyn.
Syst., V24, pp. 523-545, 2009.

[16] I. Karatzas, S. E. Shreve, Brownian Motion and
Stochastic Calculus, Springer-Verlag, Berlin, 1991.

[17] I. Barbalat, “Systems dequations differential d’osci
nonlineaires,” Revue Roumaine de Mathematiques
Pures et Appliquees, V4, pp. 267-270, 1959.

[18] P.E. Kloeden, T. Shardlow, “The Milstein scheme
for stochastic delay differential equations without us-
ing anticipative calculus”, Stoch. Anal. Appl., V30,
pp. 181-202, 2012.

IAENG International Journal of Applied Mathematics, 46:2, IJAM_46_2_14

(Advance online publication: 14 May 2016)

 
______________________________________________________________________________________ 




