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Abstract—This paper is concerned with cellular neural net-
works with proportional delays. The proportional delay is a
time-varying unbounded delay which is different from the con-
stant delay, bounded time-varying delay and distributed delay.
Using matrix measure and generalized Halanay inequality, some
sufficient conditions are obtained to ensure the pth exponential
stability of cellular neural networks with proportional delays.
The obtained results are simple and easy to be verified. An
example is given to illustrate the effectiveness of the obtained
results. This paper ends with a brief conclusion.

Index Terms—Cellular neural networks, exponential stability,
proportional delays, matrix measure.

I. INTRODUCTION

IT is well known that considerable attention has been paid
to cellular neural networks as well as various general-

izations for their potential applications in many fields such
as associative memories, pattern recognition, optimization
and image processing and so on [1-13]. On the one hand,
the existence and stability of the equilibrium point of cel-
lular neural networks plays an important role in practical
application. On the other hand, time delay is inevitable due
to the finite switching speed of information processing and
the inherent communication time of neurons, moreover, its
existence may cause the instability of networks [14]. Thus
many interesting stability results on cellular neural networks
with delays have been available [14-19]. At present, the
time delays considered for cellular neural networks can be
classified as constant delays [4,16,21], time-varying delays
[3,15,19,21], and distributed delays [22-24]. Here we would
like to point out that the proportional delay which is a special
delay type exists in some fields such as physics, biology
systems , control theory and Web quality of service (QoS)
routing decision. Since the presence of an amount of parallel
pathways of a variety of axon sizes and lengths, a neural
network usually has a spatial structure, it is reasonable to
introduce the proportional delays into the neural networks.
In an amount of parallel pathways, affected by different
materials and topology, there may be some unbounded delays
that is proportional to the time, thus we should choose
suitable proportional delays factors in view of different
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cases and adopt proportional delays to characterize these
unbounded delays [25]. Recently, there are only very few
papers that focus on this aspect. For example, Zhou et al.
[14] considered the asymptotic stability of cellular neural
networks with multiple proportional delays, Zheng et al. [26]
established the stability criteria for high-order networks with
proportional delay. Zhou [27] adressed the delay-dependent
exponential stability of cellular neural networks with multi-
proportional delays, Zhou [28] discussed the delay-dependent
exponential synchronization of recurrent neural works with
multiple proportional delays, Zhou [29] analyzed the global
asymptotic stability of cellular neural networks with propor-
tional delays, Zhou [30] investigated the dissipativity of a
class of cellular neural networks with proportional delays.
In details, one can see [34,35]. We must point out that
cellular neural networks with proportional delays have been
widely applied in many fields such as light absorption in
the star substance and nonlinear dynamic systems. Therefore
the study on the cellular neural networks with proportional
delays has important theoretical and practical value.

In 2015, Zhou and Zhang [31] investigated the global
exponential stability of the following cellular neural networks
with multi-proportional delays




ẋi(t) = −dixi(t) +
n∑

j=1

[aijfj(xj(t)) + bijgj(xj(q1t))

+ cijhj(xj(q2t))] + Ii,
xi(s) = xi0, s ∈ [q, 1],

(1)
where i = 1, 2, · · · , n, t > 1, xi(t) stands for the state
variable of the ith-cell at time t, di > 0 is a constant, aij , bij

and cij represent the connection weights between the ith-cell
and the jth-cell at time t, q1t, q2t, respectively. q1 and q2 are
proportional delay factors and satisfy 0 < q1 < q2 ≤ 1, q =
min{q1, q2}, q1t = t − (1 − q1)t, q2t = t − (1 − q2t)t in
which (1−q1)t and (1−q2)t denote the transmission delays,
(1 − q1)t → +∞, (1 − q2)t → +∞ as t → +∞, xi0 is a
constant which denotes the initial value of xi(t) at t ∈ [q, 1]
and x(0) = (x10, x20, · · · , xn0)T , Ii(t) is the external input,
fi(.), gi(.) and hi(.) are the nonlinear activation functions,
and satisfy the following conditions:





fi(.), gi(.), hi(.) : R→ R,
|fi(u)− fi(v)| ≤ Li|u− v|, |fi(u)| ≤ qi,
|gi(u)− gi(v)| ≤ Mi|u− v|, |gi(u)| ≤ ri,
|hi(u)− hi(v)| ≤ Ni|u− v|, |fi(u)| ≤ si,

(2)

where i = 1, 2, · · · , n, u, v ∈ R and Li,Mi, Ni, qi, ri and si

are non-negative constants. By applying Brouwer fixed point
theorem and constructing the delay differential inequality,
Zhou and Zhang [31] obtained some delay-independent and
delay-dependent sufficient conditions to ensure the existence,
uniqueness and global exponential stability of equilibrium of
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system (1). Moreover, the exponentially convergent rate is
estimated.

In this paper, we will further investigate the exponential
stability of the following system




ẋi(t) = −dixi(t) +
n∑

j=1

[aijfj(xj(t)) + bijgj(xj(q̃t))

+ cijhj(xj(q̃t))] + Ii,
xi(s) = xi0, s ∈ [q̃t0, t0],

(3)
which is a revised version of system (1). Here for simplifi-
cation, we let q1 = q2 = q̃ in system (1), t0 is a constant.
If t0 = 0, s ∈ [q̃t0, t0] is equal to s = t0 = 0. Different
from the work of Zhou and Zhang [31], we will obtain some
sufficient conditions to ensure the pth exponential stability
of system (3) by applying matrix measure and generalized
Halanay inequality. The results of this paper are completely
new and complement those of the previous studies in [31].
The approach is new.

The organization of the rest of this paper is as follows.
In Section 2, some preliminaries are presented. In Section
3, some sufficient conditions are derived for the exponential
stability of (3) by matrix measure and generalized Halanay
inequality. In Section 4, we present three examples to illus-
trate the feasibility and effectiveness of our main theoretical
findings in previous sections. A brief conclusion is drawn in
Section 5.

II. PRELIMINARY RESULTS

First we give some notations. Let

x(t) = (x1(t), x2(t), · · · , xn(t))T ,

D = diag{d1, d2, · · · , dn},
A = (aij)n×n, B = (bij)n×n, C = (cij)n×n,

f(x(t)) = (f1(x1(t)), f2(x1(t)), · · · , fn(x1(t))T ,

g(x(t)) = (g1(x1(t)), g2(x1(t)), · · · , gn(x1(t))T ,

h(x(t)) = (h1(x1(t)), h2(x1(t)), · · · , hn(x1(t))T ,

I = (I1, I2, · · · , In)T . Then system (3) can be rewritten as
follows:

ẋ(t) = −Dx(t)+ [Af(x(t))+Bg(x(q̃t))+Ch(x(q̃t))]+ I.
(4)

Using the transformation

yi(t) = xi(et), i = 1, 2, · · · , n, (5)

and letting y(t) = (y1(t), y2(t), · · · , yn(t))T , τ = − ln q̃ >
0, we have

ẏ(t) = et{−Dy(t) + [Af(y(t)) + Bg(y(t− τ))
+ Ch(y(t− τ))] + I}, (6)

with the initial condition

yi(s) = ϕi(s), t0 − τ ≤ s ≤ t0, i = 1, 2, · · · , n, (7)

where ϕi(s) ∈ C([t0 − τ, t0],R) is a continuous function.

In addition, we need the following definitions and lemmas.

Definition 2.1 An equilibrium point x∗ = (x∗1, x
∗
2, · · · , x∗n)T

of the system (8) is said to be pth (p = 1, 2,∞) globally

exponentially stable, if there exist two positive constants
M > 0 and λ > 0 such that ||x(t, t0, x0) − x∗||p ≤
M ||x0 − x∗||pe−λt holds, where x0 = (x10, x20, · · · , xn0)T

is the initial condition of the system (8), x(t, t0, x0) is the
solution of system (8).

Definition 2.2 ([32]) For any real matrix A = (aij)n×n, its
matrix measure is defined as

µp(A) = lim
ε→0+

||E + εA||p − 1
ε

,

where ||.||p denotes the matrix norm in Rn×n, E is the
identity matrix, p ∈ {1, 2,∞}.
Let the matrix norm be as follows:

||A||1 = max
j

{
n∑

i=1

|aij |
}

, ||A||2 =
√

λmax(AT A),

||A||∞ = max
I

{
n∑

J=1

|aij |
}

.

Then we get

µ1(A) = max
j



ajj +

n∑

i=1,i6=j

|aij |


 ,

µ2(A) =
1
2
λmax(AT + A),

µ∞(A) = max
i



aii +

n∑

ji=1,j 6=i

|aij |


 .

Lemma 2.1 ([32]) For the definition of matrix measure, for
any A,B ∈ Rn×n, p = 1, 2,∞, we have
(1) −||A||p ≤ µp(A) ≤ ||A||p; (2) µp(αA) = αµp(A),∀α >
0; (3) µp(A + B) ≤ µp(A) + µp(B).

Lemma 2.2 ([33], Ageneralized Halanay,s inequality)
Suppose

ẋ(t) ≤ γ(t)− α(t)x(t) + β(t) sup
t−τ≤σ≤t

x(σ)

holds for any t ≥ t0. Here τ ≥ 0, and γ(t), α(t), β(t)
are continuous functions such that 0 ≤ γ(t) ≤ γ∗, α(t) ≥
α0, 0 ≤ β(t) ≤ q̃α(t) for any t ≥ t0 with constants
γ∗ > 0, α0 > 0, 0 ≤ q < 1. Then we have

x(t) ≤ γ∗

(1− q̃)α0
+ Ge−µ∗(t−t0)

holds for t ≥ t0. Here G = supt0−τ≤t≤t0 x(t) and µ∗ > 0
is defined as

µ∗ = inf
t≥t0

{µ(t) : µ(t)− α(t) + β(t)eτµ(t) = 0}.

In Lemma 2.2, Letting γ(t) = 0, γ∗ → 0, then we can obtain
the following lemma.

Lemma 2.3 Suppose

ẋ(t) ≤ −α(t)x(t) + β(t) sup
t−τ≤σ≤t

x(σ)

holds for any t ≥ t0. Here τ ≥ 0, and α(t), β(t) are
continuous functions such that α(t) ≥ α0, 0 ≤ β(t) ≤ qα(t)
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for any t ≥ t0 with constants α0 > 0, 0 ≤ q < 1. Then we
have

x(t) ≤ Ge−µ∗(t−t0)

for t ≥ t0, where G = supt0−τ≤t≤t0 x(t) and µ∗ > 0 is
defined as

µ∗ = inf
t≥t0

{µ(t) : µ(t)− α(t) + β(t)eτµ(t) = 0}.

In order to obtain the main results, we make the following
assumptions.

(H1) For i = 1, 2, · · · , n, there exist positive constants αi, βi

and γi such that |fi(u)−fi(v)| ≤ αi|u−v|, |gi(u)−gi(v)| ≤
βi|u− v|, |hi(u)− hi(v)| ≤ γi|u− v| for all u, v ∈ R.

Denote

α = max
1≤i≤n

{αi}, β = max
1≤i≤n

{βi}, γ = max
1≤i≤n

{γi}.

III. MAIN RESULTS

In this section, we consider the global exponential stability of
system (4) by applying the matrix norm and matrix measure.

Theorem 3.1 Under the condition (H1), let Θ1 = −µp(−D)
and Θ2 = α||A||p + β||B||p + γ||C||p. If Θ1 > Θ2 > 0,
then the equilibrium point y∗ of system (4) is pth globally
exponentially stable.

Proof Assume that y∗ = (y∗1 , y∗2 , · · · , y∗n)T is the equilibrium
point of system (6), then y∗ satisfies

−Dy∗ + [Af(y∗) + Bg(y∗) + Ch(y∗)] + I = 0.

Let u(t) = y(t)− y∗, then

u̇(t) = et{−Du(t) + A[f(y(t))− f(y∗]
+B[g(y(t− τ))− g(y∗)]
+C[h(y(t− τ))− h(y∗)]}. (8)

Consider the following nonnegative function

V (t) = ||u(t)||p. (9)

Calculating the derivative of V (t) along the trajectories of
(9) leads to

D+V (t) = lim
ε→0+

||(u(t + ε)||p − ||u(t)||p
ε

= lim
ε→0+

||(u(t) + εu̇(t) + o(ε)||p − ||u(t)||p
ε

≤ lim
ε→0+

E + εet(−D)||p − 1
ε

||u(t)||p
+et{A[f(y(t))− f(y∗]
+B[g(y(t− τ))− g(y∗)]
+C[h(y(t− τ))− h(y∗)]}. (10)

In view of (H1), we get



||f(y(t))− f(y∗)||p ≤ α||u(t)||p,
||g(y(t− τ))− g(y∗)||p ≤ β||u(t− τ)||p,
||h(y(t− τ))− h(y∗)||p ≤ γ||u(t− τ)||p.

(11)

It follows from (10) and (11) that

D+V (t) ≤ µp(−etD)||u(t)||p + et(α||A||p
+β||B||p + γ||C||p)||u(t− τ)||p

≤ −Θ1e
t||u(t)||p

+Θ2e
t sup

t−τ≤s≤t
||u(s)||p. (12)

By Lemma 2.3, we have

V (t) ≤ sup
t0−τ≤s≤t0

V (s)e−µ∗(t−t0), (13)

where

µ∗ = inf
t≥t0

{µ(t) : µ(t)−Θ1e
t + Θ2e

t+τµ(t) = 0} > 0.

Then the zero solution of system (8) is pth globally expo-
nentially stable, i.e., the equilibrium point y∗ of system (4)
is pth globally exponentially stable. The proof of Theorem
3.1 is complete.

IV. EXAMPLES

In this section, we give three examples to illustrate our main
results derived in previous sections. Consider the following
three cellular neural networks with proportional delays

Example 4.1 Consider the following cellular neural networks
with proportional delays




ẋ1(t) = −d1xi(t) +
3∑

j=1

[a1jfj(xj(t)) + b1jgj(xj(q̃t))

+ c1jhj(xj(q̃t))] + I1,

ẋ2(t) = −d2x2(t) +
2∑

j=1

[a2jfj(xj(t)) + b2jgj(xj(q̃t))

+ c2jhj(xj(q̃t))] + I2,

ẋ3(t) = −d3x3(t) +
3∑

j=1

[a3jfj(xj(t)) + b3jgj(xj(q̃t))

+ c3jhj(xj(q̃t))] + I3,
(14)

where 


d1 0 0
0 d2 0
0 0 d3


 =




0.3 0 0
0 0.1 0
0 0 0.5


 ,




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =




0.4 0.4 0.4
0.1 0.8 0.2
0.2 0.5 0.3


 ,




b11 b12 b13

b21 b22 b23

b31 b32 b33


 =




0.5 0.6 0.1
0.8 0.3 0.5
0.5 0.4 0.2


 ,




c11 c12 c13

c21 c22 c23

c31 c32 c33


 =




0.2 0.6 0.1
0.5 0.4 0.6
0.1 0.6 0.5


 ,

.




I1

I2

I3


 =




0.2
0.5
0.7


 , fi(x) =

1
2
(|x + 1| − |x1|),

gi(x) = tanh(
5
7
x), hi(x) = tanh(

2
5
x)(i = 1, 2, 3).

Set q̄ = 0.5 Then α = αi = 1, β = βi = 5
7 , γ = γi = 2

5 .
It is easy to verify that Θ1 = −µp(−D) = 9.0703 and
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Fig. 1. Transient response of state variables x1(t), x2(t) and x3(t).

Θ2 = α||A||p + β||B||p + γ||C||p = 6.3423. It follows
that Θ1 > Θ2 > 0. Then all the conditions (H1)-(H2) of
Theorem 3.1 hold. Thus system (14) has a unique equilibrium
(0.0921, 0.3532, 0.2036) which is globally exponentially sta-
ble. The results are illustrated in Fig. 1.

Example 4.2 Consider the following cellular neural networks
with proportional delays




ẋ1(t) = −d1xi(t) +
3∑

j=1

[a1jfj(xj(t)) + b1jgj(xj(q̃t))

+ c1jhj(xj(q̃t))] + I1,

ẋ2(t) = −d2x2(t) +
3∑

j=1

[a2jfj(xj(t)) + b2jgj(xj(q̃t))

+ c2jhj(xj(q̃t))] + I2,

ẋ3(t) = −d3x3(t) +
3∑

j=1

[a3jfj(xj(t)) + b3jgj(xj(q̃t))

+ c3jhj(xj(q̃t))] + I3,
(15)

where 


d1 0 0
0 d2 0
0 0 d3


 =




0.8 0 0
0 0.4 0
0 0 0.7


 ,




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =




0.2 0.5 0.7
0.2 0.3 0.5
0.7 0.4 0.8


 ,




b11 b12 b13

b21 b22 b23

b31 b32 b33


 =




0.9 0.3 0.7
0.3 0.8 0.7
0.8 0.1 0.5


 ,




c11 c12 c13

c21 c22 c23

c31 c32 c33


 =




0.1 0.9 0.4
0.7 0.3 0.4
0.8 0.9 0.9


 ,




I1

I2

I3


 =




0.6
0.9
0.2


 , fi(x) =

1
2
(|x + 1| − |x1|),

gi(x) = tanh(
7
8
x), hi(x) = tanh(

5
9
x)(i = 1, 2, 3).

Set q̄ = 0.3 Then α = αi = 1, β = βi = 7
8 , γ = γi = 5

9 .
It is easy to verify that Θ1 = −µp(−D) = 14.5008 and
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Fig. 2. Transient response of state variables x1(t), x2(t) and x3(t).

Θ2 = α||A||p + β||B||p + γ||C||p = 9.8402. It follows
that Θ1 > Θ2 > 0. Then all the conditions (H1)-(H2) of
Theorem 3.1 hold. Thus system (15) has a unique equilibrium
(0.5902, 0.7023, 1.0931) which is globally exponentially sta-
ble. The results are illustrated in Fig. 2.

Example 4.3 Consider the following cellular neural networks
with proportional delays




ẋ1(t) = −d1xi(t) +
3∑

j=1

[a1jfj(xj(t)) + b1jgj(xj(q̃t))

+ c1jhj(xj(q̃t))] + I1,

ẋ2(t) = −d2x2(t) +
3∑

j=1

[a2jfj(xj(t)) + b2jgj(xj(q̃t))

+ c2jhj(xj(q̃t))] + I2,

ẋ3(t) = −d3x3(t) +
3∑

j=1

[a3jfj(xj(t)) + b3jgj(xj(q̃t))

+ c3jhj(xj(q̃t))] + I3,
(16)

where 


d1 0 0
0 d2 0
0 0 d3


 =




0.5 0 0
0 0.3 0
0 0 0.5


 ,




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =




0.5 0.9 0.3
0.5 0.8 0.4
0.7 0.4 0.7


 ,




b11 b12 b13

b21 b22 b23

b31 b32 b33


 =




0.2 0.5 0.5
0.8 0.5 0.4
0.8 0.7 0.6


 ,




c11 c12 c13

c21 c22 c23

c31 c32 c33


 =




0.1 0.7 0.7
0.3 0.5 0.8
0.7 0.5 0.6


 ,




I1

I2

I3


 =




0.6
0.3
0.8


 , fi(x) =

1
2
(|x + 1| − |x1|),

gi(x) = tanh(
5
6
x), hi(x) = tanh(

3
4
x)(i = 1, 2, 3).

Set q̄ = 0.2 Then α = αi = 1, β = βi = 5
6 , γ = γi = 3

4 .
It is easy to verify that Θ1 = −µp(−D) = 11.2232 and
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Fig. 3. Transient response of state variables x1(t), x2(t) and x3(t).

Θ2 = α||A||p + β||B||p + γ||C||p = 8.7865. It follows
that Θ1 > Θ2 > 0. Then all the conditions (H1)-(H2) of
Theorem 3.1 hold. Thus system (16) has a unique equilibrium
(0.9034, 0.3215, 1.7213) which is globally exponentially sta-
ble. The results are illustrated in Fig. 3.

V. CONCLUSIONS

In this paper, we have investigated the global exponential
stability of cellular neural networks with proportional delays.
Applying matrix measure and generalized Halanay inequal-
ity, a series of new sufficient conditions to guarantee the
pth exponential stability of cellular neural networks with
proportional delays are established. The obtained conditions
are easily to check in practice. Finally, three examples are
included to illustrative the feasibility and effectiveness. To
the best of our knowledge, there are no results on the
anti-periodic solution and synchronization for cellular neural
networks with proportional delays, which might be our future
research topic.
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