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New Stability Criteria for a Class of Stochastic
Systems with Time Delays

Jian Wang

Abstract—In this paper, the problem of exponential stability
is investigated for a class of grey stochastic time-delay systems.
However, to date, few authors have considered the stability
analysis problem of grey systems. The main aim of the paper is
to fill gaps. By constructing a suitable Lyapunov-Krasovskii
functional, and using decomposition technique, novel sufficient
stability conditions are obtained, which ensure our considered
system in the mean-square exponential stability. In addition, an
example is given to show the correctness and effectiveness of the
obtained criteria. The results will appear in the near future.

Index Terms—Exponential Stability, Time-Delay, Grey
Systems, Lyapunov-Krasovskii Functional, Decomposition
Technique

I. INTRODUCTION

t is well known that time delays exist in many practical

systems, such as communication, electronics, and chemical
systems. Time delays frequently occur in various engineering
systems, which lead to oscillation, instability, or performance
degradation of the systems [1]. For instance, on account of
limited bandwidth, the current networks often cause possible
time delays via network communication. Therefore, the study
of systems with time delays has become a subject of intensive
research activity, and a great number of results have been
obtained, see [2-10]. In [4], based on the Lyapunov stability
theory and the linear matrix inequality approach, the author
has proposed the stability criteria of dynamic systems with
mulitple time-varying delays and nonlinear uncertainties. In
addition, stochastic modeling also has important effects in
many fields of science or industry, for example, economics,
ecology, and information systems, etc [11-12]. Thus, the
study of stochastic systems has become very important, and
much increasing attention has been focused on the stability
problem of stochastic systems in recent years. Up to now,
many important results have been reported [13-18]. In [15],
the authors have provided several sufficient criteria to ensure
stochastic systems in the mean-square exponential stability.

Practically, due to various reasons such as the lack of
information source or unknown uncertainties, we will not
establish an exact mathematical model of an object or process
easily, and we can not obtain some parameters of systems

accurately. So, we have to evaluate the parameters of systems.

It should be pointed that, when the parameters are established
by grey numbers, the systems will become grey (uncertain)
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systems, see [19]. Hence, it is necessary to study the stability
problem of grey systems. However, there are few results on
this problem [19-22, 24]. In [19], the authors have studied the
exponential stability for the grey stochastic systems with
distributed delays and interval parameters, and have proposed
several stability criteria, which guarantee the grey system in
p-moment exponential stability.

Inspired by the above works, we are concerned with the
exponential stability problem for a class of grey time-delay
stochastic systems in this paper. First, we construct a suitable
Lyapunov-Krasovskii functional. Then, using decomposition
technique of the continuous matrix-covered sets of grey
matrix, we will obtain two novel stability criteria to ensure
the grey system in the mean-square exponential stability. In
the end of this paper, an example is presented to illustrate the
effectiveness of the obtained stability criteria.

Notations: The superscript" 7" represents the transpose,
R"and R"™" denote the n-dimensional Euclidean space and
the set of all n xn real matrices. ”” denotes the Euclidean

norm for vector or the spectral norm of matrices. The notation
X>Y (respectively X>Y ) where X and Y are real

symmetric matrices, means that X—Y is positive
semi-definite (respectively positive definite). Moreover,

let (Q’ F, {Ft }IZO )
with a filtration {Ft}

P) denote a complete probability space
10 Satisfying the usual conditions. Let
C([—‘C,O];R" ) denote the family of all continuous R" -valued
functions @ on[—T,0]. Let LZFO (F=0l;R") denote the family
of all /) -measurable bounded C([—‘C,O];R" )-Valued random

variables § = {E_,(@) :—1<0< 0} .

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the following grey stochastic time-delay system:
dx(t) = [A®)x(t) + B(®)x(t — ) dt

+G(x(l‘),X(t_T)’t)dW(t)’ t20 2.1

X, =& Ee L ([-t0l:R"), -1<1<0

where A(®) and B(®) are grey (uncertain) nxn matrices,
A®)=(®;), B(®) = (®g) , and &7, ®f; are called
grey elements of A(®)and B(®).
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[L,.U,]= {A(®) (a;):a,<a, <a i, j=12,..n}
[L,:U,1=B®) = (b,):b, <b, <by.i.j =121
are the continuous matrix-covered sets of 4A(®) and B(®),

A(®) and B(®) are whitened (deterministic) matrices

of A(®) and B(®) , [a;,a,] and [b,,b

by, ] are the

1]’

b
number-covered sets of ®fj , ®ij .

Throughout the paper, we make the following assumptions
and definition on system (2.1):
(A1) H:R"xR" xR, = R™, and satisfies the local

Lipschitz condition.

(A2) if there exist scalars >0, >0, for arbitrary

x,y,t)e H :R"xR"xR,_, the following inequality
y +
holds:

Trace[c” (x,y,t)cs(x,y,t) < oc|x|2 + [3>|y|2
Definition 2.1. [19] System (2.1) is exponentially stable in

mean square, if for all &eLf,o([—r,O];R") and whitened

matrices A®)€[L,,U.]. B®)e[L,,U,] .

there exist
scalars 7 > Qand C > 0, such that

2
, 120

Ex(tE) <Ce™

Now, let us introduce the following lemmas, in particular,
lemma 2.1, which will be used in the proof of our main
results.

Lemma 2.1. w15 @ grey matrix,

[19] If A®)=(&,)

[a, .]is a number-covered sets of grey element ®ij, then

1]’

for arbitrary whitened matrix A(@) €[L,,U,], we have

1y A@®)="T ey g
@)OSAMJ%_%
o) HA(®)H U,+L, Ua;La
where L, Z(ﬁ)mxn U, =(q, @) e ii)mxn ’

7 is a whitened number of 7, , 7; € [—1,1] , [-L1]is a
number-covered sets of ., andy,; is a unit grey number.

Lemma 2.2. [23] Let N be real matrix of appropriate
dimensions, then for any vectors X , ¥ and € > 0, we have

2x"Ny<ex"x+e'y'N"Ny

III. MAIN RESULTS AND PROOFS

In the following theorems, two novel stability criteria will
be derived, which guarantee system (2.1) in the mean-square
exponential stability.

Theorem 3.1. If there exist scalars €, > 0,¢&, >0,
that

P (

such

U,+L, U +L
2 2

)+k +k, <0 3.1

where

h:nzm_

H+e +a

U, +Lb)T(Ub +L, )

2 2

2

+f

k2 = 8;1 (1 + 82 )}\‘max ((

_ U -L
+g b__b

Then, for all§ EL?,O ([Ft,0];R"), we have

Ex1.8)

<(l+kte™)e™”

(3.2)

-1<0<0
Here, 7 is the unique positive solution of the following
equation
U,+L,
2

That is, system (2.1) is exponentially stable in mean square.

. ( U +L

)+ k +ke =0 (3.3)

Proof First, we introduce a Lyapunov-Krasovskii functional:

V(x(e),0) = "5 (0x(t) + | t_re”xr(s)x(s)ds (3.4)

Then, by using the weak infinitesimal operator along the

trajectories of system (2.1), we have
LV (x(t),t)
=(r+De"x" (O)x(t) —e "X (t —1)x(t - 1)
+e" {2xT (D) A®@)x(t) + 2x" (1) B(®)x(f — 1)
+Trace[c’ (x(t),x(t — ‘C),l‘) G(x(t),x(t - ‘C),l‘)]} (3.5)

By Lemma 2.1 and Lemma 2.2, it follows that

2x7 (1) A(®)x(7)

sxm(U’*;L Vs Loy (ox()
—+4EL%§£Q-xTO)xU) (3.6)
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and
2x7 (1) B(®)x(f — 1)

<gx’ (t)x(t)

T A e
+g'(1+¢)") Us =L, x'(t=1)x(t—=1) (3.7)
By assumptions (A2), we have
Trace[c” (x(t),x(t -1), t)cs(x(t),x(t -1), t)]
<ax" (O)x(t)+Px" (t—1)x(t —1) (3.8)

Substituting of (3.6) - (3.8) into (3.5), we can get
LV (x(t),1)

T T
S[l+r+kmax(U“ L, +U“ +L“)
2 2
—-L
+ 2‘ Yom L), g, +ale”x" (H)x(¢)

o (14 ) (C 2T (252

Ub — Lb

+g'(1+¢,) +Ble X" (t —1)x(t — 1) 3.9)

Using It6’s differential formula and integrating both sides

from 0 to t> 0 and then taking expectation, we have

EV(x(£),t)
= EV(x(0).0)+ | (:EL V (x(s),5)ds

T T
< sup E&(0) +[1+r+kmax(U tL, U +L
-1<0<0 2

+2 Y.~ L, + ¢, +oc]J.(:erSEx(s)|2ds

- U,+L U,+L
+[8]](1+82)7\'max(( b) ( b))

2

Jf(‘31_1(1+8£])M +B]j(:e”Ex(s—r)|2ds (3.10)
and

J.(: e" E\x(s— r)|2ds
<e” J. ”’Ex(u)| du+rte” sup E|§(6)| (3.11)

From (3.10) and (3.11), noting the definitions of &, ,k,, we
can obtain that
EV(x(2),t)
<(1+kyte™) sup E[EO)

-1<0<0

T T
+[r+kmax(U”;rL” +U” ;L")

+hy + ke[ e Elx(s) ds (3.12)

Let

U,+L, U +L
2 2

Then, £/ (r)=1+k,te™. Since f'(r)>0,

S =r+h,( )+ k + ke

U,+L, U + L
2 2

and f(+00) =+0o0 , when (3.1) holds, (3.3) must have a

J0) =2, (

)+ k +k,,

uniquely positive solution 7 .
Therefore, we have
2
EV(x(1),t) <(1+kyte™) sup EJE(0)
-1<0<0

That is,

Ex(t,E) <(+kte™)e™
-1<0<0

which implies that system (2.1) is exponentially stable in

mean square. This completes the proof of Theorem 3.1.

Of cause, the stability criterion (3.1) has some shortages.

U,+L, U+L
2 2

the negative, we will not confirm whether system (2.1) is the

When A, (—* %) is more than or equal to

mean-square exponential stability. By the similar method, we
can solve this problem, see [22].
First, by Lemma?2.1, the whitened system of system (2.1) can

be written as

dx(t)
= [(A(®) + L,)x(1) - L, (x(£) = x(t 7))
+ ABx(t —1)]dt + o(x(£), x(t — T),¢ )Jdw(t)

Since

x(t)—x(t—1)
[ [A@)x(5) + B@)x(s — DMy

(3.13)
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+ [ olx(s)x(s —v.shdwls), 12T (14
So, we introduce the following functional
[ [A®)x(s)+ B@)x(s—1)s
Heuty =1 ] OO = Ds)duls), 1275 o

0Lt

x(t)—x(t+0),

From (3.13) - (3.15), the whitened system of system (2.1) can

be rewritten as
dx(?)
=[(A(®) + L, )x(t) — L, H(x,t) + ABx(t — 1)\t

+o(x(t),x(t — 1), )dw(t), >0 (3.16)

—1<t<0

x, =& e Ly ([FtOLR"),

To prove Theorem 3.2, the following lemma is necessary.

Lemma 3.1 For all&ELé)([—’E,O];R")andt >0, the above

functional H (x,1) satisfies

[

<(kre™ +k,te’™) J.t e’SE|x(s)|2ds

H(x(s),s)| ds

+ k70 €™ sup E|§(6)| + sup w(0)  (3.17)
—-1<0<0 —1<0<0
where
I, = 41( PR I P ) + 20,
2 2
1, = 41( Ub;Lb + Ub;Lb ) 428,

w(0) = jer x(s)—x(s — )| ds

Proof First, noting the definition of H (x,) , we have

E|H(x(s), s)|2

< 2E‘ Lie[A(@)x(s) + B(®)x(s —1)lds 2

+ 2E‘jtt+ec(x(s),x(s — t),s)dw(s) 2 (3.18)

Obviously,

E‘ [ ;e[A(@))x(s) + B(®)x(s — 1) s 2

<t :+6E[HA(®)H |x(s)|+HB(®)H |x(s—1:)|] ds

l]; _-lg
4 [——a]

<27
( 2

)? J.tt+9 E|x(s)|2 ds

U,+L,
2

U,—L,
2

T M . E|x(s 1:)| ds (3.19)

By assumptions (A2), we see

EU:+9 G(x(s), x(s —1), s)dw(s) 2

= “Lie Elx(s)f ds + Bf,ie Elx(s—)[ ds (3.20)

Combining (3.18) - (3.20) together and noting the definitions

ofk, , k, , then we can obtain
E[H(t,x(0))
<k[ Exs)\fds+k[ E “ds, 1>
< ‘L+e |x(s)| s + ZJ.t+G |x(s—1:)| s,t>1 (3.21)
Using (3.21) and integrating both sides, we can get
4 s
j e"E
0
v s 2 L ors
:j e Ex(s)—x(s—r)| ds+je E

< sup y(0)+k, j j E|x(u)| duds

—1<0<0

H(x(s),s)[ ds

H(x(s),s)[ ds

+k, J. :e"' J. ;e E |x(u - 17)|2 duds (3.22)
Furthermore,
J. :e“ J. :+e E |x(u - r)|2 duds
<te’” I ; e"EIx(s)Fds +17e” sup E|§(€))|2 (3.23)
-1<0<0

Similarly,

J. J. E|x(u)| duds <te” J. “Ex(s)| ds (3.24)

Substituting of (3.23) - (3.24) into (3.22), and noting the
definitions of /,,/,and \y(0), then (3.17) holds. The proof
of Lemma 3.1 is completed.

By (3.16) and Lemma 3.1, we will present another criterion
of exponential stability in the mean square for system (2.1).
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Theorem 3.2 If there exist scalarsg, > 0, €, > 0, such that EV(x(2),1)
y (Uutl LD Uyrn, ULvL o =EVO0+ [ ELV (x(s),5)ds
2 2 2 cpran (Yotle ULAL U, U+L)
+m, +m, +m; <0 (325 2 2 2
where +m +me” +e ' (lte” +1,te’™)
Ua_ a
my=1+2 4o+, 4o X (C 0 (P 0] [ ™ Bfe(s)f
2
— U,-L, B +[1+mre™ +¢ ' Lv* e’
U+L, U +L

(25 (F22)] sup O
=65 1) (P (P )

- U,+L, U +L
2 . pn +¢& ]kmax(( b) ( b)) Sup W(e)
Then, for all&eLFo ([-t,0L;R"), we have <020 (3.29)
2 Let
Elx(t,8)|
L g(r)
<[A+myte™ +g Lt e
e, pan (Yot UI+L Uptl, UT+LT)
U+L, U +L 2 = max
X R (= ”) (= ”)) SuePOE|§(9)| 2 2 2
U AL, U +L o +m, +me” +¢ (lre” +1,1e”)
5,0 (2752 (2752 sup w(O)]e " (.26 U+, U, +1
<0<0 max (( b) ( b)) M
Here, 7 is the unique positive solution of the following
. Then,
equation
/ _ T -1 2 rt 2 2rt
. (U+L U+ U+L U+L) g(r)=l+myte” +¢, ([T7e" +2,1°e™)
'max U +L U + L
2 2 2 P () (FE22)

+m, +me” +¢ (lre” +1,1e”) /
Since g'(r) >0,

U, +Lb U, +Lb
X (=) (F =) =0 (3.27) U+l UL+l Up+l, UL +L,,
80 =1 s )
That is, system (2.1) is exponentially stable in mean square.
+m, +m, +m,
Proof First, following the similar line of the proof of and g(+00) = 400, If (3.25) holds, (3.27) must have a
Theorem 3.1, we have . .. .
uniquely positive solution 7 .
LV (x(@).1) Therefore, we can get
U +L, U+LT UL U+LT EV(x(t),t
<[+ ) (0.0
2 2 2 <[l+mzre™ +g'L,t° e’
+m,Je" x" (£)x(t) +m,e" x" (t—1)x(t — 1) U, +L

Mo (5 )T( = ))]_SEGEOE £@)°

+8_]7Mmax((U +Lb) (U +Lb)) "

+s“>»max((U ey (U “8)) sup w(®)

Using It6’s formula and integrating both sides, then taking _1<6<0

expectation and noting that definition of H (x,?) , we get That is, (3.26) holds, the proof of Lemma 3.2 is completed.

(Advance online publication: 14 May 2016)
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Remark 3.1. If A(®)= A4, B(®) = B, system (2.1) will

become the following deterministic stochastic system with
time delays:

dx(t) =[Ax(t) + Bx(t —v)dt + o(x(t), x(t — 7).t )dw({)

X, =&, E_,eLZFO([—T,O];R"), —-1<t<0
(3.30)

Let L, =U,=A4, L,=U, =B, and by using the

similar methods of Theorem 3.1 and Theorem 3.2, we obtain
the following stability criteria for system (3.30).

Corollary 3.1. If there exist scalars € >0,€, >0, such

that A (A+A" )+ p, +p, <0 (3.31)

where
p=1l+¢g +a
Py =8 (1+8,)h,, (B'B)+f

max

Then, for all§ eLio ([~*,0;R"), we have

Ex1.8)

<(+k,te™)e” sup E[E(0)

-1<0<0

2
, 120

(3.32)

Here, 7 is the unique positive solution of the following

equation
r4d (A+A)+p +p,e™=0 (3.33)

That is, system (3.30) is exponentially stable in mean square.

Corollary 3.2. If there exist scalarsg, > 0,€, > 0, such

that
A (A+ A" +B+B") +q,+q,<0 (3.34)
where
q,=l+¢g +¢,+a+p
QZ = 8;1(11 + lZ)Txmax (BTB)
Then, for all§ EL%([—’E,O];R"), we have
2
Elx(t,8)|
<[(1 +¢,'LT* e x A, (B B) sup E[&0)
—1<0<0
+g '\, (B"B) sup y(0)]e" (3.35)

—1<0<0
Here. 7 is the unique positive solution of the following

equation

r+A, (A+A"+B+B") +¢q,

+g ' (re™ +1te”™) A (B'B)=0  (3.36)

That is, system (3.30) is exponentially stable in mean square.

IV. Examples

Consider a grey stochastic time-delay system:

dx(t) = [A(®)x(1) + B(®)x(t —0.5)dt
+0(x(2),x(t —0.5),t) dw(?)

4.1
x, =& e L ([-0.50];R%), —05<1<0
where

(=332 020 -3.18 031 |
L, = ; U, =

| 022 -331 030 -3.42

[-1.13 022 -1.10 0.23 |
L, = ; U, =

| 023 -1.15 032 -1.08

L,,U,andL,,U, are the lower bound and upper bound
matrices of A(®)and B(®).

1
—x,(£)sin(x, (¢ — 0.5)
o(x(t),x(t—0.5),t)=| 2
% (Osin(x,(1-0.5)

and
Trace[c” (x(t),x(t — 0.5),t)0(x(t),x(t - 0.5),t)]
<0.25x°(t)

By using the program in [19, 22], we can calculate €, ,¢€,

and get »=1.5587 or » =1.6328. Applying Theorem 3.1
or Theorem3.2, it is found that system (4.1) is exponentially
stable in mean square.

V. Conclusion

In this paper, the exponential stability problem has been
investigated for a class of grey stochastic systems with time
delays. By using the Lyapunov-Krasovskii method, Itd’s
differential formula, and decomposition technique, two
stability criteria have been obtained. The obtained criteria
will guarantee the grey system in mean-square exponential
stability. In addition, an illustrate example has been presented
to show the correctness and effectiveness of the main results.
The corresponding results will appear in the near future.
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