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The New Estimates of Diagonally Dominant
Degree for the Perron Complement of Three
Known Subclasses of [{-matrices

Jingjing Cui, Guohua Peng, Quan Lu and Zhong Xu

Abstract—The theory of Perron complement is very impor-
tant in many fields such as control theory and computational
mathematics. In this paper, some new estimates of diagonally
dominant degree for the Perron complement of matrices are
derived by using the entries and spectral radius of the original
matrix, which are better than the corresponding ones obtained
by Wang and Liu(J. Inequal. Appl. 2015:9, 2015). Finally, a
numerical example is provided to confirm the theoretical results
obtained in this paper.

Index Terms—Perron complement, diagonally dominant de-
gree, H-matrix, nonnegative irreducible matrix, spectral radius

I. INTRODUCTION

OR a positive integer n, N denotes the set {1,2,---,n},

and R™*"(C™*™) denotes the set of all real (complex)
matrices throughout. Let A = (a;;) € C"*"™(n > 2). Denote
| Al = (lai;]) and

Ri(A) = layl, Si(A) =) lazl, i€N,
Jj#i i

N,.(A) = {i:]ay| > Ri(A),i € N},

NC(A) = {Z : |aii| > Sl(A),Z S N}

The comparison matrix of A, denoted by u(A) =
(14ij)nxn, is defined to be
if i =7,

Hij = { if i+ j.
A matrix A is called a nonsingular M -matrix if there exist a
nonnegative matrix B and a real number s > p(B) such that
A = sI — B, where p(B) is the spectral radius of B. It is
well known that A is a nonsingular H-matrix if and only if
1(A) is a nonsingular M-matrix. We denote by H,, and M,
the sets of all n X n H-matrix and M -matrix, respectively.

Recall that A is a (row) diagonally dominant matrix (D,,)
if foralli=1,2,---,n,

|aij]
—laisl,

lasi| > Ri(A). (D
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A is a doubly diagonally dominant matrix (DD,,) if for all
i,j € N,i# j,
|asillaj;| > Ri(A)R;(A). 2)

A is a ~y-diagonally dominant matrix (D)) if there exists
v € [0,1] such that

A is a product y-diagonally dominant matrix (PD)) if there
exists v € [0, 1] such that

|aii| > [Ri(A)][Ci(A)] 7,

If all inequalities in (1)-(4) hold, then A is said to
be a strictly (row) diagonally dominant matrix (SD,),
a strictly doubly diagonally dominant matrix (SDD,), a
strictly ~y-diagonally dominant matrix (SD)) and a strictly
product y-diagonally dominant matrix (S P D)), respectively.
As in [1] and [2], for 1 < ¢ < n and v € [0,1],
we call \aii\ — RZ<A), |a“| — ’YRZ(A) — (1 — ’Y)CZ(A) and
la;i| — [Ri(A)][C;(A)]}~7 the i-th (row) dominant degree,
~-dominant degree and product y-dominant degree of A,
respectively.

For A € C™*™, nonempty index sets o, 5 C N, we denote
by || the cardinality of « and o = N — « the complement
a of in N . Let A(a, B) denote the sub-matrix of A lying
in the rows indexed by « and the columns indexed by fS.
A(a, «) is abbreviated to A(«). If A(«) is nonsingular, then
the Schur complement of A(«) in A is given by

AJa = AJA(a) = A(d)) — A(d/, )[A(a)] T Ao, ).

Vi € N. )

Meyer [3] introduced, for an n X n non-negative and
irreducible matrix A, the notion of the Perron complement.
Again, let § # o , and o/ = N — «, then the Perron
complement of A with respect to A(a), which is denoted
by P(A/A(«)) or simply P(A/«), is defined as

A(a) + Ao/, ) [p(A)T — A(e)] " Aa, o),

where p(-) denotes the spectral radius of a matrix. Recall
that as A is irreducible, p(A4) > p(A(«)), so the expression
of the above definition is well defined.

The Perron complement has been proved to be a useful
tool in many fields such as control theory, statistics and
computational mathematics, such as solving the constrained
optimization problems [4], realized range-based threshold
estimation for Jump-diffusion models [5] and so forth. Meyer
[3], [6] has derived several interesting and useful properties
of P(A/A(«)), obtained that the Perron complement of a
nonnegative irreducible matrix is nonnegative irreducible,
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and first used the closure property of a nonnegative irre- where
ducible matrix to construct a divided and conquer algorithm
to compute the Perron vector for a Markov chain. Moreover,
many works have been done on it (see [7], [8], [9]). So far as
we know, if a given matrix has a sharper diagonally dominant
degree, then the designed iterative algorithms have faster
convergent rate than the ordinary ones [10]. At the same time,
if a given matrix has a sharper diagonally dominant degree, k
then we may discuss more properties about generalized P, (A)=r Z @iy i,
nonlinear diagonal dominance in [11]. Motivated by the u=1uzw
useful applications, we will study the diagonal dominant
degree for the perron complement of several cases based
on the nonnegative and irreducible nature. In this paper,
we exhibit some new estimates of diagonally dominant, -
diagonally and product y-diagonally dominant degree for the
Perron complement of matrices. These bounds improve the
related results. Proof Denote B;, = B =
The remainder of this paper is organized as follows. and p(A) > 2lay|(i € a) ,
In Section II, we present several new estimates for the &
diagonally dominant degree of the Perron complement of p(A) — Z |as, i
matrices. In Section III, we propose some estimates for u=T,udtw
the ~y-diagonally and product ~y-diagonally degree for the
Perron complement of matrices. In Section IV is devoted to
a numerical experiment to show the advantage of our derived
results. Finally, we demonstrate our conclusions in Section

!
2 |@ingl
r = max u=1 ) (6)

1<w<k k
p(A) — > laigi,
u=1,u#w

| @iy

Tw

)

l
+ ) i,
u=1

l
2_: |@i, .
h = 1211?%(k & : (A) (8)
P'Lw(A) - Z ‘alulu|p(A =

—l@iy iyl
(bpg) . Inasmuch as o C N,.(A)
we deduce that

|ai,,i

Lw

>0(1<w<k),

for all 1 < w < k, it follows from Equation (6) that

l
> fais.]

\% r> - - :
p(A) = laii,| = 22 lai,i,]
u=1,u#w
II. THE DIAGONALLY DOMINANT DEGREE FOR PERRON .
COMPLEMENT that is,
. . . . 1 k
In this section, we start with some lemmas which are r(p(A) = [as,i]) > Z @i, |+ 7 Z las,i | = P (A).

utilized in the next proofs. Based on these lemmas and using
the entries and spectral radius of the original matrix, the
estimations of the diagonally dominant degree for the Perron

u=1 u=1,uFw

From the above inequality, for all 1 < w < k,

complement are presented. 0< b, (A) <r<i
Lemma 2.1: [12] If A is a nonsingular H-matrix, then = p(A) —aii,| — " '
[w(A)] 7 > [A71.

Together with Equation (7), for all 1 < w < k. we h
Lemma 2.2: [12] 1f Ais a SD,, or A is a SDD,. Then ogether with Equation (7), forall 1 < w < k, we have

u(A) is a nonsingular M-matrix, i.e., A is a nonsingular d

2 @i

H-matrix. =
Lemma 2.3: [13] Let A € R*™" If A € M,, , then k (A)
det A > 0. P (A)— > aiyi. W
Lemma 2.4: [14] Let A = (a;j)nxn,0 # o € N and u=1,uzw )
assume that A(«) is nonsingular. Then P(A=r S lai,|
det A = det A(or) det A/av. = k =Lt <1
i Py (A) = 3 el e
Lemma 2.5: Let A = (a;;) € R™ "™ be nonnegative b wmtmg P00 ]

irreducible with spectral radius p(A),

ix} C
NT(A) 7é ®7 o = {j17j27"’7jl >

a={i 7i ) .. . . . .
e, 52 Combining Equation (8) and the above inequality results in

) € _lajtill _la‘jtik‘ 0 < h < 1.
- 21 lai 5., | Otherwise, for 1 < w < k,
Bjt = - ) l
| ulp(A)I — A(a)] > .|
= 2 laigl h > u=l ’
u=1 (A)

‘alwlul )
w

Tatura]

= k
| PLA) - ¥
then for p(A) > 2|a;|(i € @) and any j; € o/, By, is an u=1uz

M-matrix of k41 and det B;, > 0, if we deduce that

w>h2|amw\ B, (4)

- | Qi |

®)

P, ) > Z |azwj | +h Z |alwzu (A)(A)

lai, i
u=1,u#w “

Ty
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Inequality (5) means that there exists £ > 0 such that (i) If & € N,.(A), then for all 1 <t <1,
k P (A iy gy
T > Z |a’jtiw (h% + 5). (10) (ajtilv e 7ajtik)[p(A)I - A(a)]_l
— p(A) = lai, i, | G,
!
Choose a positive matrix D = diag(dy,ds, -, dg+1) and + aj i+ (@i a0
Jtds Jet1o It
Ct B D (Csv) ’ Where s=1zé;ﬁt 1 '
Qiyjs
1 v =1
_ ’ ) ' x [p(A) — A« -1
0 {h nw e P(A)T - Ae)
p(A) ‘az,ufllvfl‘ a’bkjs
<R (A)—w . 11
If s =1, it follows from (10) that < R;,(A) wj, (11)
(ii) If o € N.(A), then for all 1 <t </,
k+1 a
|CSS| - Z |Csw| B 1]t
w=1,w#s (a’jtil [ 7ajtik)[p(A)I - A(a)] !
k41 iy g,
= Jen| = ) lerwl .
k w=2 + Z aj.je + a’]sila ) a’jsik)
Pi (A) s=1,s#t
=T — aj,i, | |h—————— +¢] >0
2 i oy = oy
X [p(A) = Afa)] 1|
If s=2,3,---,k+ 1, it follows from (9) that iy j,
< 5, (A) — . (12)
less| — Z |cswl Here we denote
w=1,w#s k
K1 =3 Jag |P(A) — @i, | — hPi, (A)
= [bss|ds — [bs1| — 22¢ |bow |du o L e p(A) — lai, i, | ’
w=2,Ww#s b .
Pi, ,(A) I p(A) = lai,i,| — hQi,(A)
= A) - Qig_qig_ h+ + 5) U}»t = |aiw 4t| — = ’
(4) =t (M o b= 2 i =
l k
P, (A !
el = Sl (g ) 5 Jais.
u=1 w=1,w#s—1 p( ) |a1wlw| u=1
y T = max )
’“ B ) il = X e
= hP (A o) s Y el € PA) ~laii = 2 lai
w=1l,w#s—1 !
o = L hPy,(A) 2 a0, |
- Z iy gl — Z @iy yiw |m ¥ = max u=1 ’
u=1 w=1,w#s—1 1<w<k k
I K Pi(A) p(A) = laii,| — 12; |ai, i, |
> iy yj | +h Wiy yin| = wE T
= Z‘ s—1J ‘ uzl;g_1| E |p(A) _ |aiuiu| & .
k P,(A)y=r Y laii |+ > lail
+ | p(A) = lai_yis_y | — Z |ai,_yinl| | € u:l,:;ﬁw u:ll
w=1,w#s—1 4
zl: . | zk: . _hPL(A) Qi (A) =T 12; |ai,i,| + Z:l |aj, i,
- ts—1Jul T be_1iw | TN T u=1,uzw u=
= et s P(A) = |@iyiy, | .
k 21 |ai'wju|
= | p(A) = lai,yio il = D laiyill | >0 h = max = o
w=1,w#s—1 - P’iw (A) — Z |a74w2u‘ ) |al“1u‘
u=1,uw
It follows that C'y is a SDy1. Further, B;, € Hy4. Besides,
u(Bj,) = Bj, is an M-matrix of k + 1. Therefore, from N 21 (@i
Lemma 2.3, we obtain det B;, > 0. h = max uk_ .
. lswsk ’ Qiy (A)
Lemma 2.6: Let A = (a;;) € R™ ™ be nonnegative Q. (A)— > |azuzw|W
irreducible with spectral radius p(A), o = {i1,42, - ,ix} C u=lu#w
N (A) £ 0, ={j1,J2, 71} (A/a) = (a},), Proof Inasmuch as a C N,.(A) # 0, we have A(a) € SDj,.
and p(A) > 2|ay;|(i € a), Further, p(A4) > 2a;(i € «) yields p(A)I — A(a) € SDy,.
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By Lemma 2.1 and Lemma 2.2, it follows that
{ulp(A)I — A(a)]} " > [[p(A) — A(a)] 7.

Together with Lemma 2.4, Ve > 0, we deduce that

iy jy
a2 [(ajis, 5 aj,i) [p(A) = A(e)] !
Qi gy
l
Z aj,j. + a]tiu ) ajtik)
s=1,s
a’iljs
x [p(A) — Ae)] ™
a‘ikjs
l l
< >0 il Y @i a4
s=1,s#t s=1
iy g,
x [p(A) - A(e)] ™
aik‘js
l l
< Z |ajtjs| +Z(|ajti1|""7|ajtik|)
s=1,s#t s=1
|ai1js
<{ulp(A)I = A(e)]}
|aikjs

Z |a.7ﬂu |aJt11| |ajtik|)

5i:1 |ai1js|
<{ulp(A)I — A()]} :

l
2 |aikjs

= Rj, —wj, +e— Z|amh i e —
(|ajtz‘1|""’|ajtik|){u[ (A — A(a)]}
l
> laiy.|
s=1

ZZ: | @i

s=1
detBt

det{u[p(A)T — A(a)]}

— o _
_RJt wjt+€

where
k !/
Zl lajpi,| — wh, +€ —lagpi| - —lajqiy|
=
l
= > laiyj,|
t = s=1

l nlp(A)I — A(a)]
- 521 ‘aikjs ‘

Furthermore,

k
E |ajf,iu,
u=1

k
|azwzw ‘ hP;, (A)
:Z;%“ El%” oA — a1 C

= i laji, | — Z @i, | ( ()(A)> te

/
—wjtJr&?

|ai,i,,
P, (A)
- Z ‘a’Jtlw |CL |
w=1 twiw
(4)
> Z ‘a]tlw 1w|a I
Gl

From Lemma 2.5, we have det B; > 0. Having in mind that

det{u[p(A)I — A(«)]} > 0, we obtain
det Bt

det{u[p(A)] — A(a)]}

Let ¢ — 0, thus we easily get

det Bt
a<R;, —w; — < —w
o det{plp(A)] - Ala )]} o
which implies (11). Moreover, (12) can be proved with a
similar method to the above techniques.
Remark 2.1: According to 0 < r < 1,0 < h < 1, we
have

a<Rj, —wj, +e— < R;, —wj, +e.

R; > P

tw — =~ tw

(A) > hP;, (A),1 <w <k,

which implies that

Z |a7tlw| A)

‘amzm
>f]w»—l@@L—
T p(A) — aiyi,
k
P, (A)
> hw;|amw| e |aww‘,1 <t<l

It follows from the above inequalities that, for all 1 < ¢ <,

k
W = Qji it . *
e wz:l | J w| p(A) — |aiwim
—lai, i, | — Pi, (A)
> Z a6, 12 (A) iy |
|CLL Ty — RZ (A)
> I )
Z |agfzw (A) lai, i, |

So it is obvious that the results of Lemma 2.5 and Lemma 2.6
are sharper than the ones of Proposition 1 and Proposition 2
in [15], respectively.

Theorem 2.1: Let A = (a;;) € R™ ™ be nonnegative
irreducible with spectral radius p(A), o = {i1,42, -, ix} C
N,(A) # 0, = {j1, o+ i} lal < m, P(A]a) = (al,),
then for p(A) > 2|a;|(i € o) and ¥Vt : 1 <t <1,

laj,| — Ri(P(A/a))
2 |ajtjt| - Rjt (A) + ’LU;»t 2 |ajt.jt‘ - Rjt (A)7 (13)
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and
|ats| + Re(P(A/ )
S |ajtjt| + Rjt (A) - jt — |a’JtJt‘ + Rjt (A) (14)

Proof Since a C N,.(A) # (), by the definition of the Perron
complement and Lemma 2.6, V¢ : 1 < ¢ <[, we have

la,| — Rt(lP(A/a))
= |aj;| — Z ||
s=1,54t
= |aj,j, + (@jins -, GGy, )
iy g,

x [p(A) - A(a)] ™!

Qi gy
l
Z @G + (@005 05,0,
s=1,s%t
iy 4
< [p(A)T = Ae)] ™!
Qigjs
> laj g, | = [(@giy, 5 a5,i)
@iy g,
x [p(A)] — A(a)] ™
Qi jiy
l
Z Wego + (Ao WGii)
s=1,s%t
iy 4
x [p(A)] — A(a)] ™!
Qigjs

> laj,j.| — (Rj, — wj,).

Thus we get (13). With the same manner applied in the proof
of (13), we can prove the result (14) of this theorem.
Remark 2.2: According to Remark 2.1, we know that the
results of Theorem 2.1 improve the ones of Theorem 1 in
[15].
Corollary 2.1: Let A = (aij;)
{1,2,---,n—1} C N,(A), then

€ R™ ™ and take v =

n—1
P;(A)
0< |ann‘ —h ‘anz| S ‘P(A/Oé”
2 o 30 e
n—1
P;(A)
S Ann +h Qnj .
ol 413 lanl o5

Proof Notice that o’ contains only one element j; = n. Thus,
P(A/«) is nothing but a number, and R;(P(A/«)) = 0. By
expression of w’- ,» we have

hp;(A)

|a“|
't Z |am ) ‘aii|
= Z|a7ll‘ hz‘an1| )

5)

u‘

Substituting Equation (15) into Inequalities (13) and (14)
results, we can obtain the result.

III. THE 7-DIAGONALLY AND PRODUCT 7y-DIAGONALLY
DOMINANT DEGREE FOR PERRON COMPLEMENT

In this section, we obtain some estimates for the ~-
diagonally and product y-diagonally degree for Perron com-
plement under some conditions.

Lemma 3.1: [I1]Leta >b,c>b,b>0and 0 <r <1.
Then

a"ct™" > (a—b)"(c—b)' " +b.
Theorem 3.1: f A = (a;;) € R™™ is nonnegative
irreducible with spectral radius p(A), o = {i1,42, - ,ix} C
NT(A)HNC(A) 7é (Z) O[ = N-a = {j17j27"'7jl}9

|a| < n, and P(A/a) =
a),l <t<land 0 <

g
|a:| — (Re(P(A
(A
(A

(a 2 ). Then for p(A) > 2|ay|(i €
<1,

e ))W(St( (A/a)))t="

) — w},)7 (S5, (4) —wj,)' 7

) (SJf(A))l v

> laj.j.| — (R
> laj.j.| — (R
and
|ay,| + (Re(P (A/Oé)))”(st( (Afa))' =7
<lajoj| + (R, (A) = w},)7 (S5, (A) — wj,)' ™7
< lajij| + (Rj, (A))”(Sjt (A)t.

Proof By the definition of the Perron complement

|agl — (Rt(P(A/OZ)))”(St(P(A/a)))l’”li

l l

> laid > lall

s=1,s#t s=1,s#t

|a2t‘ -

iy g,

a0, ) (A — A(a)] ™

= |%j15: + (a’jth P}

Qi gy
l
R [ Z aj,5. + (ajtil ) ajtik)
s=1,s#t
v
iy js
x [p(A)] — A(a)] ™!
aikjs
l
[ Z e T (@505 a0,
s=1,s#t
1—
iy gy !
% (A - A()]!
Qi gy
> |ajt.jt‘ - (ajtiu e 7ajtik)
iy jy
x [p(A) — Ae)] ™
iy gy
l
_< > [|ajtjs| + [(@eis 7 Qi)
s=1,s#t
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iy js K
X [p(A)I = A(a)] !
Qigjs
1
X( > [|ajbjt| + [(@jairs 5 @)
s=1,s#t
iy 5, o
X [p(A)I = A()) ™
Qigje
Denote
iy gy
F= (@05 a5, [p(A)T = (A())]
iy i

From Lemma 2.6 and Lemma 3.1

|ate| — (Re(P(A/ )7 (Se(P(A/a)))'

> laby| — f = [Ry, —wl, — f]7 [Sj, —w!, — f]'”
> Jajy| = f = [(Ry, = w},)" (S50 —w))' ™ = 1]
= |a:it| - [Rjt - w;t]v [Sjt - w;;}lfw.

Thus we can get the first type of inequalities of Theorem
3.1. Similarly, we can immediately verify the other one.
Remark 3.1: According to 0 < r < 1,0 < h < 1, we
have
R;,, > P, (A)>hP, (A),1<

Siw > Qi (A) 2 hQs, (A),1 <
which imply that
>l
Jtlw a0
— p(A) = lai,i, |
P, (A)
> Z a3, | m
k
P, (4)
> h laj, i |, 1 <t <,
wz::l " p(A) — aiyi,
S
Z ‘alet| |CL |
sz( )
> Z ‘ahu]t |a |
w=1 't
sz( )

, 1<t <L

hz |ajﬂw|

It follows from the above inequalities that, for all 1 < ¢ <,

= lai,i

Tw

Z | | |G/7, T ‘ hle (A)
iy, ( ) |azu,zw‘
|arz % — Pl (A)
ZI @iy (A) | @i |
|a’7wzw ‘ — sz (A)
> Z jaj,i,,|2 (A) @i, |
) Z | P~ laii hQ, (4)
2 1)

—lai,i,| — Qi, (A)
> Z|a’let| ( )Z Z‘a. i -
Tw tw

— @iy, | = S5, (A)

>3 o A s =5
T tw

From the above inequalities, we can conclude that the
bounds of Theorem 3.1 are sharper than those of Theorem
3 in [15].

Using the same technique as the proof of Theorem 3.1,
we can obtain the following Theorem.

Theorem 3.2: f A = (a;;) € R™™ is nonnegative
irreducible with spectral radius p(A), o = {41,492, ,ix} C
NT(A)HNC(A) 7& (Z)’ o = N-—-a = {j17j21"'7jl}’
|a| < m, and P(A/a) = (a},). Then for p(A) > 2|ay|(i €
a),1<t<land 0 <~y <1,

|ats] = yR:(P(A/@)) = (1 = 7)Se(P(A/a))

> laj,j, | — 7R; (A) — (1 = )85, (A) + ywj, + (1 = y)w},
2 |ajtjt‘ - ,}/Rjt (A) - (1 - 'Y)Sjt (A)
and

|ap| + YRe(P(A/@)) + (1 = 7) S (P(A/a))
< lajij. | +7R;.(A) + (1 = 7)S;, (A) — ywj, — (1 = y)wj,
< laj,j.] + R, (A) + (1 =9)5;,(A).

Remark 3.2: From Remark 3.1, we can conclude that the
bounds of Theorem 3.2 are sharper than those of Theorem
2 in [15].

IV. NUMERICAL EXAMPLE

In this section, we present a numerical example to illustrate
the theory results in this paper and show the advantages of
our derived results.

Example 4.1: Let

A= , a={1,2} C N,(4).

— N =W
N = W =
— s O =
=S == O

By calculation with matlab 7.1, we have p(A) = 6.3028 >
2|a;;|(i € o). From Theorem 1 in [15], we obtain

2
p(A) = |ayu| — Ru(A)
wsy = asy = 1.1883,
5 ulesl p(A—lauu\
uu u A
w4—Zla4u| |C)L ||a ‘ @) _ 11883,
u=1 uu

and

a1, = R1(P(A/a)) = |ass]
|age| — Ra(P(A/a)) = |aa|

- Rg(A) + w3z = 1.1883,
— R4(A) + wy = 1.1883.

By Theorem 2.1 in this paper, we have

2
A) — |ayu| — P, (A)
W =5 (age 2l — 1.6972,
P = 2 lasl =
2
A) — |aua| — hP.(A)
W =S Jau 2 — 1.6972.
8= 2 el =

(Advance online publication: 26 August 2016)
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Thus

a1 — Ri(P(A/a)) > |ass| — Ra(A) + wh = 1.6972,
|aby| — Ro(P(A/a)) > |ass| — Ra(A) + w) = 1.6972.

In fact, by calculation, we have

4.7676 1.5352
PAfa) = (1.5352 4.7676) ’

then,

;| — Ry (P(A/a)) = 3.2324,
|aby| — Ra(P(A/a)) = 3.2324.

Thus, by Theorem 2.1 in this paper, we can get a better bound
for the diagonally dominant degree of the Perron complement
of matrices than Theorem 1 in [15].

V. CONCLUSIONS

This paper studies the diagonally dominant degree for
the Perron complement of three known subclasses of H-
matrices and exhibits some new estimates of diagonally
dominant, y-diagonally and product ~y-diagonally dominant
degree for Perron complement of matrices. Furthermore,
these estimations are more accurate than the existing ones
in [15]. And numerical result given in Section IV also show
that the derived results improve the related results.

In this paper, we do not give the error analysis. i.e., how
accurately these bounds can be computed. At present, it is
very difficult for the authors to do this. Next, we will continue
to study this problem in the future.
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