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Abstract—A sequential method of unknown autoregressive innovations). The first component is the GARCH process,
parameters estimation of TAR(p)/ARCH(1) model with an and the second one reflects the result of unexpected events
arbitrary threshold is presented. This procedure is based on and describe jumps in volatility. Guo and Cao in [5] propose

the construction of the special stopping rule and weights for . .
weighted least square estimation method, allowing guarantee a new smooth transition GARCH model, which allows for

the prescribe accuracy of the estimation. Also a sequential pro- @n asymmetric response of volatility to the size and sign of
cedure of change point detection is proposed. Upper bounds for shocks, and an asymmetric transition dynamics for positive
its basic characteristics, such as the probability of false alarm and negative shocks. The authors apply the model to the em-
and the delay probability, are obtained. The ergodicity region ;. : ; . ; PRRTT

. ; , : pirical financial data: the NASDAQ index and the individual
of TAR(2)/ARCH(1) model is studied and asymptotic properties stock IBM daily returns. TAR/ARCH models also allows us

of the proposed method for ergodic TAR(p)/ARCH(1) process . . ;
are investigated. to describe some non-linear effects, such as clustering and

N different behavior subject to the sign of a stock return.

Index Terms—AR/ARCH, guaranteed parameter estimation, Esti f th K based he id
change point detectionAR/ARCH, guaranteed parameter esti- stimators of the un. nown p.aramete.rs ased on the idea
mation, change point detectionT of the usage of a special stopping rule in order to guarantee
precisely their quality in a special sense were first proposed
by Wald in [6] and are also very popular. So, Lee and
Sriram in [7] proposed a sequential procedure for estimation
Threshold autoregressive (TAR) models proposed by Tonf) TAR(1) parameters, which allows one to construct least
[1] definitely are one of the most popular classes of nonlineaguares asymptotically risk efficient estimator. Sriram in [8]
time series models for conditional mean, because they deed sequential sampling methods to construct confidence
not only provide a better fit than linear models, but alsmtervals for unknown parameters with the fixed size and
reveal a strictly nonlinear behavior (e.g. limit cycles, jumprescribed coverage probability. Konev and Galtchouk in
resonance, harmonic distortion) which linear models cann®] proposed the sequential least square estimator with the
duplicate [2]. Though sometimes such models have to btopping rule determined by the trace of the observed Fisher
completed by a specification of the conditional variancénformation matrix, which is asymptotically normally dis-
ARCH/GARCH type models first introduced by Engle [3}ributed in the stability region. In [10] we developed a se-
are often considered for the conditional variance. One qfiential procedure for the estimation of unknown parameters
the most popular applications of the models is analysis anlthe TAR(1)/ARCH(1) process, which can guarantee the
modeling of stock market. In particular, they are used farecise accuracy of estimators.
describe the volatility. A lot of authors note that the classical The problem of the change point detection for autore-
ARCH/GARCH models do not explain some peculiaritiegressive processes with conditional heteroskedasticity is well
of the volatility behavior, such as asymmetry and responkaown and extremely interesting. With different assumption
for news. Consequently, rather complicated models basauad for different types of models such problem was recently
on ARCH/GARCH are proposed and used. Sidorov arabnsidered for example by Vorobeychikov and others in [10],
others in [4] describe volatility by GARCHJumps model$ryzlewicz and Subba Rao in [11], Na, Lee and Lee in
with two separate components (normal and unusual newd)?]. Properties of commonly used algorithms are studied
which cause two types of innovation (smooth and jump-likesymptotically or by simulations, as theoretical investigation

is extremely complicated or hardly ever possible. The usage
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[I. PROBLEM STATEMENT In this paper, we obtained sufficient conditions for ergod-
We consider the TAR(p)/ARCH(1) autoregressive procei@ty of process (1) based on one of the theorems given by
specified by the equation Mein and Tweedie [22]. We can reduce proving geometric

ergodicity of a Markov chaif{ X,,} by verifying the follow-
ing condition: there is a positive test functigiX') such as
and a compacKk such as

T = XkAll{mk_lza} + XgA21{Ik_1<a}

+y/w+ a?x? &

(1)
Xk = [Th—1y oy Th—pl;
N=[N, L MT, j=1,2 a) Eg (Xik41) [ X = X] < g(X) — ¢,
F c>0, X¢K; 3
where{&; } >0 is a sequence of independent identically dis- b) Elg(Xpr1)|Xe = X] < R < o0, ®)
tributed random variables with zero mean and unit variance, X € K;

w>0,0< a? <1, ais an arbitrary known constant. So,
the process under consideration is therder autoregressive The main problem of this approach is the choice of the
process with ARCH noise and the autoregressive paramignction ¢(X). Let us choose it as a linear function of the
ters depending on the previous value of the process. The For the TAR(2)/ARCH(1) process we can write it in the
value of the parameter vectdr = [A', A%] changes from form

= [:U’%a Tty u;lyaM%’ Tty :U’;z;] to ﬁ = [ﬁlla "'aﬁ%vﬁfv 7ﬁ;2;] at

the change poin. The parameters values before and after  ;(x, ) = Cizf +Cray +Cf x| +Coap_,,

are supposed to be unknown. The difference betweand
0 satisfies the condition

whereA is the known value defining the minimum difference

between the parameters before and after the change pcwé choose the compadt —

The problem is to detect the change pothtfrom the M > |l

observationsey. oy . . .
In [19] and [20], we proposed to detect the instant of th A\t/vzrztk’)tga consider condition (3). Faf,—, > M using

parameters change in the autoregressive process by ma |r?g

use of guaranteed sequential estimators. The sequence of T
estimators is constructed and the estimators obtained ar{Xi+1) = Cy (x\%wk—l + Mzp_a+ 4 /w +a21'%_1§k)
different time intervals were compared. In paper [21], we _ -
applied this approach to more complicated TAR(p)/ARCH(1) €1 (A%‘T’*’—l +AgTp—2 + Ve T O‘Qxi—lf’“)
model with the unbounded noise variance. In this paper, +C5 wp1;

we extend our approach to TAR(p)/ARCH(1) model with

an arbitrary threshold. The ergodicity region of the proce§gnsequently (here and theR, = (41, 7x—2)),

is investigated. Besides, more precise asymptotic results are

whereCyH, C, Cf, C, are some positive constants,
r" =max{z,0}, 2~ = max{—=,0}.

[-M, M| x [-M, M], where

obtained. E[g(Xp41)| Xk = X]
“+ o0
Ill. ERGODICITY OF THE PROCESS =Cf (Mzp—1 + Myzp_2) / f(z)dz
For investigation of asymptotic properties of estimators of . Dy
unknown parameters of the given models it is important to N -~ o
obtain necessary and sufficient conditions for ergodicity or +CO7Jw + oy / zf(z)dx
even strongly for geometric ergodicity of such models . There Dg
are distinguished three main approaches to establish geo- Dy
metrical ergodicity in nonlinear conditionally heterockedas- —-C7 (A%xk_l + Ajzp—2) / f(x)dx

tic autoregression [2]. The first approach is based on the
assumption that the linear regression part becomes main part

Dy,
for the stability research due to the usage of infinite number —CHy/w+ a2z}, / rf(x)dr + Cf vp_y;
— 00

— 00

of values of the process considered; the assumption that the

radius of the companion matrix of this linear regression part Mg — Mag_s
is less than one [13], [14] for the AR/ARCH model. The Dy = =
second one uses the concept of the Lyapunov exponent for \w otz

the AR/ARCH [15] and the TAR/ARCH [16] and allows to

obtain geometric ergodicity within more general assumptiottere f(x) is the density of distribution of the noisg. By
in much larger parameter space than in [13], [14] but tHetroducing the following notations

assumptions appear much more difficult to validate. The last

one is the approach, which was proposed first by Liebscher e oo

[17] and then extended for AR/ARCH model [3], based on / zf(x)dx = F}, / zf(x)dr = FZ,

the concept of the joint spectral radius of a set of matrices Dy Dy

and also allows to obtain the geometric ergodicity in lager

regions of parameter space than [13], [14]. and taking into account thaté, = 0, we can rewrite the
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last equation in the form we can rewrite the ergodicity conditions fa# in the form
Elg(Xi41)| X = X] = CF (\zp—1 + Agap—2) F we =M =s
+C0f /w4 a2x?_ | F? )(\} +0p T (5)
_ t 1-—-
_Cl ()\ixk;71 + )\%xk72) (1 — Fkl) a < ﬁ )\% < O7
—CyyJw+ a2} ((—F2)+ Cf xpq _ N o
= (CF +07) ()\}xkq 4 )\%xk72) F} Consﬁe\:veng\é\{[a::nondltlon 2). Taking into account that
-Cy ()\%l‘k—l + )\%xk_z) + C;_J)k_l Tr—2 > U,
+(CF + C )\ Jw + o222 FR. (CF + CO)NEE—Cr Ay —CF <.
Note that if the functionf(z) is symmetric than e A} > 0. The first summand is positive; hence, the
o condition takes the form
0< ¢ < [af(w)iz=D. (4) (CF+ O — ol oF <0,
. ’ . consequently,
The functiong(X) has the following form cF
A <2 =5

+ + i . = o+
g(X) _ { Cl Tp—1 + 02 Tp_o, If xp_o>0; Cl

Cilap_1 —Cyap_ if x,_o <O0. ) . .
1 ¥k-1 70y T2y T Th-2 = e A} < 0. The first summand is non-positive; hence, the

Hence, forzy_s > 0 condition takes the form
E[g(Xp41)|Xg = X] — g(X)
= (Cf + O Map_1F} — O Mgy + C ap 4
—Cfzp_y +(Cf + C{)mﬂg consequently,
+H(OF + CO)N o F} — C7 Mag_o — OF mp_o. M>—=2 =2
As x,_, andx,_o can take any value, to fulfill condition (3a)

the last expression should satisfy the following inequalites C0nsider now the casg;_, < 0. Following the same line
. L . of reasoning, we obtain the ergodicity conditions
1) (Cf_ + Cl_))\lxk_le —Cy Mzp—1 + C;'mk_l

+ —\11 1 ~—a1 +
—Cfap—1 + (Cf + c;)mﬂg <0 1) (Cf + CO) Mz FE — O Mgy + Cf 2y

_ v —Clap_1 + (CT +C)y/ 222 (F?<O;
2) (Cf + CT)Mjar—oFyf — CT Njwp—y — C wp—z < 0. +1 Tk ! +1( 1 +1 1) 7w1+ @1 k
1+ Cl )AQl'k,QFk — Cl Aoxp—2 + C2 Tr_o < 0.

—Cr A = Cf <0,

2) (C
The further reasonings depend on the signs of the parameterg (
A1, AL. Consider all possible cases. Condition 1) is the same, and condition 2) can be rewritten
e Al > 0. In expression 1), the first summand is positivéD the form
and F} < 1; besides, the last summand is also positive and

(Ot —\y 11 S
F? < D, whereD is defined in (4). So, to fulfill 1) we need (CF +CP)AF +Cr A =Gy <0
(CF + Cr)Mag—1 = Oy Mag—1 + Cf gy e \} > 0. The first summand is non-positive; hence, the
e+ (CF 4+ C‘)WD < 0 condition takes the form
1 - 1 1 k—1 )
. . . . CyAs—Cy >0,
hence, we obtain the following condition of ergodicity -
CY1—\)—Cf consequently,
. Cy
(CH+Cy)D Ay < =2
¢y

e A\l < 0. In expression 1), the first summand is non- ] ) -
positive; so, to fulfill 1) we need e M < 0. The first summand is positive; hence, the

0 N N condition takes the form
_Cl >\1Ik—1 + CQ LTh—1 — 01 Tk—1

(O +C )\ o + 0222 D <0 —(CT+C)A+Cr A, —Cy <0
hence, we obtain the following condition of ergodicity ~ conseduently,
CrM+Cf —CF A%Z—F.
€ +cr)p
To fulfill it, we need the following condition

CrAl+Cf —Cf >o.

Introducing the following notation
Cy
CIF - q?
Introducing the following notations

cr . Cf

o "ot max{ =g f SN min{s i) @

we can rewrite the ergodicity conditions fak in the form

(Advance online publication: 26 August 2016)
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For x,_1 < —M using (1) we obtain Finally, by making use (5) and (6) we combine all ergod-
icity conditions for the parameter

9(Xpy1) = CF (/\%5%—1 + N3xp_2 + /w+ a%i,lﬁk) (1-A)—s

_ 1
_02 Th—1; «a (1 +t)D ) )‘1 > 0;
1
Consequently, [ M oA <o
(1 +§)D - ©)
FlgXli=x L ¥ T,
= (Ci’— +201_) (>\11'2k—1 —+ )\QLL‘]C_Q) Fk (1 n t)D ) 1 =Y
—C7 (Mag_1+ M5a5_2) — Cyxp_ 2 —
1(1$k 1+ Asxg 2) 2 Tk—1 a<)\1+t q )\%<0'

+(CF + C7 )\ Jw + o223 | FR. (1+¢)D”’
Note that the upper bound fer should be positive. Taking

The functiong(X)) has the following form into account that > 0 we obtain additional conditions
(X) = —Cl xp—1 + C;_l‘k_g, if xp_o > 0; (1-X)=s>0, A > 0;
P T —Crans — Cyayg, if 20 <0. tAl+1—-s5>0 Al <0; (10)

t1=X)—g>0, X >0;

Hence, forzy,_o > 0 the last expression should satisfy the Nt—qg>0, A <O0;

following conditions
By making use (8) and (7) we combine all ergodicity

1) (Cf + C)Map—1 Fyy — CLA 2y — Oy i conditions for the parametex,
+CFap—1 + (CF + C7 )y Jw + 22} | F2 < 0; 5 < <o q
2) (Cf + C7)N\2ap_oF} — Oy Nag_o — Cf g < 0. ax {7’ *q} < Az < min {5 E} ' (11)

To obtain the widest ergodicity region fer, we should

For z;,_> < 0 the conditions are by Sl b
minimize s andgq taking into account conditions (11). There

1) (Cf + CO)Map 1 Ff — CyNwg—y — CF wpq can be several cases subject to the parameters
_ 5o ) "
+O 21 + (CF +C7 )y Jw + a222_ | F2 < 0; for?nase 1:0 < A5 < A3. In this case, condition (11) has the

+ — — —
2) (Cf +C ))‘gwk72Fl¢1, — Cy Map—2 + Cy a2 <0. )\% < min {S, %} ,
Conditions 2) are practically the same as in the previous case
Tp_1 > M, we Only need to usa% instead Of)\l; so, we and minimum values of the constants are- Al, q = t)\%
obtain Note that the cas® < A} < A3 is in fact the same; we

1 2 i i
maX{_i_q} <A< min{s, g}. @ only need to replac.e.furthe_\(2 by As. L_Jsmg this, we can
construct the ergodicity region far subject to the signs of
the parameters’ .

Consider now condition 1) for different signs af.
) gns af Al >0, A2 > 0. The ergodicity region takes the form

e A\f > 0. The first summand in 1) is non-positive; so, the

condition has the form — Al — 32l
o < min { L= )\2, t1 = A1 = ) } (12)
—Cf)\%xk,1 —Cy 1+ C xp—1 (1+¢)D (1+6)D
+(CF +CP )y Jw+a2a? [F2<0 with the additional conditions
L . . 1-M =X\ >0
and implies the inequality 1- 22—\l >0,
o< —Cr N+ C -0y which can be generalized in the form
(Cf +Cy)D N .
A+ A <1, gle{l,2}. (13)

e \?2 < 0. The first summand in 1) is positive; so, th

condition has the form G{/Ve obtain the widest region if the parametesatisfies the

equation
(CF +C)Mzp—1 — Oy M1 = Cyap1 + Crag =M =M =t(1 =22 =)\,

+ — 2.2 2
O+ G )\/“H_a Ty by <0 In this case both upper bound constants dorare equal;
hence, choosing minimum between them, we obtain the
maximum value of the upper bound. By expressinfgom

CHN+Cy —Cy this and using it in (12), we obtain

(Cy+Cr)D Lo A=A ==X - )
(2=X =X -2\))D
Due to condition (13), the right hand side of (14) is positive.

and implies the inequality

o <

(14)
So, we obtain the ergodicity conditions fat in the form

A
a < W, A2 >0; Al >0, A2 < 0. The ergodicity region takes the form
8)
M +t—q ( L= =X\ A2+t -t
)\2 0. < mi 1 27 1 2 15
“<ypp’ 1T =M TAT 0D (140D (15)

(Advance online publication: 26 August 2016)
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with the additional conditions If we choose
w
1-M-X>0 M>7(a*)2_a2,
which has already obtained in (13). The parametgrovid-
ing the biggest region of ergodicity satisfies the equation and
L= A=Ay = AT +1— 1A 9(Xir) = @y +tay, +saly +azy_y,

By expressing from this and using it in (15), we obtain wheres, ¢ andt are constructed as above, subject to signs
AN o : :
(1= A= AL)(1— AL of X1, A3, 7,1 € {1,2}, condm.on (3a) will be fulﬁlled. '
a< N x 2D (16)  case 3:\} < 0 < A2. In this case, evaluation andg is
N v > _ ~ more difficult then in the previous one, because we should
Due to condition (13), the right hand side of (16) is positivake into account not only signs of] but their absolute

Similarly, we can consider two remaining cases. values. As a result, we have three possible sets of values
At <0, A? > 0. The ergodicity region is for s and ¢, and we should consider these sets subject to
22 _ 1y (1 _ 1 signs of\!, i.e., for four cases. These calculations are rather

(1-22 =21 - AD) >se ca :
a < (17) cumbersome; so, we do not consider this case in the paper.

(2= = A —2\3)D -
To prove condition (3b) we have to bound from above

if conditions (13) fulfill. N o E[9(Xi41)| X, = X] when X € K; we have
A <0, A2 < 0. The ergodicity region is
(1—X3)% — A\jA 18 E[g(ka1)|Xk =X]
S @-A-N-2M)D (18) = (O +C1) (Mako + My )
with the additional conditions -Cr (A{xk,l + Aéxk,2> + Oy Tp—1
(1=23)% = AAT > 0. (19) O +Cr)yJw+ a?a}
So, forAl > 0 andA2 > 0 combining (13)—(19) we obtain <(CY +07) (Wﬂ + |A§\) M
the following ergodicity region +CF M + (Cf + C7 )Vw + a2M?2D < oo.
Ay >0, 1e{1,2) .
N <1, gle{l,2):; Note that when\l = )2 = 0, the ergodicity re-
A2 < (21 _ )11)2 e {’1 27}. (20) gions (20) and (21) matches the one obtained in [10] for
CUmin{Ar, Ay, Ag, Ay TAR(1)/ARCH(1). It differs from regions described in [18]
O< o T 3 12 =a, and [14], because it includes negative values of the parame-
(2= A7 — A1 —2max{A\},\3})D 1 5 X
tersA\; < —1 or A\Y < —1; in [18] and [14] absolute values
where of all parameters are less then one. Cline and Pu in [16]
Ay = (1 =X —max{\},\3})(1 — A\? —max{)\},\3});  obtained the exact ergodicity region for more general model
Az = (1 — M —max{\}, A\3})(1 — max{\}, \3}); TAR(p)/ARCH(p), but it should be calculated numerically
Az = (1 — 27 — max{A}, A\2})(1 — max{\}, \3}); for p > 1; in our paper, we proposed explicit expressions.
Ay = (1 —max{A\}, \3})% — A1)3. Fig. 1 demonstrates an example of an ergodic

TAR(2)/ARCH(1) process behavior, and Fig. 2 presents an

1 5 . o
Case 2:A; < A; < 0. In this case, condition (11) has theexample of non-ergodic one. Both trajectories have cluster

form . 51 <yl effect and outliers, but the latter one is more chaotic and
mm{*q’*Z} = A2 maximum values of the process are greater then for the
former one.

and minimum values of the constants are= —t\l, ¢ =
—\3. Note that the cas#3 < A} < 0 is in fact the same; we
only need to replace furthex} by )\2. Using this, we can
construct the ergodicity region far as described above for
the case 1. The region has the following form

IV. GUARANTEED PARAMETER ESTIMATOR

Since the parameters both before and after the change

AL <o, 1e{1,2) point are unknown, it is logical to apply the estimators of the
(1=A)(1-X}) — (,\12)2 >0, le{1,2}; unknown parameters in the change point detection procedure.
AN AT ) <1, je{1,2): (21) In this section we construct guaranteed sequential parameter
MAZ LN+ A2+ M) <1, Te{1,2); estimators for the parameter vectdrs, j = 1,2. Such esti-
min{ B, By, B3, Ba} . mators were proposed in [20] for an autoregressive process.
< (2= A =22 —2min{A\, A\2})D =, The main advantage of the estimators is their preassigned

mean square accuracy depending on the parameter of the

where estimation procedure.
By = (1-=X})(1 =A%) — (min{\3, )\g})2 ; It should be noted that if parametersand« are unknown
By =1 — Al —min{A\}, M2} (A3 + min{\}, \3}); then the process (1) has unknown and unbounded from above
B3 =1— A7 —min{A\}, M3} (Al + min{\}, \3}); noise variance. To obtain a process with bounded noise

By =1- XX —min{\}, \2}(Al + A2 + min{)\},\2}).  variance we denoteax{1, |z;_1|} asmy and rewrite the

(Advance online publication: 26 August 2016)
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for the process AR(p) the compensating factor satisfies the
following condition

1 1
E— < . 24
'y ~— wHa? (24)
X, ' ' ' ' ' ' ' ' ' This proof can be generalized for our case with minimum
ol | changes so we omit it.

If the random variableq ¢} have standard normal dis-
N
1 tribution, then the sum)_ &7 has x? distribution with N

k=1,
0 | degrees of freedom. In this case
1 b 1
A _ N/2-3 —x/2 3, _
Cn = dx = .
N = ONT(N)2) / Tt T IN (V-4
2 _ 0

This constant is defined fav > 5.
S0 100 200 300 400 500 600 700 800 900 Let us consider now a weighted least squares estimator for
process (22). The process can be rewritten in the form

Fig. 1. Ergodic TAR(2)/ARCH(1) process Yr = YA+ Vil

Vi = [,V (29)
So the weighted least squares estimator has the following
form .
A=C7Ym) > op(Ye) Ty
il (26)
X, ' ' ' ' ' ' ' ' ' Cim)= Y u(Ya)TY,

3 4 k=N+1

2 where0 < v, < 1. According to definition (ZZIY,j)TY]j =

: O, for i # j (hereO, stands for a zero matrix of the orde}.
Hence, taking into account (25), one obtains that the matrix

. C(m) has a block structure
AL I
_ [ Cm) O
2l ] Com=| "0 " c@m
_ C—1(1,m) O }
a3t . C-1 = ’ P
) L 0y CTm)
#0100 200 300 400 500 600 700 800 900 T CiHM)= > o(Y)TY?, j=1,2

k=N+1

Fig. 2. Non-ergodic TAR(ZARCH(1) process Using this result and (22), (25) one can obtain

m

Al -1 T
process in the form AT =107 0,m) Oy k:JZV:HUk(Yk) Yk
Yk = Yk,lAl + YkQAQ + ’Ykgk; = [C‘l(l,m) Op] Z Uk(Yk)T(YkA + ’ykfk)
Ve — Xl sar Y2 = —Xiliy ey RN
F T o b Heeazay Yo = e Xl <ay (' (1L,m) 0y { g(l,m)ﬁl ]
Th JVw+alzi o i (2,m)Az
Ye = —» V& = . +[C_1(1,m) o) ] Z ’Uk(Yk)T’ykfk.
mp my (22) b k=N+1

The noise variance of the proce$s;} is bounded from Hence,

above by the unknown valugu + o2). To eliminate the A=Ay + CH(1, m)n(1, m);

[ i = 27
influence of fche unknown constant in [_10] we propo_sed to n(Lm)= 3 vV vl (27)
use the special factdr,y constructed by firsiv observations k=N+1

in the following form ) R
The same result can be obtained ff. It allows us to

r o ZN: ( Ty 2 construct estimators fak! and A? separately, i.e.
N = UN T 4 5
— \ min{1, |z} - m )
S @3)  AM=ctGm) S w)Tme i=12  (28)
Cn=F (Z f;%) ; =N
k=1 The obtained estimator can be modified in order to bound

where N observations are taken at the interval where all thbhe standard deviation of the estimator from above. To do
values|xy| are sufficiently large. It was proved in [20] thatso, we change the sample size for a special random
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stopping timer?. Also, we use special weights ;. for every and can be both greater and smaller thenhence, the

estimator. absolute value of the first component is equal to 1 with non-
Let H > 0 be a parameter of the estimation procedureero probability. So condition (36) can hold true only because

Further we prove that it defines the accuracy of the proposefdthe choice of the weights(j, ).

parameter estimators. Then the estimators are constructe8uppose that the matriK'(j, M — 1) is not diagonal.

by using the sequential weighted least squares method a@wtording to the definition of the minimum eigenvalue of

consequently can be written in the following form: a matrix
Aj :]V(H) :C_l(j;Tj) Z Ujk(y ) Uk; Vmin(]aM) :wml‘lnzl(mac(]vM)x)v
o (@9 \where (s, ) is the scalar product of the vectorsand
. I N o A where (z,y) is the scalar product of the vectossand y.
CG, M) = kz%:ﬂvj’k(yk) Yoo J=12 Then by using (29), we obtain
Let vmin(j, M) be the minimum eigenvalue of the matrix Vmin(N + 1, N) ‘ ‘
C(j, M). Then the stopping instantd = 77 (H) are defined = min (z,((C(j, M —1)+v; m(Yi)TY])x)
by the following conditions @iffel|=1 _ o
= min ((z,C(j, M — 1)z) + v m(Yi2)?).
7/ =inf (M > N : vpin(j, M) > H). (30) i |zf[=1

Let zj; be the argument of the minimum in the above

Now we consider the choice of the wei . Let the
gt equation. According to (32), we obtain

matrix C'(j, M) be degenerate fob/ = N +1,..., N + o7

and C(j,07 + 1) be non-degenerated. The weights on the (zar, C(j, M — 1) zpr) + v; M(Y]{{ZM)2
. ‘] - - . . ’ . .
interval [N + 1, N + ¢7] are taken in Fhe folloyvmg form: = Vimin(j, M — 1) + U?,MY&(YJ{I)T-
1 if ﬁg@»---laykj So we have derived the quadratic equation fon, with
- ——, arelinearly roots in the form
Vik = LY (Y)T independent; (31) 1 _
O7 otherwise. V1,2 = ]7”1 (Y]'\]lZ]\{)g + \/5 N
_ _ _ . 2y, (Vi)™ b
The weights on the intervalgV + ¢7 + 1,77 — 1] are found D= (YJQzM)‘*
from the following condition: +4Y7, (YT (21, C(Gy M — 1)201) — Vimin (§, M — 1)].
. k . .
Vimin (J, K ‘ i i It is obvious that
Gl B _ S RGP (32
N I=N+o (200, C(j, M — 1)2p1) — Vinin (, M — 1) > 0.

At the instantsr?, the weights are determined by the condirpys the following two cases are possible.

tion: Case 1.The equation has two zero roots; = vy = 0.

Vanin (J, 77) G - ST This is possible if and only ik, is the eigenvector of the
Ty > > PG (33) Matrix C(j, M — 1) corresponding to/win(j, M — 1) and
I=N+o+l Y, zm = 0. However, the first component &f], depends
Vnin(J,77) = H. on the random variabl€,;, which is independent on the
Theorem 1.Let the parameter vectde in (1) be constant. {Yi }r<a- Hence the vectoty, is orthogonal to the given
Then the stopping time’ (30) is finite with probability one €igenvector of the matri’(j, M — 1) with zero probability.
and the mean square accuracy of estimator (29) is bounde&ase 2The equation has one non-positive and one positive
from above root. Taking the major root as; 5;, one obtains
N e H+p—-1 ] ) J 4
PN =P = 68 a7 > LA @
. Ergof. According to the definition of the instamt (30) it +(z00, C(G, M — Dzpyg) — ],\fminj(\?’ M —1).
is finite with probability one if o
. The first term in (37) is equal ta7{,(Y{,)" cos*(aar)/2,
Z 02(j7l)lflj(}/lj)T—>oo ask — oo. (35) where ay; is the angle betweert’], and z;,. Since
= Nto Y3, (Yi;)T does not converge to zero, the first term converges

to zero if and only ifcos(aps) — 0 when M — oco. On the
other hand, if the second term in (37) converges to zero then
zpr converges to the eigenvector of the maifixj, M — 1)

20 1\yi(yviT corresponding tQ/min(j, M — 1). If v; »y — 0, then the
P Z v DY) 20 = 0. (36) matrixpC(j,]\g) chang(gjes slighgly Witﬂ the increasingy/.
Hence, the eigenvectors of the matrix change slightly too, and
The factor ¥{/(Y/)” does not tend to zero because)s converges to a certain vectet. Therefore, the right side
the absolute value of the first component is equal tf (37) converges to zero if the cosine of the angle between
|1-1| e, >a)/ max{1, |z;_1|} for j = 1, and it is equal Y], andz* converges to zero. However, the first component
t0 [2-1|1[5,_, <q)/ max{1, |z;_1[} for j = 2. According to of YIJVI depends onr;_; which can take any value, this
equation (1)|z;_1| exceeds unity with a non-zero probabilitycosine can be sufficiently large with non-zero probability.

The series converges if and onlyvig > 0 as M — oo (see
[23])

I>M
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Note that condition (36) can hold true if all eigenvalues Lemma 1. Let &;,...,&, be independent identically
of the matrix C(j, M — 1) for certain M are equal. It is distributed standard Gaussian variables. Then for any
possible if and only if the matrixXC(j, M — 1) is diagonal. Aq,..., A\, Ay > 0, Ay +...+ A\, = 1 and for sufficiently
The matrixC(j, N+k) = vj v 1£(Yi )" Y3,y Wherek is  large C
the least number such ag’,+k is non-zero, is not diagonal.

2 2 2
It can easily be proved that if the matrix(j, M — 1) is not PG+ + 06 > CH<P{G>C (39)
S:i%ggﬁ:;;hen the next matr(j, M) is diagonal with zero Proof. First we give the proof for the case af= 2. We
Hence, condition (36) does not hold true forneed to minimize the function

TAR(p)/ARCH(l) process (1), and_this implies (35). J(M) =P {>\1£f +(1-M)E < C} — min . (40)

According to (27), one can obtain 0<A:1<1/2
N =N +C1(j, 7, m); Here we take into account that the variabfgsand &; are
. 9 ‘ independent identically distributed, thugA;) = J(1— Aq).

n(G,m) = 3 v bk We rewrite the last expression in the form
k=N+1

C/)\l

By using the norm properties and (32), one obtains
0w = [ P+ =g <€}y

17 (H) = M| < (Vi (7, 7)) =2 I, 77)

HW(J»T])H (38) 8/,\1
i - [ P{e <=
Let Fj, = o{&1, ..., &} be a sigma-algebra generated by the ) =X\
random variableq¢y, ..., &} and 77 (M) = min{7/, M} is C/M
a truncated stopping instant. According to (30) the instant _ / F (C >\1y> Fly)dy
77 (M) satisfy the condition{77 (M) = k} € F,_,. Using 1-X ’

the properties of conditional expectations one obtains

E|lnG, 7 (M))||2 where f(-) is the density of distributionF'(-) is the distribu-

tion function of the variable?. Differentiating J()\;), one

M . .
=E Y E[L, YY) 10 <kl Fri] obtains
k=N+1
M k—1 j T P C/ c \ c
2F FElv; pvi Y7 (Y 1o<p|Fr— — -
" k:¥+2l:%+1 sv3 Vi (V) 3 €ibiles ol Fia J'(\) = / f( 1_/\111) 1_)\y2f(y)dy
M o ) 1/ ( 1)
=Ek % 1U?,kYkJ(Yzﬂ)Tvilﬁng[ﬁile—l] SOV .
=N+ - A1y -y
+2E . Z 0 k050Y (V) T i€l s < E[€x | From1]- —A ) (1=M)
k=N+21=N+1 CO/AI
Since&, does not depend of,_;, the second summand is B / s (C - )\1y> y-C F)dy.
equal to zero and one obtains 1-X ) (1—=X)2
73 (M)
) Both integrals in the last expression are positive. The second
J 2 J(vJ
EllnG, 7 (M))l| Ek EN:H 5 Vi (V) one tends to zero whefd — oco. Thus
Due to the choice of the weights ; (31-32) one obtains Clim J' (M) >0 VA €]0,1/2].
I . . N+o'-7 X X .
E Y UJQ'.kYk] YHT=E Y sz_kykj (YT For A; = 0 one can obtain
k=N+1 " k=N+1 "
TJ . H
B Y eagepret i I 70 = [ £©1(C =iy = FO)C - 1)
k=Ntoitl * 'y Ty’

According to (22) one can see thgt < w +a?. Note that ¢ v - | then J'(0) > 0, andJ(\;) increases with\;. For
T (M) — 77 asM — oo, SO A1 = 1/2 we can obtain

E|ln(,™)|> < (w+ o) (H+p — 1)EL

2C
'y
J’12:4/ 2C —y)(C — d
Due to property (24) of the factdry and inequality (38) (1/2) U y) v W)y
one obtains 2C 0
||f\j(H)—Aj|\2§%. :2/f(20—y)(20—y)f(y)dy
0

The theorem has been proved.
Further we establish asymptotic properties of the con- —2/f(2C—y)yf(y)dy =
structed procedures. We need the following auxiliary result.
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Here we use the change of the variaple- 2C' — z in the This and (41) imply (39). The Lemma has been proved.

second integral. For an arbitray € (0,1/2] one obtains

C
/ C-My) C—y
ron=[1(523) ¢k
0

/M

: c/ g (ﬁ_iy) (1y_)\(:)2f(y)dy.

Both integrals in the last expression are positive. The second

one tends to zero whefi — oo. Thus
Chm J/(>\1) >0 VA € [071/2]

Hence using (40) one obtains

P{ME+(1-\)E<CY>P {2 <C). (41
LetA; <...< A, A1+...+A, =1, hence\; € [0,1/n].

We need to prove that for sufficiently large

PinE+.. . +0E>0) >Pled<C). (42

Inequality (41) gives us this result for = 2. Suppose that

(42) holds for 2, 3, ...n. — 1 summands. Then
PN+ 282> C)

C—>\1y

C/A

/P{l_)\l+...+1_)\l>
0

sufficiently largeC, one obtains

Pl N8 Mg C-hy
1— ) T—N ~ 1-X\
C—-\y
> 2 )
_P{§2> 1—)\1}
Thus
P{ne +.. 2082 >C)
C
C—\
> / Pl < =2 piyay
11—\
0
s 2 A2 O =)
)\252 nSn — MY
+/77{1_)\1+...+1_)\1> T fly)dy
C
C/)\l
C -\
- / Ple < S22 pay
-\
0
C/
C— )\
— / P& < YA Fy)dy
-\
C
C/\

C—-\y
T }f(y)dy

)\255 )\715721,
+ / 79{1_)\1+...+1_)\1 >
C

The last two integrals tend to zero @s— oo. So one obtains

li i .
Jim P{ME A A > CF
C/

> Jim P{g§<c_hy

e }f(y)dy
0
= lim P {0+ (1 - )E > C}

S ray

Taking into account thaks + ...+ A, = 1 — Ay, and using
(42) for the cas€C — \y)(1 — Ay) > C (i.e.y < C) for

Theorem 2. If process (1) is ergodic, and the sample
volume N to construct the compensating faciox; satisfies
the following conditions

N — o0, N/H—0asH — oo,

then for sufficiently largefd
p{Hm_Aqf>x}

(43)
T H?
2 o({ay))

where®(+) is the standard normal distribution function.
Proof. We consider estimator (29). According to (38),
il o G I

I - [ < B

2

Z vk (V) (44)

k=N+1

o -] < =

DenoteZ = [z1,..., %), ||Z]] = 1, and consider a linear
combination of the components of the vector from the last
equation

77

Z vj,kZ(Y;f)T’kak,

k=N+1

P(H)

whereP(H) =H +p— 1.

Further we find the limit distribution of< (/) along the
lines of the proof of the martingale central limit theorem
(see [23]). Let us calculate the characteristic functiotXof
Denote

1 ,

e =en(H) = ——v, . Z(Y)T >k

k= ¢cr(H) BN g,: (Y e X[ri=k )
X(n) = k*¥+1 €k

It is evident that under the assumptions of Theorem 1 as
n — oo

X () — X(n)| =7 0.

Thus, in order to find the characteristic function &{77),
one needs to find the limit of the characteristic function of
X (n). Denote

E™(n) = H E (einm’}“k_l) )
k=N+1
Lemma ([23]). If (for givenn) |E™(n)| > c(n) > 0,
n > 1, then convergence in probabilig™ (n) — E (")
is sufficient for convergencE (eX (™) — E (e™X).

Check the lemma conditions for the process
TAR(p)/ARCH(1)
erml= 11 |E[e"| Frl]|
k=N+1
= JI [1+E[em —1—iney| Fra]l|.

k=N+1
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By using the inequality|e™® — 1 —inz| < (nz)?/2, we inequality|e® — 1| < el*l[z|, we have
obtain

n

[T A+ag)e @ -1
k=N+1

exp{ln 111 (1+ak)6_0‘k}—1
k=N+1

2 H ( *E [(nen)?| Fi— 1})

k=N+1 Sexp{ }

S (nt,kZ(Ylg)T'Vk)QX[szk] k=N+1
= exp Z In(1- ) o ' B 2
2P(H) Taking into account the inequalitiédn(1 + z) — z| < 2|z|

In J] (14 ag)e >
k=N+1 for |z| < 1/2 and |e"” — 1 —inz| < (nz)?/2, asH >
Hy(n), we have

€™ ()| > H etk 1—1175;@“.7:;@ 1])

k= N+1 =

n vk Z(Y} i k=N+1
_ H (1 _ (77 3,k ( 2}2(;];) X[ri>k] E [€£| fk—l}) B
k=N+1 In I (14 ax)e *|.

Model (22) implies (v; x Z(Y])Ty1)? < [|Z]|]*p(w + o2);
hence, asH — oo

n

< > I+ ak) — ak

n

In J] (14 ap)e

. k=N+1 —
(0 20 ) N :
P(H) - <2 5 jml=2 3 (B[~ 1 insy| Fisi))
k=N+1 k=N+1
. . . 4 ! 4
By using the inequalityn(1—2z) > —2z, wherex € (0,1/2], <N vi n Z2(YHT ) .
forany H > Hy(n), and taking into account thaf < w+a? ~ P%*(H) kzzN:H ( ik B YN

one obtains Taking into account that

()] = exp { - m(Z) (0 Z (V) )? (s Z () Vot < 1121Pplw + ),
= exp P(H) with the usage of (31-33) one obtains

k=N-+1
> exp {—”(J‘;’(;j‘) > (vj,kz<Y,3>T)2} .

n

In J] (14 ag)e

Pyt k=N+1
4 2 2\2 i
| Z]|“p(w + « ;
Taking into account (31) and (33), we obtain < I |PQEH) ) > (wiRz(Y)")?
k=N+1
4 A 4 2\2
)| = exp { 0 IZIPP(H) < ThZIPplw + )"
1) > exp P T P(H)Ty

B n?(w + a?) Thus the product of the last two multipliers in (46) tends to

R R : 1 in probability asn — co, H — .

Consider the first multiplier
If the process (1) is ergodic, then the random varidhlE "
tends to its expectation a¥ — oo. Consequently, in the exp{ > E[emts — 1 —iney fk1]}
7 ()] = exp {~n*} > 0. {
X exp

)
The lemma conditions hold true.
Further we investigate an asymptotic behaviorééfn). L€t us prove that the second multiplier in this equation tends

conditions of the theorem and taking into account (24), for k=N+1
sufficiently largeH we obtain(w + o2)/T'y < 1, and n
ylarg (w+o)/In < —exp{;k > B [(ne)?] Fir)
=N+1

n 2
2B {em 1= ey + TR

2
k=N+1

Write this function in the form to 1. By using the inequality
£ (n) "% =1 —inz + (nz)? /2| < |nz|*/6
n 4 and (33), one can rewrite it as
= exp > FE [6”75’“ —-1- insk’ fk_l] n )
k):N’r;Fl Z E |:€i7]€t — 1= ,L',,]Ek + (7752]6) fk—1:|
S N I
e = 6P ()

X H (1+ B [eM — 1 —iney| Fr_1]) -
<Yk

k=N41 ‘7:’91}

“77% KZ(Y7) Wcﬁk‘ X[ri >k]

k=N+1

3|3 3 T
Then we show that the product of the last two factors tends  — Bl El&k|” Z ‘Uj WZ(Y) T ’3 -
to 1. Denoteay, = E [ — 1 — iney| Fj_1]. Using the 6P3/2(H) | = -

(Advance online publication: 26 August 2016)



TAENG International Journal of Applied Mathematics, 46:3, [JAM 46 3 11

By using (31)—(33), an#v] K Z(YH)T ’ Vpw +a?), S=YX/27TT one obtains
one obtains that the last expression tends to 0. So the second e 2 o }
multiplier in the previous expression tends to 1/As— co. {I "> Cu
Consider the first multiplier _p ! / exp {_1SST} dS —
Vv (2m)m 2
R S g2
oo -4 3 planriz) §iocn
k=N+1 ) m
9 min(n,7’) 2
. EP Z V;S; >Cyp,
= €xp _2P(H) Z (vj kZ(Y ) ’Yk) j=1
k=N+1
B n? X wherev,...,v,, are the eigenvalues of the matiX, and
exp y — 5 (Xn) (- s1,...,5m are the independent components of the Gaussian

vector S. Using inequality (49), one obtains
Note that according to (22) and (31)—(38X,,) is a bounded

submartingale. Thus, the lim{tX o) = lim,,_,~, (X,,) exists Z vy =ty =t < 1.
almost surely, and X,,) < (w + a?)/T'x. On the other N

j=1
hand, (X,,) — (X;) asn — oo. So the distributionX is . .
asymptotically normal. Thus, the random vector This and Lemma 1 imply (43). The Theorem has been
proved.
I
1 .
Y = S Z 0 (Y T e&e (47) V. CHANGE POINT DETECTION PROCEDURE
k=N+1 Let us consider now the change point detection problem
is asymptotically normal with the parametefs ), where ToF Process (1). At the first stage, we define intervajs , +
the covariance matrix 1,77],n > 1. The estlmators,xgl_ of the parameters of process
(1) are constructed on each interval. Then the estimators on
i J 7], wherel > 1is
1 i intervals[r) , ,+1,7, Jand[r,_;+1,7], w ‘
= EP(H) > v Y)Y (48) " an integer, are compared. If the interya_, , +1,7/] does
k=N+1 not include the change poimt, then the vector\’ on this
possess the following property interval is constant. It can be equal to the initial vaMeor
the final values’. Thus for certaim, if 77, < 6 <77 _,+1,
1 7 o the dlfference between values of the parameters on intervals
tre = Eﬁ Z YY) TR (77, +1,7) Jand[r]_, +1,7]] is no less them\. This
(H) k=N+1 (49) is the key property for the change point detection.
< g¥ +ao® <1 We construct a set of sequential estimation plans
— N — )

(r1,A)) = (7J(H),N(H)), n>1, j=12,

n’

which can be proved by using (31)—(33).
P o y g (31) .(. ) . where{r7}, n > 0is the increasing sequence of the stopping
Now turn to estimation the probability (43). By using (44%nstances = N), and AJ is the guaranteed parameter

and (47), one obtains . ) ; .
(47 estimator on the intervdl; _, + 1,77]. Then we choose an

. 2 P(H) integer! > 1 and define the statistic
P{HAJNH }<7>{ Y12 > } T
I =N, - A |1 (50)
Using the Fubini’s theorem to change the order of intefhis statistic is the squared deviation of the estimators with
gration and denoting//?/P(H) asCy, one obtains numbersn and n — [. Statistics properties are given in the
I following theorem.
{|y|| r } Theorem 3. The expectation of the statisticE (50)
- P(H) satisfies the following inequality:
exp{fz)\TY} 1.7 L 4(H -1
/ /TEexp —ATEA b dAdY Er|7 <] < ( tp ).
YYT>Cyg —© . h H
© g B|E|m <0< (51)
- F / / exp{-iATV} {—1)\TZ>\} dAdY i 1
on P72 >A—4y/attr—l
YYT>CH —oo H?
E / exp {—2Y2 1YT} dy. Proof. Denote the deviation of the estimatdf from the
\/ |E true value of the paramet@¥ as(;. Let the parameter value

remain unchanged until the instan, i.e., 6 > 7). In this
The matrixX is symmetric and positive definite, hence agase, A/, = 7 +¢Z, M, = p? + ¢’ _, and statistic (50) can
orthogonal transformatiod, resulting in a matrix: to diag- be written in the form
onal formY/, exists. ThusTxT? =¥/, TTT =TT = I,
wherel is the identity matrix. Using the change of variables ‘

ci-cl-
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According to Theorem 1, change point
Bl < L“;_l (52) P17n=7>{1,{ <d|r_, <9<Tg_1}
" =PI~ + ¢~ P <8}
To estimate the expectation of the statistic, we use property i j N
(52) and the inequalityia — b||> < 2||a||? + 2(|b||%: :PW%*Q4V<5}
. _ . Hip-1 Taking into account thaf|3’ — n/||> > A and using the
EIl <E <2|\C%||2 + 2|\Cfl_z||2) <4——F5— (53} norm properties and the Chebyshev inequality, one obtains

Let the change of the parameter take place on the interval ~ P, <P {Ilﬁj — W =I1¢ - ¢l < \fé}
[ Taa] 1€ 7,y <0 <y, In this casely, = 37 + <P{VA- | ~¢_ll <5
7oA, =p! + ¢ _,, and statistic (50) is S
=P IGh =Gl > VA -V

I = G = ol _ 28 (IGHIE + 12l P)
To estimate the expectation of the statistics, we take advan- = (VA — /5)?
tage of the inequality|a — b|| > ||a|| — ||b|| and condition

This and (52) imply the second inequality from (55).

The theorem has been proved.

Then we consider asymptotic properties of the proposed
change point detection procedure fir— oo if process (1)

(52)

. . - H ] 2
B = B (|13 =l - lich Gl

> 137 — |2 = 2/|87 — || || — ¢ | is ergodic, i.e. the asymptotic inequalities for the probabilities
H+p-1 of false alarm and delay.
= A—-4/A HZ Theorem 5. If process (1) is ergodic, and the compen-

he th h sating factorl"; satisfies the following conditiond” — oo,
The theorem has been proved. N/H — 0 as H — oo, then for sufficiently largeH the

Hence, the change of the expectation of the StatiBfic hrgpapilities of false alarm and delay inth observation
allows us to construct the following change point detectlo&,de [Tj + 1, 7] are bounded from above
n—1 v in

algorithm. Thel’ values are compared with a certain thresh-

old &, where < ( SH?2 ))
Pon<2|1-90 o ||
AH+p—1) [H+p-1 2(H+p-1)
— L << A -4 A————. (54) 2
H? H? (\/g _ \/g) 2 (56)

When the value of the statistic exceetlshen the change Pins2fl-0 2(H+p—1)
point is considered to be detected. If at least one parameter
of the vectorA = [Ag, A;] changes, then the change paint
can be detected.

The probabilities of false alarm and delay in the chanq
point detection in any observation cycle are important char-
acteristics of any change point detection procedure. Due to Pyn =P {||§% — gi_l”? > 5},
the application of the guaranteed parameter estimators in the .
statistics, we can bound these probabilities from above. Note that¢/ is the difference between the estimatgy and

Theorem 4. The probability of false alarmP,, and the true value of the parametar; hence, the vector

where®(+) is the standard normal distribution function.
Proof. First, we consider the false alarm probability. Along
e lines of the proof of Theorem 4, we obtain

the probability of delayP; , in n-th observation cycle 7i 1 i g
[77_, +1,77] are bounded from above " /2P(H) (Gr = Gat)
2(H +p—1) has the same properties that the ve&fof7) and, according
Pon = =57 soy 10(43),
P < 2(H+p-—1) (55) , 2
S Vi Pl >
Proof. First, we consider the false alarm probability, i.e. <o(1-o xH? 7

the probability that the statistic; exceeds the threshold - 2H+p-1)

before the change point. Using the norm properties and

Chebyshev inequality, we obtain ttPﬁis implies the first inequality from (56).

Then we consider the delay probability. Along the lines
Pyn="P {[7{ > 5| < 9} of the proof of Theorem 4, we obtain

26 (|G + 11631 P <P{IIG ¢l > VA - VB}.

=P{lIci - GlP > 8} < ;
This and (57) imply the second inequality from (56).
This and (52) imply the first inequality from (55). The theorem has been proved.
Then we consider the delay probability, i.e., the probability These estimators can be used instead of (55) for suffi-
that the statistid/ does not exceed the threshold after theiently large H.
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TABLE |

PARAMETER ESTIMATION FOR THETAR(2)/ARCH(1) PROCESS
LH L a [ ap [y [ @3 [ T | d | D |

50 | 0.501 | 0.303 ] 0.303] 0492 724 | 0.009 | 0.02 . :

100 | 0.506 | 0.304 | 0.293 | 0.497 | 1444 | 0.0046 | 0.01 Lfl n

200 | 0.498 | 0.295 | 0.304 | 0.497 | 2686 | 0.0028 | 0.005 1 1

250 | 0.503 | 0.301 | 0.300 | 0.500 | 13811 | 0.0005 | 0.001 0.6 B i I_;"(/ i

04} Ei T 1

VI. SIMULATION RESULTS AND THEIRDISCUSSION ) o

This section presents the simulation results for the d e RE a1 SR
scribed algorithms. For every experiment 100 replicatior ; , 1=
were conducted. 0 05 1 15 t

First, we considered the parameter estimation problem 1c,
the TAR(2)/ARCH(1) process (1) with the parameters Fig. 3. Estimator fop!.

A'=[05 01], A>’=[0.1, 03]
w=0.6, a?=04,

and with the standard Gaussian noise. The compensating fac-
torsI',, was constructed with additional conditiom%_1 >
0.1 andz?/ max{1,z7 ,} < 5. We add these conditions in
order to bound from above the compensating factor and o2
avoid increasing the estimation interval. The noise varian -4 [ "__/' P i
of the process in the special form (22) is bounded fromabo | L 5
by the value0.6 + 0.4 = 1. The number, was chosen as 03 Ffr—————"1] i g
the integral part of/H. v LI: =

Table | presents the simulation results. Héfeis the pa- 021 i i 0 E i = .
rameter of the procedurg, and i are the mean estimators 11 H e T L_,__:
of the corresponding parameterg = 0.5 and i = 0.3 01 Y y 15 T

a3 and g% are the mean estimators of the correspondir
parametersy; = 0.3 and p3 = 0.5 calculated by 100

replications,T” is the mean number of observations used fg9. 4. Estimator for.

calculate the estimator] = ||A — A||> averaged over 100

realizations,D is the theoretical upper bound for the mean

square accuracy of the estimator given by inequality (34)After the instant) = 10000 he parameters are

_ One can see that the mean number_ of_ the observation Al=[02 02], A2=[08, 0.1 ];

increases linearly byH. This property is important for w=04, a=0.6,

sequential estimators (see [24]) because it characterizes the

optimality of the procedure in the case of independetn this process in form (22) the noise variance is bounded
observation. from above by unity both before and after the change point.

The sample mean square error of the estimation is abdite change poiné = 10000 and§ = 0.025. Note that we
four times less then the theoretical one. It is connected wighoose the change point as a rather big number in order to
the complicated structure of the TAR/ARCH process. It hawve possibility to estimate the mean number of observation
the unbounded noise variation, so we divide the equation bgtween false alarm using a sufficient sample size.
the number not less then unity. As a resylt,, (j,m) in (30)
grows slowly and the estimation interval increases. Besides,
the compensating factor exceeds the real upper bound of the
noise variance about two times. It implies decreasing of the
mean square error and increasing of the mean estimation
interval in the same proportion.

Fig. 3 — Fig. 6 demonstrate examples of the sequenc NS i
of TAR(2)/ARCH(1) parameters estimates féf = 100. 0.8} by =+
Here solid lines indicate true values of the parameters, a 06| ~1 -
dotted lines shows the behavior of estimates. Every tin i,
unity corresponds to 10000 observations. 04 _-/ |

Further we conducted simulations of the proposed chan : 5 |
point detection procedure. The simulations were conduct0.2 + ~ .
for the TAR(2)/ARCH(1) process. Before the instdrit was
specified by the equation (1) with the parameters UD 0.5 1 15 t

Al=[05, 03], A?2=[0.3, 0.5 ];
w=04, a=0.1, Fig. 5. Estimator foru}.
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matical evidence and are theoretical. Besides, the efficiency
of the algorithms is checked via simulation. It can be very
interesting to test them on the real data.
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