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Abstract—In this paper, the problem of exponential stability 

is investigated for a class of grey stochastic time-delay systems. 
However, to date, few authors have considered the stability 
analysis problem of grey systems. The main aim of the paper is 
to fill gaps. By constructing a suitable Lyapunov-Krasovskii 
functional, and using decomposition technique, novel sufficient 
stability conditions are obtained, which ensure our considered 
system in the mean-square exponential stability. In addition, an 
example is given to show the correctness and effectiveness of the 
obtained criteria. The results will appear in the near future. 
 

Index Terms—Exponential Stability, Time-Delay, Grey 
Systems, Lyapunov-Krasovskii Functional, Decomposition 
Technique 
 

I. INTRODUCTION 
t is well known that time delays exist in many practical 
systems, such as communication, electronics, and chemical 

systems. Time delays frequently occur in various engineering 
systems, which lead to oscillation, instability, or performance 
degradation of the systems [1]. For instance, on account of 
limited bandwidth, the current networks often cause possible 
time delays via network communication. Therefore, the study 
of systems with time delays has become a subject of intensive 
research activity, and a great number of results have been 
obtained, see [2-10]. In [4], based on the Lyapunov stability 
theory and the linear matrix inequality approach, the author 
has proposed the stability criteria of dynamic systems with 
mulitple time-varying delays and nonlinear uncertainties. In 
addition, stochastic modeling also has important effects in 
many fields of science or industry, for example, economics, 
ecology, and information systems, etc [11-12]. Thus, the 
study of stochastic systems has become very important, and 
much increasing attention has been focused on the stability 
problem of stochastic systems in recent years. Up to now, 
many important results have been reported [13-18]. In [15], 
the authors have provided several sufficient criteria to ensure 
stochastic systems in the mean-square exponential stability.  

Practically, due to various reasons such as the lack of 
information source or unknown uncertainties, we will not 
establish an exact mathematical model of an object or process 
easily, and we can not obtain some parameters of systems 
accurately. So, we have to evaluate the parameters of systems. 
It should be pointed that, when the parameters are established 
by grey numbers, the systems will become grey (uncertain)  
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systems, see [19]. Hence, it is necessary to study the stability 
problem of grey systems. However, there are few results on 
this problem [19-22, 24]. In [19], the authors have studied the 
exponential stability for the grey stochastic systems with 
distributed delays and interval parameters, and have proposed 
several stability criteria, which guarantee the grey system in 
p-moment exponential stability.  

Inspired by the above works, we are concerned with the 
exponential stability problem for a class of grey time-delay 
stochastic systems in this paper. First, we construct a suitable 
Lyapunov-Krasovskii functional. Then, using decomposition 
technique of the continuous matrix-covered sets of grey 
matrix, we will obtain two novel stability criteria to ensure 
the grey system in the mean-square exponential stability. In 
the end of this paper, an example is presented to illustrate the 
effectiveness of the obtained stability criteria.  

Notations: The superscript ""T  represents the transpose, 
nR and nnR  denote the n-dimensional Euclidean space and 

the set of all n ×n real matrices.  denotes the Euclidean 

norm for vector or the spectral norm of matrices. The notation 
YX  (respectively YX  ) where X and Y  are real 

symmetric matrices, means that YX  is positive 
semi-definite (respectively positive definite). Moreover, 
let   PFF tt ,,, 0  denote a complete probability space 

with a filtration   0ttF satisfying the usual conditions. Let 

 nRC ];0,[   denote the family of all continuous nR -valued 

functions  on ]0,[  . Let )];0,([2
0

n
F RL   denote the family 

of all 0F -measurable bounded  nRC ];0,[  -valued random 

variables  0:)(  .   
 

II. PRELIMINARIES AND PROBLEM FORMULATION  
Consider the following grey stochastic time-delay system: 
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where )(A and )(B are grey (uncertain) n×n matrices,  

)()( a
ijA  , )()( b

ijB  , and a
ij , b

ij  are called 

grey elements of )(A and )(B . 
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are the continuous matrix-covered sets of )(A and )(B , 

)ˆ(A and )ˆ(B are whitened (deterministic) matrices 

of )(A and )(B , ],[ ijij aa  and ],[ ijij bb  are the 

number-covered sets of a
ij , b

ij . 

 
Throughout the paper, we make the following assumptions 

and definition on system (2.1): 

(A1) nnnn RRRRH 
 : , and satisfies the local 

Lipschitz condition. 
(A2) if there exist scalars 0 , 0 , for arbitrary 

 RRRHtyx nn:),,( , the following inequality 
holds: 

    22,,,,[ yxtyxtyxTrace T   

Definition 2.1. [19] System (2.1) is exponentially stable in 

mean square, if for all )];0,([2
0

n
F RL  and whitened 

matrices ],[)ˆ( aa ULA  , ],[)ˆ( bb ULB  , there exist 

scalars 0r and 0C , such that  

0,)(sup);( 2

0

2
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

 tECetxE rt  

Now, let us introduce the following lemmas, in particular, 
lemma 2.1, which will be used in the proof of our main 
results. 
Lemma 2.1. [19] If nmijA  )()( is a grey matrix, 

],[ ijij aa is a number-covered sets of grey element ij , then 

for arbitrary whitened matrix ],[)ˆ( aa ULA  , we have 

(1)  ALUA aa 
2

)ˆ(      

(2)  
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0 aa LUA       

(3)  
22

)ˆ( aaaa LULUA 



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where nmija aL  )( , nmija aU  )( , nmij
ijij

r
aa

A 


 )ˆ

2
( , 

ijr̂  is a whitened number of ij , ]1,1[ˆ ijr , ]1,1[ is a 

number-covered sets of ij , and ij  is a unit grey number. 

Lemma 2.2. [23] Let N be real matrix of appropriate 
dimensions, then for any vectors x , y  and ε > 0, we have 

NyNyxxNyx TTTT 12    

III. MAIN RESULTS AND PROOFS  
In the following theorems, two novel stability criteria will 

be derived, which guarantee system (2.1) in the mean-square 
exponential stability. 
Theorem 3.1. If there exist scalars 01  , 02  , such 
that 

0)
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Then, for all )];0,([2
0

n
F RL  , we have 

2),( txE  

0,)(sup)1( 2

0
2 



 tEeek rtr                (3.2) 

Here, r is the unique positive solution of the following 

equation 

0)
22

( 21max 





 r
T
a

T
aaa ekkLULUr    (3.3) 

That is, system (2.1) is exponentially stable in mean square. 

Proof  First, we introduce a Lyapunov-Krasovskii functional: 

dssxsxetxtxettxV
t

t

TrsTrt  
 )()()()()),((     (3.4) 

Then, by using the weak infinitesimal operator along the 

trajectories of system (2.1), we have 

)),(( ttxLV
)()()()()1( )(   txtxetxtxer TtrTrt  

 )()ˆ()(2)()ˆ()(2  txBtxtxAtxe TTrt  

    ]),(),(),(),([ ttxtxttxtxTrace T    (3.5) 

By Lemma 2.1 and Lemma 2.2, it follows that 

)()ˆ()(2 txAtxT    

)()()
22

(max txtxLULU T
T
a

T
aaa 




   

)()(
2

2 txtxLU Taa                                            (3.6) 
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and 

)()ˆ()(2  txBtxT  

)()(1 txtxT   
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(()1( max2
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1 

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)()(
2

)1(
2

1
2

1
1 


  txtxLU Tbb          (3.7)                                                

By assumptions (A2), we have 

   ]),(),(),(),([ ttxtxttxtxTrace T   

)()()()(  txtxtxtx TT
                            (3.8) 

Substituting of (3.6) - (3.8) into (3.5), we can get 
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Using Itô’s differential formula and integrating both sides 

from 0 to t> 0 and then taking expectation, we have   
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and 

dssxEe
t rs 2
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From (3.10) and (3.11), noting the definitions of 1k , 2k , we 

can obtain that 

2

0
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Let 
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
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aaa ekkLULUrrf 21max )

22
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Then,  rekrf 2
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21max )
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




 , 

and )(f , when (3.1) holds, (3.3) must have a 

uniquely positive solution r . 

Therefore, we have 
2

0
2 )(sup)1()),(( 



 EekttxEV r  

That is, 

0,)(sup)1(),( 2
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
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which implies that system (2.1) is exponentially stable in 

mean square. This completes the proof of Theorem 3.1. 

 

Of cause, the stability criterion (3.1) has some shortages.  

When )
22

(max

T
a

T
aaa LULU 




  is more than or equal to 

the negative, we will not confirm whether system (2.1) is the 

mean-square exponential stability. By the similar method, we 

can solve this problem, see [22].  

First, by Lemma2.1, the whitened system of system (2.1) can 

be written as 

)(tdx  

))()(()())ˆ([(  txtxLtxLA bb   
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So, we introduce the following functional 
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From (3.13) - (3.15), the whitened system of system (2.1) can 

be rewritten as 

 



















0),];0,([,

0),(),(),(
)](),()())ˆ([(

)(

2
0 0

tRLx

ttdwttxtx
dttBxtxHLtxLA

tdx

n
F

bb

  (3.16)                                      

 

To prove Theorem 3.2, the following lemma is necessary. 

Lemma 3.1 For all )];0,([2
0

n
F RL  and 0t , the above 

functional ),( txH satisfies  
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Proof   First, noting the definition of ),( txH , we have 
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By assumptions (A2), we see 
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Combining (3.18) - (3.20) together and noting the definitions 

of 1k , 2k , then we can obtain 
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Using (3.21) and integrating both sides, we can get 
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Similarly, 
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Substituting of (3.23) - (3.24) into (3.22), and noting the 

definitions of 1l , 2l and )( , then (3.17) holds. The proof 

of Lemma 3.1 is completed. 

 
By (3.16) and Lemma 3.1, we will present another criterion 
of exponential stability in the mean square for system (2.1). 
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Theorem 3.2  If there exist scalars 01  , 02  , such that 
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Then, for all )];0,([2
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Here, r is the unique positive solution of the following 

equation     
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That is, system (2.1) is exponentially stable in mean square. 

 

Proof   First, following the similar line of the proof of 

Theorem 3.1, we have 

)),(( ttxLV   

)
2222

([ max

T
b

T
bbb

T
a

T
aaa LULULULUr    

)()(]1 txtxem Trt )()(2  txtxem Trt  

2
max

1
1 )),(())

2
()

2
(( ttxHeLULU rtbbTbb 

   (3.28)                            

Using Itô’s formula and integrating both sides, then taking 

expectation and noting that definition of ),( txH , we get 
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and )(g , If (3.25) holds, (3.27) must have a 

uniquely positive solution r .  

Therefore, we can get 
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That is, (3.26) holds, the proof of Lemma 3.2 is completed. 
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Remark 3.1. If AA )( , BB )( , system (2.1) will 
become the following deterministic stochastic system with 
time delays: 
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Let AUL aa  , BUL bb  , and by using the 
similar methods of Theorem 3.1 and Theorem 3.2, we obtain 
the following stability criteria for system (3.30). 
Corollary 3.1. If there exist scalars 01  , 02  , such 
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Here, r is the unique positive solution of the following 

equation 
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That is, system (3.30) is exponentially stable in mean square. 

Corollary 3.2.  If there exist scalars 01  , 02  , such 

that 
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Here. r is the unique positive solution of the following 

equation  
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That is, system (3.30) is exponentially stable in mean square. 

IV. Examples 
Consider a grey stochastic time-delay system: 
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aL , aU and bL , bU  are the lower bound and upper bound 

matrices of )(A and )(B . 
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By using the program in [19, 22], we can calculate 1 , 2  
and get 5587.1r  or 6328.1r . Applying Theorem 3.1 
or Theorem3.2, it is found that system (4.1) is exponentially 
stable in mean square. 

V. Conclusion  
In this paper, the exponential stability problem has been 

investigated for a class of grey stochastic systems with time 
delays. By using the Lyapunov-Krasovskii method, Itô’s 
differential formula, and decomposition technique, two 
stability criteria have been obtained. The obtained criteria 
will guarantee the grey system in mean-square exponential 
stability. In addition, an illustrate example has been presented 
to show the correctness and effectiveness of the main results. 
The corresponding results will appear in the near future.  
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