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Abstract—By means of Mawhin’s continuation theorem of
coincidence degree theory, some new and simple sufficient
conditions are obtained for the existence of at least one positive
almost periodic solution for a class of delayed Lasota-Wazewska
model with nonnegative coefficients. Further, by some important
inequalities and Lyapunov functional, the permanence and
global asymptotical stability of the model have been studied.
The main result of this paper improves some conditions of
the result in [Z.D. Huang, S.H. Gong, L.J. Wang, Positive
almost periodic solution for a class of Lasota-Wazewska model
with multiple timing-varing delays, Comput. Math. Appl. 61
(2011) 755-760]. Two examples and numerical simulations are
employed to illustrate the main result in this paper.

Index Terms—Positive almost periodic solution; Coincidence
degree; Lasota-Wazewska model; Multiple delays.

I. INTRODUCTION

IN 1999, Gopalsamy and Trofimchuk [1] studied the
existence of an almost periodic solution of the Lasota-

Wazewska-type delay differential equation:

ẋ(t) = −a(t)x(t) + b(t)e−rx(t−τ), (1.1)

which was used by Wazewska-Czyzewska and Lasota [2] as
a model for the survival of red blood cells in an animal. In
[1], the authors proved that Eq. (1.1) has a globally attractive
almost periodic solution.

In recent years, Huang et al. [3] considered the following
Lasota-Wazewska model with multiple time-varying delays:

ẋ(t) = −a(t)x(t) +
m∑
i=1

bi(t)e
−ri(t)x(t−τi(t)). (1.2)

The authors employed the contraction mapping principle to
obtain a positive almost periodic solution of Eq. (1.2) with
a− > 0 and b−i > 0, i = 1, 2, . . . ,m.

In real life, periodic oscillation is more common [4-6]. In
applications, if the various constituent components of the
temporally nonuniform environment is with incommensu-
rable periods, then one has to consider the environment to
be almost periodic since there is no a priori reason to expect
the existence of periodic solutions. Hence, if we consider
the effects of the environmental factors, almost periodicity is
sometimes more realistic and more general than periodicity.
In recent years, the almost periodic solution of the continuous
models in biological populations has been studied extensively
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(see [7-10] and the references cited therein). To the best of
the author’s knowledge, so far, there are scarcely any papers
concerning with the existence of positive almost periodic so-
lutions of Eq. (1.2) by using Mawhin’s continuation theorem.

Motivated by the above reason, the main purpose of this
paper is to establish some new sufficient conditions on the
existence of positive almost periodic solutions of Eq. (1.2)
by using Mawhin’s continuous theorem of coincidence de-
gree theory. The main result of this paper improves some
conditions of the result in [3].

Related to a continuous bounded function f , we use the
following notations: f− = infs∈R f(s), f+ = sups∈R f(s),
f̄ = limT→∞

1
T

∫ T
0
f(s) ds. Throughout this paper, we

always make the following assumption for Eq. (1.2):

(H1) All the coefficients of Eq. (1.2) are nonnegative almost
periodic functions with ā > 0 and b̄i > 0, i =
1, 2, . . . ,m.

II. PRELIMINARIES

Definition 1. ([11, 12]) x ∈ C(R) is called almost periodic,
if for any ε > 0, it is possible to find a real number l = l(ε) >
0, for any interval with length l(ε), there exists a number
τ = τ(ε) in this interval such that |x(t + τ) − x(t)| < ε,
∀t ∈ R. The collection of those functions is denoted by
AP (R).

Lemma 1. ([8]) Assume that x ∈ AP (R) ∩ C1(R) with
ẋ ∈ C(R). For arbitrary interval [a, b] with b− a = ω > 0,
let ξ, η ∈ [a, b] and

I =
{
s ∈ [ξ, b] : ẋ(s) ≥ 0

}
, J =

{
s ∈ [η, b] : ẋ(s) ≤ 0

}
,

then ones have

x(t) ≤ x(ξ) +

∫
I

ẋ(s) ds, ∀t ∈ [ξ, b],

x(t) ≥ x(η) +

∫
J

ẋ(s) ds, ∀t ∈ [η, b].

Lemma 2. ([8]) If x ∈ AP (R), then for arbitrary interval
I = [a, b] with b − a = ω > 0, there exist ξ ∈ [a, b], ξ ∈
(−∞, a] and ξ̄ ∈ [b,+∞) such that

x(ξ) = x(ξ̄) and x(ξ) ≤ x(s), ∀s ∈ [ξ, ξ̄].

Lemma 3. ([8]) If x ∈ AP (R), then for arbitrary interval
[a, b] with I = b − a = ω > 0, there exist η ∈ [a, b], η ∈
(−∞, a] and η̄ ∈ [b,+∞) such that

x(η) = x(η̄) and x(η) ≥ x(s), ∀s ∈ [η, η̄].

Lemma 4. ([8]) If x ∈ AP (R), then for ∀n ∈ N+, there
exists αn ∈ R such that x(αn) ∈ [x∗ − 1

n , x
∗], where x∗ =

sups∈R x(s).
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Lemma 5. ([8]) Assume that x ∈ AP (R) and x̄ > 0, then
for ∀t0 ∈ R, there exists a positive constant T0 independent
of t0 such that

1

T

∫ t0+T

t0

x(s) ds ∈
[
x̄

2
,

3x̄

2

]
, ∀T ≥ T0.

III. MAIN RESULTS

The method to be used in this paper involves the appli-
cations of the continuation theorem of coincidence degree.
This requires us to introduce a few concepts and results from
Gaines and Mawhin [13].

Lemma 6. ([13]) Let X and Y be real Banach spaces, Let
Ω ⊆ X be an open bounded set, L : DomL ⊆ X → Y
be a Fredholm mapping of index zero and N : X → Y be
L-compact on Ω̄. If all the following conditions hold:

(a) Lx 6= λNx, ∀x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);
(b) QNx 6= 0, ∀x ∈ ∂Ω ∩KerL;
(c) deg{JQN,Ω∩KerL, 0} 6= 0, where J : ImQ→ KerL

is an isomorphism.

Then Lx = Nx has a solution on Ω̄ ∩DomL.

Theorem 1. Assume that (H1) holds, then Eq. (1.2) admits
at least one positive almost periodic solution.

Proof: Under the invariant transformation x = eu,
Eq. (1.2) reduces to

u̇(t) = −a(t) +
m∑
i=1

bi(t)

eri(t)e
u(t−τi(t))eu(t)

. (3.0)

It is easy to see that if Eq. (3.0) has one almost periodic
solution u, then x = eu is a positive almost periodic solution
of Eq. (1.2). Therefore, to completes the proof it suffices to
show that Eq. (3.0) has one almost periodic solution.

Take X = Y = V1

⊕
V2, where

V1 =

{
u ∈ AP (R) : ∀$ ∈ Λ(u), |$| ≥ γ

}
, V2 = R,

where γ is a given positive constant. Define the norm

‖u‖X = sup
s∈R
|u(s)|, ∀u ∈ X = Y,

then X and Y are Banach spaces with the norm ‖ · ‖X. Set

L : DomL ⊆ X→ Y, Lu = u̇,

where DomL = {u ∈ X : u ∈ C1(R), u̇ ∈ C(R)} and

N : X→ Y, Nu =

[
−a(t) +

m∑
i=1

bi(t)

eri(t)e
u(t−τi(t))eu(t)

]
.

With these notations Eq. (3.0) can be written in the form

Lu = Nu, ∀u ∈ X.

It is not difficult to verify that KerL = V2, ImL = V1 is
closed in Y and dim KerL = 1 = codim ImL. Similar to
the proof of Lemma 2.12 in [5], L is a Fredholm mapping
of index zero. Similar to the proof of Lemma 2.13 in [5], N
is L-compact on Ω̄.

In order to apply Lemma 6, we need to search for an
appropriate open-bounded subset Ω.

Corresponding to the operator equation Lu = λu, λ ∈
(0, 1), we have

u̇(t) = λ

[
−a(t) +

m∑
i=1

bi(t)

eri(t)e
u(t−τi(t))eu(t)

]
(3.1)

is equivalent to

d

dt
eu(t) = λ

[
−a(t)eu(t) +

m∑
i=1

bi(t)

eri(t)e
u(t−τi(t))

]
. (3.2)

Suppose that u ∈ DomL ⊆ X is a solution of Eqs. (3.1)-(3.2)
for some λ ∈ (0, 1).

By Lemma 4, there exists a sequence {αn : n ∈ N+} such
that

u(αn) ∈
[
u∗ − 1

n
, u∗
]
, u∗ = sup

s∈R
u(s), n ∈ N+.(3.3)

By (H1) and Lemma 5, for ∀t0 ∈ R, there exists a constant
ω ∈ [0,+∞) independent of t0 such that

1

T

∫ t0+T

t0

a(s) ds ∈
[
ā

2
,

3ā

2

]
,

1

T

∫ t0+T

t0

bi(s) ds ∈
[
b̄i
2
,

3b̄i
2

]
, ∀T ≥ ω, (3.4)

where i = 1, 2 . . . ,m.

For ∀n0 ∈ N+, we consider [αn0
− ω, αn0

], where ω
is defined as that in (3.4). By Lemma 2, there exist ξ ∈
[αn0

− ω, αn0
], ξ ∈ (−∞, αn0

− ω] and ξ̄ ∈ [αn0
,+∞)

such that

u(ξ) = u(ξ̄), u(ξ) ≤ u(s), ∀s ∈
[
ξ, ξ̄
]
. (3.5)

By (3.5), we obtain from Eq. (3.2) that

0 =

∫ ξ̄

ξ

[
−a(s)eu(s) +

m∑
i=1

bi(s)

eri(s)e
u(s−τi(s))

]
ds. (3.6)

From (3.6), it follows from (3.4)-(3.5) that

ā

2
eu(ξ) ≤ 1

ξ̄ − ξ

∫ ξ̄

ξ

a(s)eu(s) ds

=
1

ξ̄ − ξ

∫ ξ̄

ξ

m∑
i=1

bi(s)

eri(s)e
u(s−τi(s))

ds

≤
m∑
i=1

b+i ,

which implies that

eu(ξ) ≤
m∑
i=1

2b+i
ā
. (3.7)

Let I =

{
s ∈ [ξ, αn0 ] :

d

ds
eu(s) ≥ 0

}
. It follows from

Eq. (3.2) that∫
I

d

ds
eu(s) ds ≤

∫
I

m∑
i=1

bi(s) ds ≤
∫ αn0

αn0−ω

m∑
i=1

bi(s) ds

≤
m∑
i=1

b+i ω. (3.8)
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By Lemma 1, it follows from (3.7)-(3.8) that

eu(t) ≤ eu(ξ) +

∫
I

d

ds
eu(s) ds ≤

m∑
i=1

2b+i
ā

+
m∑
i=1

b+i ω

for ∀t ∈ [ξ, αn0
], which implies that

u(αn0
) ≤ ln

[
m∑
i=1

2b+i
ā

+
m∑
i=1

b+i ω

]
:= f+.

In view of (3.3), letting n0 → +∞ in the above inequality
leads to

u∗ = lim
n0→+∞

u(αn0
) ≤ f+.

On the other hand, by Lemma 4, there exists a sequence
{βn : n ∈ N+} such that

u(βn) ∈
[
u∗, u∗ +

1

n

]
, u∗ = inf

s∈R
u(s), n ∈ N+.(3.9)

For ∀n0 ∈ N+, we consider [βn0 − ω, βn0 ], where ω
is defined as that in (3.4). By Lemma 3, there exist η ∈
[βn0

− ω, βn0
], η ∈ (−∞, βn0

− ω] and η̄ ∈ [βn0
,+∞) such

that

u(η) = u(η̄), u(η) ≥ u(s), ∀s ∈
[
η, η̄
]
. (3.10)

By (3.10), we obtain from Eq. (3.1) that

0 =

∫ η̄

η

[
−a(s) +

m∑
i=1

bi(s)

eri(s)e
u(s−τi(s))eu(s)

]
ds. (3.11)

From (3.11), it follows from (3.4) and (3.10) that

a+ ≥ 1

η̄ − η

∫ η̄

η

a(s) ds

=
1

η̄ − η

∫ η̄

η

m∑
i=1

bi(s)

eri(s)e
u(s−τi(s))eu(s)

ds

≥
m∑
i=1

b̄i

2er
+
i e

f+

eu(η)
,

which implies that

u(η) ≥ ln

[
m∑
i=1

b̄i

2a+er
+
i e

f+

]
. (3.12)

Let J = {s ∈ [η, βn0 ] : u̇(s) ≤ 0}. It follows from Eq. (3.1)
that ∫

J

u̇(s) ds ≥ −
∫
J

λa(s) ds ≥ −
∫ βn0

βn0−ω
a(s) ds

≥ −a+ω. (3.13)

By Lemma 1, it follows from (3.12)-(3.13) that

u(t) ≥ u(η) +

∫
J

u̇(s) ds

≥ ln

[
m∑
i=1

b̄i

2a+er
+
i e

f+

]
− a+ω := f−, ∀t ∈ [η, βn0

],

which implies that

u(βn0
) ≥ f−.

In view of (3.9), letting n0 → +∞ in the above inequality

leads to

u∗ = lim
n0→+∞

u(βn0) ≥ f−.

Set C = |f−| + |f+| + 1. Clearly, C is independent of
λ ∈ (0, 1). Let Ω = {u ∈ X : ‖u‖X < C}. Therefore, Ω
satisfies condition (a) of Lemma 6.

Now we show that condition (b) of Lemma 6 holds, i.e.,
we prove that QNu 6= 0 for all u ∈ ∂Ω ∩KerL = ∂Ω ∩ R.
If it is not true, then there exists at least one constant vector
u ∈ ∂Ω such that

0 = m

[
−a(t)u0 +

m∑
i=1

bi(t)e
−ri(t)u0

]
.

Similar to the above argument it follows that

f− ≤ u0 ≤ f+.

Then u0 ∈ Ω ∩ R. This contradicts the fact that u0 ∈ ∂Ω.
This proves that condition (b) of Lemma 6 holds.

Finally, we will show that condition (c) of Lemma 6 is
satisfied. Let us consider the homotopy

H(ι, u) = ιQNu+ (1− ι)Φu, (ι, u) ∈ [0, 1]× R,

where

Φu = −āu+
m∑
i=1

b̄ie
−r+i f

+

.

From the above discussion it is easy to verify that H(ι, u) 6=
0 on ∂Ω∩KerL, ∀ι ∈ [0, 1]. Further, Φu = 0 has a solution:

u∗ =

m∑
i=1

b̄i

āer
+
i f

+
∈ Ω.

A direct computation yields

deg
(
Φ,Ω ∩KerL, 0

)
= sign |−ā| = −1.

By the invariance property of homotopy, we have

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
Φ,Ω ∩KerL, 0

)
6= 0,

where deg(·, ·, ·) is the Brouwer degree and J is the identity
mapping since ImQ = KerL. Obviously, all the conditions
of Lemma 6 are satisfied. Therefore, Eq. (3.0) has at least
one almost periodic solution, that is, Eq. (1.2) has at least one
positive almost periodic solution. This completes the proof.

Corollary 1. Assume that (H1) holds. Suppose further that a
and bi of Eq. (1.2) are continuous nonnegative periodic func-
tions with periods α and βi, respectively, i = 1, 2, . . . ,m,
then Eq. (1.2) has at least one positive almost periodic
solution.

Corollary 2. Assume that (H1) holds and all the coefficients
of Eq. (1.2) are continuous nonnegative ω-periodic function-
s, then Eq. (1.2) has at least one positive ω-periodic solution.

IV. PERMANENCE

In this section, we establish a permanence result for system
(1.2).

Let

x∗ :=
m∑
i=1

b+i
a−

, x∗ :=
m∑
i=1

b−i

a+er
+
i x

∗
.
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Theorem 2. Assume that (H1) holds. Then Eq. (1.2) is
permanent. That is, any positive solution x(t) of Eq. (1.2)
satisfies

x∗ ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ x∗.

Proof: Let x(t) be any solution of Eq. (1.2). Then

ẋ(t) ≤ −a−x(t) +
m∑
i=1

b+i . (4.1)

From (4.1), it leads

x(t) ≤ x(0)e−a
−t +

∫ t

0

e−a
−(t−s)

m∑
i=1

b+i ds,

which implies that

lim sup
t→∞

x(t) ≤
m∑
i=1

b+i
a−

:= x∗. (4.2)

By (4.2), there exists a constant ε > 0 small enough and a
larger constant T = T (ε) > 0 such that

x(t) ≤ x∗ + ε for t ≥ T . (4.3)

In view of Eq. (1.2), it follows from (4.3) that

ẋ(t) ≥ −a+x(t) +
m∑
i=1

b−i e
−r+i (x∗+ε) (4.4)

for t ≥ T . By (4.4), we have

x(t) ≥ x(T )e−a
+(t−T )+

∫ t

T

e−a
+(t−s)

m∑
i=1

b−i e
−r+i (x∗+ε) ds,

which implies that

lim inf
t→∞

x(t) ≥
m∑
i=1

b−i

a+er
+
i (x∗+ε)

. (4.5)

Letting ε→ 0 in (4.5), we obtain the result of this theorem.
This completes the proof.

V. GLOBAL ASYMPTOTICAL STABILITY

The main result of this section concerns the global asymp-
totical stability of system (1.2).

Theorem 3. Assume that (H1) holds. Suppose further that
(H2) τ ∈ C1(R), τ̇+ := supt∈R τ̇(t) < 1, and

Θ := a− −
n∑
i=1

b+i e
−r−i x∗

1− τ̇i+
> 0.

Then system (1.2) is globally asymptotically stable.

Proof: Suppose that x(t) and y(t) are any two solutions
of system (1.2).

Construct a Lyapunov functional as follows:

V (t) = V1(t) + V2(t), ∀t ≥ T5,

where

V1(t) = |x(t)− y(t)|,

V2(t) =
n∑
i=1

∫ t

t−τi(t)

b+i e
−r−i x∗

1− τ̇i+
|x(s)− y(s)|ds.

Calculating the upper right derivative of V1(t) along the
solution of system(1.2), it follows that

D+V1(t) = sgn[x(t)− y(t)][ẋ(t)− ẏ(t)]

≤ −a−|x(t)− y(t)|

+
n∑
i=1

b+i e
−r−i x∗ |x(t− τi(t))− y(t− τi(t))|.

Moreover, we obtain that

D+V2(t) ≤
n∑
i=1

b+i e
−r−i x∗

1− τ̇i+
|x(t)− y(t)|

−
n∑
i=1

b+i e
−r−i x∗ |x(t− τi(t))− y(t− τi(t))|.

From the above inequalities, one has

D+V (t) ≤ −
[
a− −

n∑
i=1

b+i e
−r−i x∗

1− τ̇i+

]
|x(t)− y(t)|

= −Θ|x(t)− y(t)|. (5.1)

Therefore, V is non-increasing. Integrating (5.1) from 0 to t
leads to

V (t) + Θ

∫ t

0

|x(t)− y(t)|ds ≤ V (0) < +∞, ∀t ≥ 0,

that is, ∫ +∞

0

|x(t)− y(t)|ds < +∞,

which implies that

lim
s→+∞

|x(t)− y(t)| = 0.

Thus, system (1.2) is globally asymptotically stable. This
completes the proof.

Together with Theorem 1, we obtain

Theorem 4. Assume that (H1)-(H2) hold, then system (1.2)
has at least one positive almost periodic solution, which is
globally asymptotically stable.

Corollary 3. Assume that (H1)-(H2) hold. Suppose further
that all the coefficients in system (1.2) are ω-periodic func-
tions, then system (1.2) has at least one positive ω-periodic
solution, which is globally asymptotically stable.

VI. TWO EXAMPLES AND NUMERICAL SIMULATIONS

Example 1. Consider the following Lasota-Wazewska model
with multiple delays:

u̇(t) = −[2 + | sin(
√

2t)]|u(t)

+0.1 sin2(
√

3t)e−| cos t|u(t−| sin t|)

+0.1 cos2(
√

5t)e−| sin t|u(t−| cos t|). (6.1)

Then Eq. (6.1) has at least one positive almost periodic
solution, which is globally asymptotically stable.

Proof: Corresponding to Eq. (1.2), we have a(s) =
| sin(

√
2s)|, b1(s) = 10 sin2(

√
3s), b2(s) = cos2(

√
5s),

r1(s) = | cos s| = τ2(s), r2(s) = | sin s| = τ1(s), ∀s ∈ R.
It is easy to verify that (H1) in Theorem 4 holds. By
Theorem 4, Eq. (6.1) has at least one positive almost periodic
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solution (see Figure 1), which is globally asymptotically
stable (see Figure 2). This completes the proof.
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Fig. 1 State variable u of Eq. (4.1)
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Fig. 2 Global asymptotical stability of Eq. (4.1)

Remark 1. In Eq. (6.1), | sin(
√

2t)| is
√

2π
2 -periodic function

and sin2(
√

3t) is
√

3π
3 -periodic function. So Eq. (6.1) is

with incommensurable periods. Through all the coefficients
of Eq. (6.1) are periodic functions, the positive periodic
solutions of Eq. (6.1) could not possibly exist. However, by
Theorem 1, the positive almost periodic solutions of Eq. (6.1)
exactly exist.

Example 2. Consider the following almost periodic Lasota-
Wazewska model with multiple delays:

u̇(t) = −(| sin(
√

2t)|+ | sin(
√

3t)|)u(t)

+10 sin2(
√

3t)e−| cos t|u(t−1)

+ cos2(
√

5t)e−| sin t|u(t−2). (6.2)

In Eq. (6.2), | sin
√

2t|+| sin
√

3t| is an almost periodic func-
tion, which is not periodic function. Similar to the argument
as that in Example 6.1, it is easy to obtain that Eq. (6.2)
admits at least one positive almost periodic solution (see
Figure 3), which is globally asymptotically stable (see Figure
4).

Remark 2. Corresponding to Eq. (1.2), it is clear that all
the coefficients of Eq. (6.2) is not eventually positive. There-
fore, the result in [3] and the references therein cannot be
applicable to prove the existence of positive almost periodic
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Fig. 3 State variable u of Eq. (4.2)
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Fig. 4 Global asymptotical stability of Eq. (4.2)

solutions of Eq. (6.2). This implies that the results of this
paper are new and they complement previous results.

VII. CONCLUSIONS

By using a fixed point theorem of coincidence degree
theory, some criterions for the existence of positive almost
periodic solution to a class of Lasota-Wazewska model with
multiple delays are obtained. Theorems 1 gives the sufficient
conditions for the existence of positive almost periodic
solution of system (1.2). The results obtained in this paper
improves some result in recent years. Therefore, The method
used in this paper provides a possible method to study the
existence of positive almost periodic solution of the models
in biological populations.
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