
 

 

Abstract—In this paper, we suggest general disposition 

strategies for open queueing networks consisting of the 

arbitrary number of service stations with different service rate 

for each service station. Poisson arrivals and exponential 

service times are assumed to apply Markov chain analysis. We 

apply matrix-geometric method to evaluate steady-state 

probabilities of the quasi-birth-death process. We define 

important performance measures including mean number in 

the system, mean waiting time in the system and blocking 

probability of the service stations in front of the terminal 

service station. The exact formulae of stability conditions for 

the system with both the same and different service rates are 

derived. Disposition strategies for increasing operational 

efficiency of the system are proposed for the queueing system 

with the arbitrary number of service stations. 
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I. INTRODUCTION 

eries configuration queueing systems with no 

intermediate waiting line between service stations are 

very popular in modern automated production system. This 

kind of  system with four service stations is depicted in Fig. 

1. Designing efficient and high performance of this kind of 

system is very important, since the automobile industry is a 

major composition of modern economy. We can further save 

huge production costs by organizing optimized each 

production line working simultaneously around the world at 

a time.   It is obvious that we can apply simulation results of 

this queueing system to real industrial applications, such as 

automobile assembly line, supply chain management or other 

similar systems. Furthermore, companies in automobile 

industry can benefit their business through the insights of our 

studies. Generally, the assumption that the disposition 

strategies are all the same for the system with the arbitrary 

number of service stations is reasonable by intuitive 

considerations. However, the results of the simulation show 

that the disposition strategies for the series configuration 

queueing system with different service rate of service stations 

 
This work was supported in part by the JSPS KAKENHI Grant Numbers 

25287026 and 15K17583.  

Y. L. Tsai*, corresponding author is with the Department of Advanced 

Interdisciplinary Studies, School of Engineering, The University of Tokyo, 

CO 153-8904 Japan (phone: +81-3-5452-5022; e-mail: 

tokyotsai@gmail.com). 

D. Yanagisawa is with the Research Center for Advanced Science and 

Technology, The University of Tokyo. CO 153-8904 Japan (e-mail: 

tDaichi@mail.ecc.u-tokyo.ac.jp) 

K. Nishinari is with the Research Center for Advanced Science and 

Technology, The University of Tokyo. CO 153-8904 Japan (e-mail: 

tknishi@mail.ecc.u-tokyo.ac.jp) 

depending on the number of service stations of the system. 

 
Fig 1. Series configuration queueing system with four service 

stations. 

 

Traditional exact iteration relationships of the 

steady-state probabilities are almost impossible to be derived 

in the case of complex queueing networks (e.g. series 

configurations systems and systems with breakdowns). In 

addition, successful derivation of stability conditions is the 

first prerequisite to further investigate the mean-value 

analysis of system performance.  With the development of 

modern computational facilities, numerical analysis becomes 

significant to investigate operational performance of 

complex queueing systems. Matrix-geometric method 

provides a powerful framework to deal with queueing 

systems with complex Markovian structures. We can design 

algorithms to evaluate steady-state probabilities and 

concurrently check normalization conditions through this 

method. Exact stability conditions can also be derived in a 

systematic way. Advanced analysis of significant 

performance measures based on evaluating correct 

steady-state probabilities and stability conditions of the 

system in accordance with each different quasi-birth and 

death process. In this study, we derived the exact formulae of 

stability conditions of the series configurations system with 

four service stations. Computational simulations reveal 

several meaningful considerations of this kind of popular 

queueing system. General dispositions for improving 

operational efficiency of the system are proposed through 

numerical results. We expect that our results can provide 

insights for real industrial applications. 

Open queueing networks with no intermediate waiting 

queue between service stations and blocking phenomena was 

first investigated by Hunt [1]. He treated other various cases 

of the series queueing system including queue with infinite 

capacity between service stations, finite capacity queue 

between service stations and the unpaced belt-production line. 

Neuts [2] developed mathematical analysis and related 

applications of matrix-geometric method. Zhou et al. [3] 

studied a two-stage tandem queueing network with 

Markovian arrival process inputs and buffer sharing. An 

exact analysis of the queueing network was investigated by 

Markov process. They proposed a matrix filtration technique 

to derive the probability distribution of queue length arrivals. 

Optimal design of unpaced assembly lines was studied by 

Hillier [4]. Allocation of work to the service stations and the 

allocation of buffer storage space between the service 

stations are two major topics in their research. They derived 

exact solutions for small lines with a fixed kind of processing 
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time distribution. An approximation methods for fluid flow 

production lines with multi-server workstations and finite 

buffers was proposed by Bierbooms et al. [5]. The method is 

based on decomposition of the production line into 

single-buffer subsystems. Bierbooms et al. [6] further 

developed an approximation method to determine the 

throughput and mean sojourn time of single server tandem 

queues with general service times and finite buffers by 

decomposition method. Numerical cases presented that this 

approach performs accurate estimates for the throughput and 

mean sojourn time than existing methods. Ke and Tsai [7] 

first considered the disposition strategy for a self-blocking 

open queueing system consisting of two service stations with 

different service rate. Sakuma and Inoie [8] studied and 

assembly-like queueing system with generally distributed 

time-constraints. They applied Whitt’s approximation to 

obtain the stationary distribution. Shin and Moon [9] 

proposed an approximation method for throughput in tandem 

queues with multiple independent reliable servers at each 

stage and finite buffers between service stations. Hudson et 

al. [10] gave complete reviews for the topics about 

unbalanced unpaced serial production lines. Several 

unanswered questions about the performance of assembly 

line are described in this work. Sani and Daman [11] studied 

a queueing system consisting of two service stations with an 

exponential server and a general service under a controlled 

queue discipline. They applied supplementary variable 

method to derive steady-state distribution of the number of 

customers in the system. Ramasamy et al. [12] discussed the 

steady-state analysis of heterogeneous services of a queueing 

system, called Geo/G/2 queueing system. Embedded method 

and supplementary variable technique are applied to 

investigate the system performances. 

 Tsai et al. [13] compared the disposition strategies for 

the open queueing networks with two and three service 

stations. They discovered that the mean waiting time in the 

system can be reduced significantly by applying appropriate 

disposition strategy for setting higher service rate for specific 

service stations. Tsai et al. [14] further developed 

performance analysis of series configuration queueing 

system consisting of four service stations. 

II. PROBLEM FORMULATION AND NOTATIONS 

The queueing system consists of independent service 

stations in series configuration and operates simultaneously. 

Every customer follows Poisson arrival process with mean 

arrival rate  . The time to serve a customer in each service 

station is exponentially distributed with mean service time 

1


. Each customer should enter all of the service stations 

from the first service station to the terminal station in order. A 

complete service is defined as a customer enters to each 

service station in order and finishes the works in each station. 

There are no intermediate waiting queues between each 

service station. The distinctive phenomenon so called 

blocking after service happens in the case that a customer 

completes the service in a service station, but another 

customer in the next station has not finished the service yet. 

The customer who completed the service is blocked by the 

customer who is still receiving the service located next 

station. In this system, the blocking phenomenon happens in 

the station-1, the station-2 and the station-3. A queue with 

infinite capacity is allowed in front of the first service station. 

In addition, only a customer can enter each service station at a 

time and the service rate is independent of the number of 

customers. The service of the system obeys the first come 

first serve (FCFS) discipline. 

We use 
1 2, 3 4 5, , ,Pn n n n n

 to denote the steady-state probability 

1 2, 3 4 5, , ,Pn n n n n
of 

1n customer in the station-4 and 
2n customer in 

the station-3 and 
3n  customer in the station-2 and 

4n  

customer in the station-1 and 
5n customer in the queue.  

III. MODELING FRAMEWORK 

Let [ , , ,...] 0 1 2P P P P  denote the steady-state probability 

vector corresponding to the transition matrix Q. The 

steady-state equation of the quasi-birth-death process is 

QP = 0 , with the normalization constraint 1.P1 =  We can 

obtain the following set of matrix equations with a finite 

dimension: 

0,0 1,0B B , 0 1P P 0
                            

(1) 

0,1 1 2 2B A A ,  0 1P P P 0
                      

(2) 

i 0 i 1 1 i 2 2A A A ,   P P P 0
       

i 1 .    
(3) 

 

The following recurrence relation can be constructed with a 

rate matrix R 
i 1

i i 1 1R R ,

 P P P
             

i 1 .    
(4) 

 

The unknown rate matrix R can be obtained by substituting   

(4) into (3), we obtain the following characteristic equation 

of the recurrence relation 

 2

0 1 2A RA R A 0   .
                        

(5) 

The simplified matrix equations of (1) and (2) can be 

represented as 

0,0 1,0B B , 0 1P P 0
                           

(6) 

0,1 1 2B (A RA )  0 1P P 0.
                      

(7) 

According to Bloch et al. [15], the normalization condition 

equation that only involves 
0P  and 

1P  is given by 
1(I R) 1,  0 1P 1 P 1

                        
(8) 

where I is the identity matrix with same size as the rate matrix 

R.
 

The rate matrix R in (5) is solved by iterative method. 

Collecting (6), (7) and (8) together, the steady-state 

probability vector of 
0P  and 

1P can be obtained by solving 

following matrix equation 
*

0,0 0,1

1*
1,0 1 2

B B
( ) ( ,1)

B (I R)(A RA )


 
 

 
0 1

1
P , P 0 .

1
          

(9) 

where 
*(.)  indicates that the last column of the included 

matrix is removed to avoid linear dependency. 

 

 Stability Conditions 

The stability condition is given by Neuts [2] for the 

ergodicity of steady-state probabilities: 

A 0 A 2A A ,P 1 < P 1
                            

(10) 

where 
AP  is the steady-state probability vector 

corresponding to the generator matrix A. 
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Theorem 1. The stability conditions for the series 

configuration system consisting of four service stations. 

The following inequalities are necessary conditions for the 

system to be stable. 

(1) For 
1 2 3 4     

N
,

D
 

                           
(11) 

where the exact results of the N and the D are shown in the 

supplementary document. 

 

(2) Special case: 
1 2 3 4      

4024

7817
  .

                        
(12) 

The maximum utilization of the system consisting of four 

service stations is approximate 0.514  indicated by (12).  

IV. PERFORMANCE METRICS AND DISPOSITION STRATEGY 

Performance measures including mean number in the 

system, mean number in the queue, mean waiting time in the 

system, mean waiting time in the queue and blocking 

probability of the service stations in front of the terminal 

station for the series configuration system consisting of four 

service stations are defined. In addition, we propose general 

disposition strategies for the series configuration queueing 

system consisting of the arbitrary number of service stations 

based on the numerical results in this section. 

 

 Performance measures 

Performance measures for the system consisting of four 

service stations are defined by 

(1) Mean number of customers in the system 

0,0,0,1,0 0,0,1,0,0 0,1,0,0,0 1,0,0,0,0 1,b,0,0,0 0,0,1,b,0 0,1,b,0,0 0,1,b,b,0 1,b,b,0,0

0,0,0,1,1 0,0,1,1,0 0,1,0,1,0 1,0,0,1,0 1,0,1,0,0 1,1,0,0,0 0,1,1,0,0

1,b,0,1,0 0,0,1,

L (P P P P P P P P P )

2 (P P P P P P P

P P

        

      

  b,1 0,1,1,b,0 1,1,b,0,0 0,1,b,1,0 1,0,1,b,0 1,b,1,0,0

0,0,0,1,2 0,0,1,1,1 0,1,0,1,1 1,0,0,1,1 1,0,1,1,0 1,1,0,1,0 0,1,1,1,0 1,1,1,0,0

0,0,0,1,n 1 0,0,1,1,n 2 0,1,0,1,n 2 1,0,0,1,

P P P P P )

3 (P P P P P P P P )

(P P P P  

    

       

    n 2 1,0,1,1,n 3 1,1,0,1,n 3 0,1,1,1,n 3 1,1,1,1,n 4

n 4

1,b,0,1,n 2 0,0,1,b,n 1 0,1,1,b,n 2 1,1,b,1,n 3 0,1,b,1,n 2 1,0,1,b,n 2 1,b,1,1,n 3 1,1,1,b,n 3

n 3

0,1,b,b,n 1 1,b,b,1,

P P P P ) n

(P P P P P P P P ) n

(P P



    





       





    

        

 





n 2 1,1,b,b,n 2 1,b,1,b,n 2

n 2

1,b,b,b,n 1

n 1

P P ) n

(P ) n



  









  

 



 .

 

(13) 

(2) Mean number of customers in the queue 

q 0,0,0,1,1 0,0,1,b,1 0,0,1,1,1 0,1,0,1,1 1,0,0,1,1 1,0,1,1,1 1,1,0,1,1

1,b,0,1,1 0,1,1,1,1 0,1,1,b,1 0,1,b,b,1 0,1,b,1,1 1,0,1,b,1

0,0,0,1,2 0,0,1,1,2 0,1,0,1,2 1,0,0,1,2 0,0,1

L (P P P P P P P

P P P P P P )

2 (P P P P P

      

     

     ,b,2

0,0,0,1,3 0,0,0,1,n 0,0,1,1,n 0,1,0,1,n 1,0,0,1,n 0,0,1,b,n

n 4 n 3

1,0,1,1,n 1,1,0,1,n 1,b,0,1,n 0,1,1,1,n 0,1,1,b,n 0,1,b,b,n 0,1,b,1,n 1,0,1,b,n

n 2

1,1,1,1,

)

3 (P ) (P ) n (P P P P ) n

(P P P P P P P P ) n

(P

 

 





       

        



 



n 1,1,b,1,n 1,b,b,1,n 1,b,1,1,n 1,1,1,b,n 1,b,b,b,n 1,1,b,b,n 1,b,1,b,n

n 1

P P P P P P P ) n




        .

          

(14) 

(3) Mean waiting time in the system (Little’s Law) 

L
W 


.                                       (15) 

(4) Mean waiting time in the queue (Little’s Law) 

q

q

L
W 


.                                     (16) 

(5) Blocking probability of the customer in the station-1 

     

b,1 0,0,1,b,n 0,1,1,b,n 0,1,b,b,n 1,0,1,b,n

n 0

1,1,1,b,n 1,b,b,b,n 1,1,b,b,n 1,b,1,b,n

P P P P P

P P P P





   

   



.         

(17) 

(6) Blocking probability of the customer in the station-2 

 

b,2 1,1,b,1,n 0,1,b,1,n 0,1,b,b,n

n 0

1,b,b,1,n 1,b,b,b,n 1,1,b,b,n

P P P P

P P P





  

  



.             

(18) 

(7) Blocking probability of the customer in the station-3 

b,3 1,b,0,1,n 1,b,1,1,n 1,b,b,1,n

n 0

1,b,b,b,n 1,b,1,b,n

P P P P

P P





  

 



.

            (19) 

 

Proposition 3.1. Disposition strategies for the series 

configuration queueing system consisting of the arbitrary 

number of service stations with different service rates are 

different. 

We propose different disposition strategies for the system 

based on our previous research Tsai et al. [13] and this work 

in order to increase the operational efficiency. 

(1) Series configuration queueing system with the odd 

number of service stations 

It is better to arrange lower service rate for the first service 

station compared with other service stations in the system in 

order to obtain the best operational efficiency for the system 

with the odd number of service stations. 

 

(2) Series configuration queueing system with the even 

number of service stations 

We suggest setting higher service rates for the service 

stations in front of the terminal station as possibly as we can. 

In this way, the mean waiting time in the system would be the 

shortest compared with other disposition strategies. 

 

V. NUMERICAL RESULTS 

In this section, we illustrate numerical experiments for 

the queueing system consisting of four stations. Performance 

metrics of the system with equivalent service rates (i.e. 

1 2 3 4     ) and different service rates are 

presented. We will suggest better disposition strategies to 

increase operational efficiency for the system according to 

the results of simulations. 

 

 Same service rates for each service station 

First, we study the increasing trends of mean number in 

the system and blocking probabilities as a function of mean 

arrival rate  . Fig. 2. presents the mean number in the 
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system. It is observed that the upper bound of the stability 

condition of the mean number in the system approaches to 

4024

7817
( 0.514 ), which proves the correctness of the exact 

results we derived in the section 3.2. Blocking probability of 

the station-1, the station-2 and the station-3 as a function of 

mean arrival rate of the system consisting of four service 

stations is shown in Fig. 3. Furthermore, it is investigated that 

the blocking probability of the station-1 is higher than that of 

the station-2 and of the station-3 in this case. 

 



   

 
Fig 2. Mean number in the system. 

 

  
Fig 3. Blocking probability with 

1 2 3 4 1     . 

 

 Controlling the service rates of the three service  

stations 

In the case of different service rates, we study the 

conditions that we can concurrently control the service rates 

of three service stations and the service rate of only one 

service station for the system consisting of four service 

stations. 

First, we investigate the cases that we are able to control 

three service rates of the service stations in this system. We 

set 
1 2 3 42, 2, 2, 1        and 

1 2 3 42, 2, 1, 2         

and 
1 2 3 42, 1, 2, 2        and

1 2 3 41, 2, 2, 2        , 

then vary the mean arrival rate   from 0.01 to 0.7. It is 

suggested to set higher service rates for the station-1, the 

station-2 and the station-3 in order to obtain the best 

operational efficiency for the system, as shown in Fig 4. This 

best disposition strategy for the system consisting of four 

service stations is accordant with the result of the system 

comprising two service stations indicated by Tsai et al. [13]. 

Since the mean waiting time in the system of the case 

1 2 3 42, 1, 2, 2         is always higher than that of the 

case 
1 2 3 42, 2, 1, 2         for all mean arrival rates. We 

just compare the cases between 
1 2 3 41, 2, 2, 2         

and 
1 2 3 42, 2, 1, 2        . It is investigated that the 

mean waiting time of the system of the case 

1 2 3 41, 2, 2, 2         is higher than that of the case 

1 2 3 42, 2, 1, 2         when mean arrival rate is lower 

than 0.65. This result shows that when the mean arrival rate is 

lower than 0.65, the case 
1 2 3 41, 2, 2, 2         causes 

longer time for the customers waiting in the queue as show in 

Fig 4. The mean waiting time in the queue of the case 

1 2 3 41, 2, 2, 2         becomes shorter than that of the 

case 
1 2 3 42, 2, 1, 2         when the mean arrival rate is 

greater than 0.65.  

We suggest the case 
1 2 3 42, 2, 2, 1         as the 

best disposition strategy, when we are able to control service 

rates of three service stations for the system. 



   

   

   

   



 
Fig 4. Mean waiting time in the system. 

(Controlling the service rates of the three service stations) 

 

 Controlling the service rates of only one service station 

Next, we study the cases of controlling service rate of 

one service station, we set 
1 2 3 42, 1, 1, 1        and 

1 2 3 41, 2, 1, 1         and 
1 2 3 41, 1, 2, 1        and 

1 2 3 41, 1, 1, 2         
then vary the mean arrival rate   

from 0.01 to 0.5. It is investigated that the mean waiting time 

is the greatest in the case of 
1 2 3 41, 1, 1, 2         

compared with other three cases as shown in Fig 5. This 

disposition strategy makes the customers in the queue 

difficult to enter the service stations, since the mean waiting 

time in the queue is higher than other three cases. 

Similar to the case studies of controlling three service 

stations in previous section, we note that the mean waiting 

time in the system in the case of 
1 2 3 41, 2, 1, 1         is 

always lower than that of the case 
1 2 3 41, 1, 2, 1        . 

We compare the case 
1 2 3 42, 1, 1, 1         with the case 
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1 2 3 41, 2, 1, 1         for discussing the disposition 

strategies. We consider that the mean waiting time in the 

system of the case 
1 2 3 42, 1, 1, 1         is lower than that 

of the case 
1 2 3 41, 2, 1, 1         when the mean arrival 

rate is lower than 0.42. It is noted the mean waiting time in 

the queue is almost the same for both cases, so setting higher 

service rate for the station-1 is better to make customer to 

enter the service stations when mean arrival rate is lower than 

0.42, as shown in Fig 5. When the mean arrival is greater 

than 0.42, it is observed that the mean waiting time in the 

system in the case of 
1 2 3 42, 1, 1, 1         is larger than 

that of the case 
1 2 3 41, 2, 1, 1        . While the 

increasing of the mean arrival rate, the setting of lower 

service rates in the station-1 and the station-2 and the 

station-3 makes customers take longer waiting time in the 

queue. 

We suggest that setting 
1 2 3 32, 1, 1, 1         as the 

best disposition strategy when the mean arrival rate is lower 

than 0.42. On the other hand, for the case that we can control 

only one of the service rates for the system consisting of four 

service stations, we observe that case of 

1 2 3 41, 2, 1, 1         is a relatively better disposition 

strategy compared with the case 
1 2 3 32, 1, 1, 1         

when the mean arrival rate becomes larger than 0.42. 



   

   

   

   



 
Fig 5. Mean waiting time in the system. 

(Controlling the service rates of only one service station) 

 

 Controlling the service rates of two service stations 

We continue to study the cases for controlling two 

service stations. We set 
1 2 3 41, 1, 2, 2        and 

1 2 3 42, 1, 1, 2         and 
1 2 3 42, 2, 1, 1        and 

1 2 3 41, 2, 1, 2         
and 

1 2 3 41, 2, 2, 1        and 

1 2 3 42, 1, 2, 1         
then vary the mean arrival rate   

from 0.01 to 0.6. The six patterns of mean waiting time in the 

system by controlling service rates of two service stations are 

shown in Fig 6. and Fig 7., respectively. It is noted that the 

cases 
1 2 3 41, 2, 2, 1        and 

1 2 3 42, 1, 2, 1         

and 
1 2 3 42, 2, 1, 1         are relatively better disposition 

strategies in all of six cases, so we plot these cases together 

again to determine the best disposition strategy. 

 



   

   

   

 
Fig 6. Mean waiting time in the system. 

(Controlling the service rates of two service stations) 
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Fig 7. Mean waiting time in the system. 

(Controlling the service rates of two service stations) 

 

We observed that the mean waiting time in the system in 

the cases of 
1 2 3 42, 1, 2, 1         and 

1 2 3 42, 2, 1, 1         are larger than that of the case 

1 2 3 41, 2, 2, 1         when the mean arrival rate is lower 

than 0.52. On the other hand, the case 

1 2 3 41, 2, 2, 1         performs better than the other cases 

while the mean arrival rate is greater than 0.52 as show in Fig 

8. It is clear that the mean waiting time in the queue of the 

cases of 
1 2 3 42, 1, 2, 1         and 

1 2 3 42, 2, 1, 1         

grow very quickly compared with the case 

1 2 3 41, 2, 2, 1         when mean arrival rate is greater 

than 0.52 as shown in Fig 9. Because the difference of the 

mean waiting time in the system of these cases are not 

significant, while the mean arrival rate is lower than 0.52. We 

suggest that, for average performances, the case 

1 2 3 41, 2, 2, 1         is the best disposition strategy to 

increase the efficiency of the system when we are able to 

control service rates of two service stations for the system. 
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
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   



 
Fig 8. Mean waiting time in the system. 

(Controlling the service rates of two service stations) 
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Fig 9. Mean waiting time in the queue. 

(Controlling the service rates of two service stations) 

 

 Mean waiting time in the system with fixed total 

service  

rate of service stations 

We finally investigate the disposition strategies of the 

series configuration queueing system constrained by the 

fixed total service rate of service stations. For instance, when 

we can control the service rate of three service stations, the 

fixed total service rate of service stations is 7 (i.e. summing 

service rate of each service station, 2 2 2 1 7    in the case 

of controlling three service stations). The results of 

simulation show that disposing equivalent service rate for 

each service station is the best disposition strategy for the 

series configurations queueing system as shown in Fig 10. 

and Fig 11. and Fig 12., respectively. This disposition 

strategy is especially suitable for automation production 

system with computer integrated manufacturing, because 

keeping equivalent float service rate for each service station 

is more difficult than focusing on setting integer service rate 

for specific service stations in practical applications. 



   

   

 
Fig 10. Mean waiting time in the system. 

(Controlling the service rates of three service stations with 

total fixed service rate of 7) 
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Fig 11. Mean waiting time in the system. 

(Controlling the service rates of two service stations with 

total fixed service rate of 6) 


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   

   

 
Fig 12. Mean waiting time in the system. 

(Controlling the service rates of only one service station with 

total fixed service rate of 5) 
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VI. CONCLUSION 

We propose general disposition strategies for the series 

configuration queueing system based on a series of research, 

Tsai et al. [13] and in this work. We discover that the 

disposition strategies for improving the operational 

efficiency of the series configuration queueing system 

depend on the number of service stations of the system. Exact 

formulae of stability condition with same and different 

service rates of each service station are derived, so that we 

can confirm the correctness of the estimated steady-state 

probabilities. The results can be applied in automobile 

production lines and related similar queueing systems. 

Numerical results verify the consistency of stability 

condition of the system with equivalent service rate of each 

service station. Moreover, the maximum utilization of the 

system decrease as the number of the service stations increase 

due to enlarging blocking probability of the station-1 of the 

series configuration queueing system. The numerical result 

of the blocking probability of the station-1 in the condition of 

very high arrival rate of the system reflects that the derived 

theoretical result of maximum utilization approaches to 0.514 

for the system with four service stations. 

Future research will focus on the transient analysis of 

the series configuration system in order to study the dynamic 

behavior of the system. Statistical analysis with real data in 

the automobile production line will also be conducted to 

further validate our theoretical results and inferences. 
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