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Abstract—The basic dynamic properties of a four 

dimensional hyperchaotic system are investigated in this paper. 

More precisely, the stability of equilibrium point of 

hyperchaotic system is studied by means of nonlinear dynamics 

theory. We analyses the existence and stability of Hopf 

bifurcation, and the formulas for determining the direction of 

Hopf bifurcation and the stability of bifurcating periodic 

solutions are derived. In addition, a sliding mode controller is 

designed and controlled the hyperchaotic system to any fixed 

point to eliminate the chaotic vibration by means of sliding 

mode method. Finally, the numerical simulations were 

presented to confirm the effectiveness of the controller. 

 

Index Terms—Stability, Lyapunov exponents, Hopf 

bifurcation, S liding mode control 

 

I. INTRODUCTION 

he discovery of the eminent Lorenz system [1] has led to 

an extensive study of chaotic behaviors in nonlinear 

systems due to many possible applications in science and 

technology. There is a huge volume of literature devoted to 

the study of the nonlinear characteristics and basic dynamic 

properties of chaotic system [2]. And the nonlinear dynamics 

and chaos theory has been in-depth researched during the last 

decades [3]. Despite the simplicity of four-dimensional 

autonomous systems, these systems have a rich dynamical 

behavior, ranging from stable equilibrium points to periodic 

and even chaotic oscillations, depending on the parameter 

values. Moreover, the research and application on bifurcation 

of autonomous systems has become a very popular topic [4-9]. 

Over the past few decades, more and more chaotic phenomena 

have been found in many research fields and it can be widely 

used in secure communication, information processing, 

nonlinear circuits, biological systems, and chemical reactions. 

Many scholars paid great effort to generate chaos and analyze 

its dynamic characteristics. Dias and Mello [10] studied the 
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nonlinear dynamics of a Lorenz-like system. Sotomayor et al. 

[11] used the projection method described in [12] to 

calculation of the fist and second Lyapunov coefficients 

associated to Hopf bifurcations of the Watt governor system, 

and it was extended to the calculation of the third and fourth 

Lyapunov coefficients. Zhang et al. [13] presented a new 

three-dimensional autonomous chaotic system and 

investigated its basic dynamic properties via theoretical 

analysis and numerical simulation. Jana et al. [14] studied the 

stability and Hopf bifurcation for a harvested predator-prey 

system which incorporates feedback delay in prey growth rate. 

In recent years, the research of robust control system has 

made considerable progress and development in theory and 

practical application. As a representative of the nonlinear 

robust control theory, variable structure control theory has 

been widely researched around the world, and also has an 

increasing number of industrial applications. Lee et al. [15] 

presented a sliding-mode controller with integral 

compensation for a magnetic suspension balance beam 

system, and the control scheme comprises an integral 

controller which is designed for achieving zero steady-state 

error under step disturbances. Takuro et al. [16] applied the 

sliding mode control to achieve the robust control of space 

robot in capturing operation of the target and controlling the 

spacecraft motion under unknown parameters, like mass and 

inertia tensor. Chen et al. [17] proposed a no-chattering sliding 

mode control strategy for a class of fractional-order chaotic 

systems, and the designed control scheme guarantees the 

asymptotical stability of an uncertain fractional-order chaotic 

system. To ensure the robustness of the system control, Chen 

et al. stabilized the chaotic orbits to arbitrary chosen fixed 

points and periodic orbits by means of sliding mode method  

and they presented numerical simulations to confirm the 

validity of the controller [18]. Chen et al. [19] eliminated the 

chaotic vibration of hydro-turbine governing system by using 

the sliding mode method, and controlled the system to any 

fixed point and any periodic orbit. In this paper, we consider a 

novel four-dimensional hyperchaotic system which proposed 

by Gao [20]. He just analyzed the stability of equilibrium, such 

as the phase diagram of attractors, the bifurcation diagram and 

Lyapunov exponent. However, the Hopf bifurcation and 

chaos control of the four-dimensional hyperchaotic system 

has not been clarified yet. So, in this paper we investigate the 

bifurcations and sliding mode control of chaotic vibrations of 

the novel four-dimensional hyperchaotic system. 

The rest of this paper is organized as follows. In section 2, 

the description of the model is presented. The linear analysis 

of equilibria and the existence of Hopf bifurcation at 

equilibrium are investigated in section 3. In section 4, we 
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analyzed the direction of Hopf bifurcation and the stability of 

bifurcating periodic solutions. The numerical simulations are 

given to illustrate the theoretical analysis in section 5. And in 

section 6, we controlled the system to any fixed point and any 

periodic orbit to eliminate the chaotic vibration by means of 

sliding mode method. Section 7 concludes the paper. 

 

 

 

 
Fig. 1. (a)Phase trajectory in 3-D space, (b)Lyapunov-exponent 

spectrum, (c)T ime history, (d) Frequency spectrum. 

II. DESCRIPTION OF THE MODEL 

In this paper, we investigate a four-dimensional 

hyperchaotic system as follows: 

                       

,

,

( ),

,

x ax by

y ax xz y u

z xy c x z

u mx

  


   


  
 









                       (1) 

where 4( , , , )x y z u R are state variables, ,a,b,c m are real 

constants. The system (1) has a hyperchaotic attractor when 

the real constants 20, 35, 5, 4a b c m    , as show in Fig. 

1 (a). Moreover, the dynamics of the system (1) can be 

characterized with its Lyapunov exponents which are 

computed numerically by Wolf algorithm proposed in [21], 

where the Lyapunov exponents:
1 2 3=0.3477, =0.1983, =0,    

4 = 26.4303  , as show in Fig. 1 (b), and the Lyapunov 

dimension =3.02065KYD . Fig. 1 (c) and Fig. 1 (d) shows the 

time history and frequency spectrum of hyperchaotic attractor, 

respectively. 

III. STABILITY ANALYSIS 

In this section, we study the stability of equilibrium and the 

existence of Hopf bifurcation. In a vectorial notation which will 

be useful in the calculations, system (1) can be written 

as ( , ) x x ζ , where 

( , ) ( , ,

( ), ),

f ax by ax xz y u

xy c x z mx

       

 

x x ζ
          (2) 

4( , , , )x y z u R x and 4( , , , )a b c d R ζ . 

By solving the following equations simultaneously 

0, 0, ( ) 0, 0,ax by ax xz y u xy c x z mx           (3) 

we get the system has a unique equilibrium
0 0, 0, 0, 0E ( ). 

Lemma 1. The polynomial 3 2

1 2 3
( )L p p p       with 

real coefficients has all roots with negative real parts if and 

only if the numbers
1 2 3
, ,p p p are positive and the 

inequality
1 2 3

p p p is satisfied. 

We have the following proposition. 

Proposition 1. The equilibrium
0E is unstable if 

0m m . If 

1, 0, (1 ) 0,a mb a b     0c  and 

                       
0

( 1)(1 )a a b
m m

b

 
  ,                           (4) 

then the equilibrium
0E is asymptotically stable. 

Proof. The Jacobian matrix at the fixed point
0E is given by 

0 0

1 0 1

0 0

0 0 0

a b

a
A

c c

m

 
 

  
  
 
 

,                        (5) 

and its characteristic polynomial is  
3 2( ) ( )[ +( 1) +( ) ]p c a a ab mb         ,        (6) 

According to Lemma 1, the equilibrium 0E is unstable 

if 0m m . And if the real parts of all the roots  of equation (6) 

are negative if and only if 

00, 1, 0, (1 ) 0,c a mb a b m m       , 

So the proposition follows. 
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Proposition 2. Assume that 0, 0, 0a b c   . If equation (6) 

has a pair of purely imaginary roots
1,2 0i   and 

0Re( ( )) 0m m  , then the Hopf bifurcation occurs at the 

point
0E when the bifurcation parameter m pass through the 

critical value
0m . 

Proof. Let ( 0)i    is a root of Eq. (6), we have 

3 2( 1) ( ) 0i a a ab i mb         ,                   (7) 

then separating the real and imaginary parts  of equation (7), 

and we get 
3

2

( ) 0,    
 

( ) + =0.

a ab

a a mb

 



   

 

                          (8) 

Through calculation, we have 

0 0

( 1)(1 )
, 

a a b
a ab m m

b
 

 
     ,           (9) 

and the following four characteristic roots  

1,2 0 3 4, , ( )i c a c          ,            (10)      

Take the derivative of both sides of Eq. (6) with respect 

to m , we obtain 

23 2( 1) ( )

d b

dm a a ab



 
 

   
,               (11) 

and 

0

0

Re
0,

2(2 1)

Im 1
0.

2(2 1)

m m

m m

d b

dm a ab

d a

dm a ab









 
 


 

 

             (12) 

Assume that 0, 0, 0a b c   , when m passes through the 

critical value
0m , the system (1) occurs Hopf bifurcation at the 

equilibrium
0 0, 0, 0, 0E ( ). 

IV. HOPF BIFURCATION ANALYSIS 

In this section, we study the direction and stability of Hopf 

bifurcation under the condition 0, 0, 0a b c   and
0m m . 

Using the notion described in [10], the multilinear symmetric 

functions corresponding to f can be written as  

T

1 3 3 1 1 2 2 1

T

( , ) (0, , ,0) ,

( , , ) (0,0,0,0) ,

B x y x y x y x y x y

C x y z

   


          (13) 

The eigenvalues of A are 

1,2 0 3 4, , ( )i c a c          ,             (14)  

Let 4,p q C be vectors such that 

4

0 0

1

i , p= i , , 1,T

i i

i

Aq q A p p q p q 


            (15) 

where TA is the transpose of the matrix A , and by calculate we 

get 

 

T
2 2 2

0 0 0 0 0

2 2

0

2

0 0 0

2 3 2 3

0 0 0 0

T

0

2 2 4

0 0

, , ,0
( )

( 1) ( 1+2 ) 2 ( 1)
, ,

( 1) 4 ( 1) 4

( 1) 2
0,

( 1) 4

i a i c c i
q

m bm m c

m a m a i bm bm a i
p

a a

bm a bm i

a

    



  

   



 

    
  

 

      
 

   

 


  

(16) 

T
2 2 3 2

0 0 0 0

2 2 2 2

0

2 2 2 ( )
( , ) 0, , ,0 ,

( )

c c i a i
B q q

m c bm

   



    
  

 

   (17) 

                

T
2 2 2

0 0

2 2 2 2

0

2 2
( , ) 0, , ,0 ,

( )

c a
B q q

m c bm

 



 
  

 

            (18) 

T
2 2 2

0 0

11 2 2 2 2

0

2 2
0,0, , ,

( )

a c
h

bcm m c

 



  
  

 
           (19) 

1

20 0 3

T

1 2 3 4 5 6 7

(2 ) ( , )

( , , , ) ,

h i E A B q q

h h i h h i h h i h

  

   
            (20) 

where 

1 3 2 4 2 3 1 4 5 6

1 2 3 42 2 2 2

7 73 4 3 4

2 2

0 3 8 4 9 0 3 9 4 8

5 62 2 2 2 2 2 2 2 2 2

0 3 4 0 3 4

3 2 2

0 0

7 2 2 2 2 3

0 0 0 0 0 0

, , , ,

2 ( ) 2 ( )
, ,

( 4 )( ) ( 4 )( )

(2 2 )
,

2 ( )(2 2 2 4 )

k k k k k k k k k k
h h h h

k kk k k k

k k k k k k k k
h h

bm c k k bm c k k

b i c
h

m c a a i bm i ab i

 

 

 

     

 
   

 

   
 

   




     

4 2 4 3 2

1 0 0 0 0

3 3 2 2 5

2 0 0 0 0

2 2 2

3 0 1 2 3 4 5 0 5 7 6 8

2 2 2

4 0 1 4 2 3 6 0 5 8 6 7

2 2 2 2 2 2

7 0 0

2 (2 1)(4 ) 4 ( 2 ),

2 ( 2 )( 4 ) 4 (2 1)( 1),

( )( ), 8 ( ),

( )( ), 8 ( ),

( )(4 8

k bc c ab a b c

k b c a ab b c a

k m c r r r r k r r r r

k m c r r r r k r r r r

k m c a b

   

   

 

 

 

     

      

     

     

   2 2 2 4 2 2

0 0 0

2 4 2 2 2 6 4

0 0 0 0 0

2 2

8 9 0 10 0 9 10 0 9 0

16 4

8 32 8 64 16 ),

( ) ( 2 ), ( ) ( 2 ),

a b a a

abm ab b m bm

k r ac r c a k r ac r c a

  

    

   

 

     

       

2 2 2 2

1 0 0 2 0 0

3 2

3 0 0 0 4 0 0 0

2 2 2 3

5 0 0 7 0 0 0

3 2 3 4 4 2

6 0 9 0 0 0

2 2 3 3

8 0 0 10 0 0

2 2 2 , 4 ( 1) ( 4 ),

4 , 2 ( 1) 2 ( 4 ),

2 ( ), 2 2 2,

2 (2 ), 4 2 ( 4 ),

4, 2 (4

r a ab r a c ab a

r ab a r c a ab a

r ac r a ab

r c a r bc bc a ab

r a bm r bc

   

     

    

   

   

       

       

    

     

    2 5

0) 4 ( 1),ab a bc a   

    Through direct calculation, we also has 
3

T0

11 3

T

20 1 2 3 4

2
( , ) (0, ,0,0)

( , ) (0, , ,0) ,

a i
B q h

bcm

B q h n n i n n i




  

，
          (21) 

3

T0

21 1 2 3 43

4
(0, ( ) , ,0)

a
H n n i n n i

bcm


    ,          (22) 

3

0

21 2 0 12 3 3

0 0

3

0

1 0 22 3 3

0 0

4
( 1)( ) 2

( 1) 4

4
( 1) 2 ( ) ,

( 1) 4

abm
G a n n

a bcm

abm
n a n i

a bcm




 




 

 
     

   

 
   

   

(23) 

where 
2 2 2 2 2

1 0 2 0 6 0 0 4 0 1 0 2 0

1 32 2

0

2 2 2 2 2

2 0 1 0 5 0 0 3 0 1 0 2 0

2 42 2

0

( )
, ,

( )

( )
, .

( )

h c h c h c h b h h a
n n

bmm c

h c h c h c h b h a h
n n

bmm c

      



      



    
 



     
 



Theorem 1. Consider the four-parameter family of differential 

equations (1). The first Lyapunov coefficient associated to the 

equilibrium 0E is given by 

3 3 3

2 0 0 1

1 2 2 2

0 0

( 1)( 4 ) 2
( , , ) .

2 [( 1) 4 ]

a bcm n a bcm n
l a b c

bcm a

 

 

  


 
     (24) 
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If 
1l is different from zero, then system (1) has a transversal 

Hopf point at
0E . 

V. NUMERICAL EXAMPLE 

Next, we give a numerical example of Hopf bifurcation. 

Let 2, 1a b   , and by compute we get the critical value 

0 12m   . The equilibrium is stable when 
010m m   and 

unstable when
014m m   , as show in Fig. 2. From the 

formulas in previous section, we have
1 0.362681 0l    . 

Thus, the periodic solution bifurcating from
0E is supercritical 

and stable. 

 
Fig. 2. Phase diagram of system (1) with (a) 2, 1, 5, 10a b c m      , 

(b) 2, 1, 5, 12a b c m      , (c) 2, 1, 5, 14a b c m      . 

The bifurcation phenomenon can be detected by examining 

graphs of x versus the control parameter m  for system (1). 

We fixed 20, 35, 5a b c   and while m varies on the 

interval[50,70] , the bifurcation diagrams and corresponding 

Lyapunov exponent spectrum, as show in Fig. 3. Obviously, 

with the increase of the parameter m , the system is 

undergoing some representative dynamical routes, such as 

chaos, period-doubling bifurcations and periodic loops. 

 

 
Fig. 3. Nonlinear dynamics of system (1) for specific 

values 20, 35, 5a b c   versus the control parameter m (a) bifurcation 

diagram of x ; (b) Lyapunov exponent spectrum. 

 
Fig. 4. The stable region on the parameter plane ( , )a m . 

Fixed the parameters 35, 5b c  , and we can get the 

characteristic polynomial of the Jacobian matrix of system (1) 

at
0E is  

3 2( ) ( 5)[ +( 1) 34 35 ]p a a m         ,          (25) 

the equilibrium 0E is asymptotically stable if 1 0, 0,a m     

34 ( 1) 35a a m   and the system (1) has a transversal Hopf 

point at 0E if 1 0,a   0,m  34 ( 1) 35a a m   .    

Let 1 0,a  34 0,a  35 0,m  34 ( 1) 35 0a a m    , and 

draw the stability region on the parameter plane -a m , as show 
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in Fig. 4. In the figure, the symbol , 1,2,3,4iL i   

represents 1 0, 34 0,35 0a a m     and 34 ( 1) 35 0a a m    , 

respectively. The Hopf bifurcation conditions are satisfied on 

the curve
4L . In region (Ⅰ), we have 0, 34 ( 1) 35m a a m     

1 0,a   and all points are stable, but in other regions the 

points are unstable. 

 
Fig. 5. The stable region on the parameter plane ( , )b m . 

Fixed the parameters 20, 5a c  , and the characteristic 

polynomial of the Jacobian matrix of system (1) at
0E is 

3 2( ) ( 5)[ +21 +20(1 ) ]p b mb        ,           (26) 

the equilibrium
0E is asymptotically stable if 

1, 0,420(1 )b mb b mb    , and the system (1) has a 

transversal Hopf point at
0E if 1, 0,420(1 )b mb b mb    . 

Let 1, 0,420(1 ) 0b mb b mb     , and use MATLAB to 

draw the stability region on the parameter plane -b m , as 

show in Fig. 5. The symbol , 2,3,4iL i   represents 1,b   

0mb  and 420(1 ) 0b mb   . The Hopf bifurcation 

conditions are satisfied on the curve
4L . In region (Ⅰ), we 

have 1, 0,420(1 )b mb b mb    and all points are stable, 

but in other regions the points are unstable. 

VI. SLIDING MODE CONTROL OF CHAOTIC 

VIBRATIONS 

6.1 The design of the controller 

We designed a sliding surface with good nature and made 

the system possess  the desired properties when make the 

system limits on the sliding surface. In order to facilitate 

control, we make the system reach the sliding surface and keep 

sliding. After joining the controller, the system (1) has the 

following form 

              

1 1

2 2

3 3

4 4

20 35 ,

20 ,

5( )

4 .

x x y d u

y x xz y u d u

z xy x z d u

u x d u

    


     


    
   









，
                   (27)                

where 1 2 3, ,u u u and 4u are control inputs. We can control the 

chaos to the required range or a fixed point if we join a 

reasonable controller. 

Defined the following matrix 

20 35 0 0

20 1 0 1

5 0 5 0

4 0 0 0

 
 

  
  
 
 

A , 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
 
 

B , 

                        

1

2

3

4

d

d

d

d

 
 
 
 
 
 

d ,   

0

0

xz

xy

 
 
 
 
 
 

g , 

where A is the linear matrix of the system, B is the control 

matrix, d is the bounded perturbation matrix,and g is the 

nonlinear matrix of the system. The control goal is to let the 

system’s state  
T

1 2 3 4, , ,x x x xx tracking a time-varying 

state  
T

1 2 3 4, , ,d d d d dx x x xx . So, we can define the following 

tracking error 

                              
d e x x ,                             (28)                         

The error system can be written as  

                     
d d      e x x Ax Bg Bu d x    ,             (29)                         

Define a time-varying proportional integral sliding mode 

surface 

                        
0

( )
t

d   S Ke K(A - BL)e ,                (30) 

where 4 4 ,det( ) 0 K R KB . To facilitate the calculation, we 

let (1,1,1,1)diagK . The additional matrix 4 4L R , 

and A BL is negative definite matrix. Under the sliding mode, 

the equation 0 S S must be satisfied, where 

d d     S KBg KBLe KBu Kd KAx Kx  ,      (31) 

To meet the sliding conditions, the following controller is 

designed 

   1

1

( )

( ) ( ),

d d

sign





    

    

u g Le KB KAx Kx

KB KBg S


        (32) 

where ( )sign S is sign function. 

Proposition 3.
[17]

 Assume that the constant satisfied the 

inequality
1 2 1     , where

1 2,  are arbitrary small 

positive numbers. Then the system (27) can reach the sliding 

mode 0S in a limited time under the controller (32), and the 

state variables and the selected reference state
dx are 

identical. 

Proof. Construct the Lyapunov function
4

T 2

1

i

i

V


 S S S , 

according to (30), (31) and (32) one has 

 

 

 

T T

T

T

4 4 4

1 2

1 1 1

4 4

1 2

1 1

( )

( )

.

d d

i i i

i i i

i i

i i

sign

sign





  

  

  

 

     

    

 

  

    

  

 

S S S KBg KBLe KBu Kd KAx Kx

S Kd KBg S

S d S

S S S

S S

 

 

By the same token, we get 
4 4

T T T

1 1

, 2i i

i i

V
 

      S S S S S S S S   . 

So the proposition follows. 
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6.2 The numerical simulation 

In the case of
1 2 3 4 0u u u u    , the time-domain charts 

of the state variables of system (27) as show in Fig. 6. Fig. 6 

illustrates that the system (27) has an aperiodic motion state 

before control. 

In order to control the system (27) to the target state, we 

select the eigenvalue of A BL are  5, 5, 5, 5    P . The 

pole-placement method is adopted to get the following matrix 

                      

15 35 0 0

20 4 0 1

5 0 0 0

4 0 0 5

 
 

 
 
 
 

L .                     (33) 

 
(a) T ime domain chart  of x before control 

 
  (b) T ime domain chart  of y before control 

 
(c) T ime domain chart of z before control 

 
  (d) T ime domain chart of u before control 

Fig. 6. T ime domain charts of state variables before control. 

Select the proportional integral sliding mode surface as 

follows:  

                         

1 1 1
0

2 2 2
0

3 3 3
0

4 4 4
0

5 ( ) ,

5 ( ) ,

5 ( ) ,

5 ( ) ,

t

t

t

t

S e e d

S e e d

S e e d

S e e d

 

 

 

 

  



 

  

  









                          (34) 

 
(a) T ime domain chart  of x after control   

 
    (b) T ime domain chart  of y after control 
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(c) T ime domain chart of z after control   

 
   (d) T ime domain chart of u after control 

Fig. 7. T ime domain charts of state variables after control. 

Set the initial value    1 2 3 4(0), (0), (0), (0) 0.1,0.1,0.1,0.1x x x x  , 

and the reference state
1 2 3 4d d d d dx x x x x    .  

Following is the control signal               

 

   

 

   

 

1 1 2 1

2 1 2 4

2

3 1 3

4 1 2 4

15 35 15 ( ),

20 4 18

( ),

5 10 ( ),

4 5 4 ( ).

d d

d d

d d

d d

u e e x x sign S

u xz e e e x x

xz sign S

u xy e x x xy sign S

u e e x x sign S









     


     


 


       


     









  (35) 

 
(a) T ime domain chart  of 1S after control 

 
    (b) T ime domain chart  of

2S after control 

 
(c) T ime domain chart of

3S after control    

 

 (d) T ime domain chart of 4S after control 

Fig. 8.T ime domain charts of sliding surfaces after control. 

6.3 Control to the fixed point 

We can stabilize the system (27), and let the system’s state 

to reach any point by this method. In this paper, we select the 

fixed point  0.1,0.1,0.1,0.1 , reference state 0.1d x , small 

parameter 3  and the initial value of sliding mode 

surface    1 2 3 4(0), (0), (0), (0) 0.1,0.1,0.1,0.1S S S S  . We 

activated the controller ( )tu at 0.1t s , and get the time 

domain charts of state variables and sliding surfaces as show 

in Fig. 7 and Fig. 8, respectively. 
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The Fig. 7 and Fig. 8 indicate that the system (27) track to the 

reference state  0.1,0.1,0.1,0.1 ultimately and the sliding 

mode surface S become zero after join the controller. It’s 

proves that the system (27) reached the sliding mode. 

6.4 Control to the periodic orbit 

We can also stabilize the system (27), and let the system’s 

state to reach a periodic orbit. We select the reference 

state sin( )d tx . Then activated the controller ( )tu at 1t s , 

and we get the time domain charts of state variables as show in 

Fig. 9. Obviously, the system (27) tracks to reference 

state sin( )d tx to the periodic orbit ultimately. 

 
(a) T ime domain chart  of x after control   

 
   (b) T ime domain chart  of y after control 

 
(c) T ime domain chart of z after control     

 
  (d) T ime domain chart of u after control 

Fig. 9. T ime domain charts of state variables after control. 

VII. CONCLUSION 

The paper investigated the basic dynamic characteristics of 

a new hyperchaotic system. First, the existence and local 

stability of the equilibrium are discussed. Then, we 

choose m as the bifurcation parameter and studied the 

existence and stability of Hopf bifurcation of the system by 

using the center manifold theorem and bifurcation theory. In 

addition, in order to eliminate the chaotic vibration, we used 

sliding mode method and controlled the system to any fixed 

point and any periodic orbit. Numerical simulation results 

show that the hyperchaotic system (1) occurs Hopf 

bifurcation when the bifurcation parameter m passes through 

the critical value, and the direction and stability of Hopf 

bifurcation can be determined by the sign of 
1l . Then the 

sliding mode method can make the system track target orbit 

strictly and smoothly with short transition time. Apparently 

there are more interesting problems about this chaotic system 

in terms of complexity, control and synchronization, which 

deserve further investigation. 
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