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Abstract—A sequential method of unknown autoregressive
parameters estimation of TAR(p)/ARCH(1) model with an
arbitrary threshold is presented. This procedure is based on
the construction of the special stopping rule and weights for
weighted least square estimation method, allowing guarantee
the prescribe accuracy of the estimation. Also a sequential pro-
cedure of change point detection is proposed. Upper bounds for
its basic characteristics, such as the probability of false alarm
and the delay probability, are obtained. The ergodicity region
of TAR(2)/ARCH(1) model is studied and asymptotic properties
of the proposed method for ergodic TAR(p)/ARCH(1) process
are investigated.

Index Terms—AR/ARCH, guaranteed parameter estimation,
change point detectionAR/ARCH, guaranteed parameter esti-
mation, change point detectionT

I. I NTRODUCTION

Threshold autoregressive (TAR) models proposed by Tong
[1] definitely are one of the most popular classes of nonlinear
time series models for conditional mean, because they do
not only provide a better fit than linear models, but also
reveal a strictly nonlinear behavior (e.g. limit cycles, jump
resonance, harmonic distortion) which linear models cannot
duplicate [2]. Though sometimes such models have to be
completed by a specification of the conditional variance.
ARCH/GARCH type models first introduced by Engle [3]
are often considered for the conditional variance. One of
the most popular applications of the models is analysis and
modeling of stock market. In particular, they are used to
describe the volatility. A lot of authors note that the classical
ARCH/GARCH models do not explain some peculiarities
of the volatility behavior, such as asymmetry and response
for news. Consequently, rather complicated models based
on ARCH/GARCH are proposed and used. Sidorov and
others in [4] describe volatility by GARCHJumps models
with two separate components (normal and unusual news),
which cause two types of innovation (smooth and jump-like
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innovations). The first component is the GARCH process,
and the second one reflects the result of unexpected events
and describe jumps in volatility. Guo and Cao in [5] propose
a new smooth transition GARCH model, which allows for
an asymmetric response of volatility to the size and sign of
shocks, and an asymmetric transition dynamics for positive
and negative shocks. The authors apply the model to the em-
pirical financial data: the NASDAQ index and the individual
stock IBM daily returns. TAR/ARCH models also allows us
to describe some non-linear effects, such as clustering and
different behavior subject to the sign of a stock return.

Estimators of the unknown parameters based on the idea
of the usage of a special stopping rule in order to guarantee
precisely their quality in a special sense were first proposed
by Wald in [6] and are also very popular. So, Lee and
Sriram in [7] proposed a sequential procedure for estimation
of TAR(1) parameters, which allows one to construct least
squares asymptotically risk efficient estimator. Sriram in [8]
used sequential sampling methods to construct confidence
intervals for unknown parameters with the fixed size and
prescribed coverage probability. Konev and Galtchouk in
[9] proposed the sequential least square estimator with the
stopping rule determined by the trace of the observed Fisher
information matrix, which is asymptotically normally dis-
tributed in the stability region. In [10] we developed a se-
quential procedure for the estimation of unknown parameters
of the TAR(1)/ARCH(1) process, which can guarantee the
precise accuracy of estimators.

The problem of the change point detection for autore-
gressive processes with conditional heteroskedasticity is well
known and extremely interesting. With different assumption
and for different types of models such problem was recently
considered for example by Vorobeychikov and others in [10],
Fryzlewicz and Subba Rao in [11], Na, Lee and Lee in
[12]. Properties of commonly used algorithms are studied
asymptotically or by simulations, as theoretical investigation
is extremely complicated or hardly ever possible. The usage
of the special stopping rule for the least squares estimators
with the guaranteed accuracy of unknown parameters allows
us to investigate both asymptotic and non-asymptotic proper-
ties of algorithms, such as false alarm and delay probabilities.

This paper proposes the guaranteed weighted least
square estimators of unknown autoregressive parameters of
the TAR(p)/ARCH(1) process with an arbitrary threshold.
Asymptotic properties for the estimators are considered and
the upper bounds for the standard deviation (asymptotic
and non-asymptotic) are constructed. The authors present
the procedure of change point detection with guaranteed
characteristics for this process.
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II. PROBLEM STATEMENT

We consider the TAR(p)/ARCH(1) autoregressive process
specified by the equation

xk = XkΛ11{xk−1≥a} + XT
k Λ21{xk−1<a}

+
√

ω + α2x2
k−1ξk;

Xk = [xk−1, ..., xk−p];
Λj = [λj

1, ..., λ
j
p]

T , j = 1, 2,

(1)

where{ξk}k≥0 is a sequence of independent identically dis-
tributed random variables with zero mean and unit variance,
ω > 0, 0 < α2 < 1, a is an arbitrary known constant. So,
the process under consideration is thep-order autoregressive
process with ARCH noise and the autoregressive parame-
ters depending on the previous value of the process. The
value of the parameter vectorΛ = [Λ1,Λ2] changes from
µ = [µ1

1, ..., µ
1
p, µ

2
1, ..., µ

2
p] to β = [β1

1 , ..., β1
p , β2

1 , ..., β2
p ] at

the change pointθ. The parameters values before and afterθ
are supposed to be unknown. The difference betweenµ and
β satisfies the condition

(µj − βj)T (µj − βj) ≥ ∆, j = 1, 2, (2)

where∆ is the known value defining the minimum difference
between the parameters before and after the change point.
The problem is to detect the change pointθ from the
observationsxk.

In [19] and [20], we proposed to detect the instant of the
parameters change in the autoregressive process by making
use of guaranteed sequential estimators. The sequence of
estimators is constructed and the estimators obtained on
different time intervals were compared. In paper [21], we
applied this approach to more complicated TAR(p)/ARCH(1)
model with the unbounded noise variance. In this paper,
we extend our approach to TAR(p)/ARCH(1) model with
an arbitrary threshold. The ergodicity region of the process
is investigated. Besides, more precise asymptotic results are
obtained.

III. E RGODICITY OF THEPROCESS

For investigation of asymptotic properties of estimators of
unknown parameters of the given models it is important to
obtain necessary and sufficient conditions for ergodicity or
even strongly for geometric ergodicity of such models . There
are distinguished three main approaches to establish geo-
metrical ergodicity in nonlinear conditionally heterockedas-
tic autoregression [2]. The first approach is based on the
assumption that the linear regression part becomes main part
for the stability research due to the usage of infinite number
of values of the process considered; the assumption that the
radius of the companion matrix of this linear regression part
is less than one [13], [14] for the AR/ARCH model. The
second one uses the concept of the Lyapunov exponent for
the AR/ARCH [15] and the TAR/ARCH [16] and allows to
obtain geometric ergodicity within more general assumptions
in much larger parameter space than in [13], [14] but the
assumptions appear much more difficult to validate. The last
one is the approach, which was proposed first by Liebscher
[17] and then extended for AR/ARCH model [3], based on
the concept of the joint spectral radius of a set of matrices
and also allows to obtain the geometric ergodicity in lager
regions of parameter space than [13], [14].

In this paper, we obtained sufficient conditions for ergod-
icity of process (1) based on one of the theorems given by
Mein and Tweedie [22]. We can reduce proving geometric
ergodicity of a Markov chain{Xn} by verifying the follow-
ing condition: there is a positive test functiong(X) such as
and a compactK such as

a) E [g (Xk+1) |Xk = X ] < g(X)− c,
c > 0, X /∈ K;

b) E [g (Xk+1) |Xk = X ] < R < ∞,
X ∈ K;

(3)

The main problem of this approach is the choice of the
function g(X). Let us choose it as a linear function of the
X. For the TAR(2)/ARCH(1) process we can write it in the
form

g(Xk+1) = C+
1 x+

k + C−
1 x−k + C+

2 x+
k−1 + C−

2 x−k−1,

whereC+
1 , C−

1 , C+
2 , C−

2 are some positive constants,

x+ = max{x, 0}, x− = max{−x, 0}.

We choose the compactK = [−M,M ] × [−M,M ], where
M > |a|.

At first, we consider condition (3a). Forxk−1 > M using
(1) we obtain

g(Xk+1) = C+
1

(
λ1

1xk−1 + λ1
2xk−2 +

√
ω + α2x2

k−1ξk

)+

+C−
1

(
λ1

1xk−1 + λ1
2xk−2 +

√
ω + α2x2

k−1ξk

)−
+C+

2 xk−1;

Consequently (here and then,X = (xk−1, xk−2)),

E [g(Xk+1)|Xk = X]

= C+
1

(
λ1

1xk−1 + λ1
2xk−2

) +∞∫
Dk

f(x)dx

+C+
1

√
ω + α2x2

k−1

+∞∫
Dk

xf(x)dx

−C−
1

(
λ1

1xk−1 + λ1
2xk−2

) Dk∫
−∞

f(x)dx

−C1
1

√
ω + α2x2

k−1

Dk∫
−∞

xf(x)dx + C+
2 xk−1;

Dk =
−λ1

1xk−1 − λ1
2xk−2√

ω + α2x2
k−1

.

Heref(x) is the density of distribution of the noiseξk. By
introducing the following notations

+∞∫
Dk

xf(x)dx = F 1
k ,

+∞∫
Dk

xf(x)dx = F 2
k ,

and taking into account thatEξk = 0, we can rewrite the
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last equation in the form

E [g(Xk+1)|Xk = X] = C+
1

(
λ1

1xk−1 + λ1
2xk−2

)
F 1

k

+C+
1

√
ω + α2x2

k−1F
2
k

−C−
1

(
λ1

1xk−1 + λ1
2xk−2

)
(1− F 1

k )

−C−
1

√
ω + α2x2

k−1(−F 2
k ) + C+

2 xk−1

= (C+
1 + C−

1 )
(
λ1

1xk−1 + λ1
2xk−2

)
F 1

k

−C−
1

(
λ1

1xk−1 + λ1
2xk−2

)
+ C+

2 xk−1

+(C+
1 + C−

1 )
√

ω + α2x2
k−1F

2
k .

Note that if the functionf(x) is symmetric than

0 ≤ F 2
k ≤

∞∫
0

xf(x)dx = D. (4)

The functiong(X) has the following form

g(X) =
{

C+
1 xk−1 + C+

2 xk−2, if xk−2 > 0;
C+

1 xk−1 − C−
2 xk−2, if xk−2 ≤ 0.

Hence, forxk−2 > 0

E [g(Xk+1)|Xk = X]− g(X)
= (C+

1 + C−
1 )λ1

1xk−1F
1
k − C−

1 λ1
1xk−1 + C+

2 xk−1

−C+
1 xk−1 + (C+

1 + C−
1 )
√

ω + α2x2
k−1F

2
k

+(C+
1 + C−

1 )λ1
2xk−2F

1
k − C−

1 λ2
1xk−2 − C+

2 xk−2.

As xk−1 andxk−2 can take any value, to fulfill condition (3a)
the last expression should satisfy the following inequalities

1) (C+
1 + C−

1 )λ1
1xk−1F

1
k − C−

1 λ1
1xk−1 + C+

2 xk−1

−C+
1 xk−1 + (C+

1 + C−
1 )
√

ω + α2x2
k−1F

2
k < 0;

2) (C+
1 + C−

1 )λ1
2xk−2F

1
k − C−

1 λ2
1xk−2 − C+

2 xk−2 ≤ 0.

The further reasonings depend on the signs of the parameters
λ1

1, λ1
2. Consider all possible cases.

• λ1
1 > 0. In expression 1), the first summand is positive,

andF 1
k < 1; besides, the last summand is also positive and

F 2
k < D, whereD is defined in (4). So, to fulfill 1) we need

(C+
1 + C−

1 )λ1
1xk−1 − C−

1 λ1
1xk−1 + C+

2 xk−1

−C+
1 xk−1 + (C+

1 + C−
1 )
√

ω + α2x2
k−1D < 0;

hence, we obtain the following condition of ergodicity

α <
C+

1 (1− λ1
1)− C+

2

(C+
1 + C−

1 )D
.

• λ1
1 ≤ 0. In expression 1), the first summand is non-

positive; so, to fulfill 1) we need

−C−
1 λ1

1xk−1 + C+
2 xk−1 − C+

1 xk−1

+(C+
1 + C−

1 )
√

ω + α2x2
k−1D < 0;

hence, we obtain the following condition of ergodicity

α <
C−

1 λ1
1 + C+

1 − C+
2

(C+
1 + C−

1 )D
.

To fulfill it, we need the following condition

C−
1 λ1

1 + C+
1 − C+

2 > 0.

Introducing the following notations

C−
1

C+
1

= t,
C+

2

C+
1

= s,

we can rewrite the ergodicity conditions forλ1
1 in the form

α <
(1− λ1

1)− s

(1 + t)D
, λ1

1 > 0;

α <
tλ1

1 + 1− s

(1 + t)D
. λ1

1 < 0;
(5)

Consider now condition 2). Taking into account that
xk−2 > 0, we obtain

(C+
1 + C−

1 )λ1
2F

1
k − C−

1 λ1
2 − C+

2 ≤ 0.

• λ1
2 > 0. The first summand is positive; hence, the

condition takes the form

(C+
1 + C−

1 )λ1
2 − C−

1 λ1
2 − C+

2 ≤ 0,

consequently,

λ1
2 ≤

C+
2

C+
1

= s.

• λ1
2 ≤ 0. The first summand is non-positive; hence, the

condition takes the form

−C−
1 λ1

2 − C+
2 ≤ 0,

consequently,

λ1
2 ≥ −C+

2

C−
1

= −s

t
.

Consider now the casexk−2 < 0. Following the same line
of reasoning, we obtain the ergodicity conditions

1) (C+
1 + C−

1 )λ1
1xk−1F

1
k − C−

1 λ1
1xk−1 + C+

2 xk−1

−C+
1 xk−1 + (C+

1 + C−
1 )
√

ω + α2x2
k−1F

2
k < 0;

2) (C+
1 + C−

1 )λ1
2xk−2F

1
k − C−

1 λ1
2xk−2 + C−

2 xk−2 ≤ 0.

Condition 1) is the same, and condition 2) can be rewritten
in the form

−(C+
1 + C−

1 )λ1
2F

1
k + C−

1 λ1
2 − C−

2 ≤ 0

• λ1
2 > 0. The first summand is non-positive; hence, the

condition takes the form

C−
1 λ1

2 − C−
2 ≥ 0,

consequently,

λ1
2 ≤

C−
2

C−
1

.

• λ1
2 ≤ 0. The first summand is positive; hence, the

condition takes the form

−(C+
1 + C−

1 )λ1
2 + C−

1 λ1
2 − C−

2 ≤ 0

consequently,

λ1
2 ≥ −C−

2

C+
1

.

Introducing the following notation

C−
2

C+
1

= q,

we can rewrite the ergodicity conditions forλ1
2 in the form

max
{
−s

t
,−q

}
≤ λ1

2 ≤ min
{

s,
q

t

}
. (6)
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For xk−1 < −M using (1) we obtain

g(Xk+1) = C+
1

(
λ2

1xk−1 + λ2
2xk−2 +

√
ω + α2x2

k−1ξk

)
−C−

2 xk−1;

Consequently,

E [g(Xk+1)|Xk = X]
= (C+

1 + C−
1 )
(
λ2

1xk−1 + λ2
2xk−2

)
F 1

k

−C−
1

(
λ2

1xk−1 + λ2
2xk−2

)
− C−

2 xk−1

+(C+
1 + C−

1 )
√

ω + α2x2
k−1F

2
k .

The functiong(X) has the following form

g(X) =
{
−C−

1 xk−1 + C+
2 xk−2, if xk−2 > 0;

−C−
1 xk−1 − C−

2 xk−2, if xk−2 ≤ 0.

Hence, forxk−2 > 0 the last expression should satisfy the
following conditions

1) (C+
1 + C−

1 )λ2
1xk−1F

1
k − C−

1 λ2
1xk−1 − C−

2 xk−1

+C+
1 xk−1 + (C+

1 + C−
1 )
√

ω + α2x2
k−1F

2
k < 0;

2) (C+
1 + C−

1 )λ2
2xk−2F

1
k − C−

1 λ2
2xk−2 − C+

2 xk−2 ≤ 0.

For xk−2 < 0 the conditions are

1) (C+
1 + C−

1 )λ2
1xk−1F

1
k − C−

1 λ2
1xk−1 − C−

2 xk−1

+C−
1 xk−1 + (C+

1 + C−
1 )
√

ω + α2x2
k−1F

2
k < 0;

2) (C+
1 + C−

1 )λ2
2xk−2F

1
k − C−

1 λ2
2xk−2 + C−

2 xk−2 ≤ 0.

Conditions 2) are practically the same as in the previous case
xk−1 > M , we only need to useλ2

2 instead ofλ1
2; so, we

obtain

max
{
−s

t
,−q

}
≤ λ2

2 ≤ min
{

s,
q

t

}
. (7)

Consider now condition 1) for different signs ofλ2
1.

• λ2
1 ≥ 0. The first summand in 1) is non-positive; so, the

condition has the form

−C−
1 λ2

1xk−1 − C−
2 xk−1 + C−

1 xk−1

+(C+
1 + C−

1 )
√

ω + α2x2
k−1F

2
k < 0

and implies the inequality

α <
−C−

1 λ2
1 + C−

1 − C−
2

(C+
1 + C−

1 )D
.

• λ2
1 < 0. The first summand in 1) is positive; so, the

condition has the form

(C+
1 + C−

1 )λ2
1xk−1 − C−

1 λ2
1xk−1 − C−

2 xk−1 + C−
1 xk−1

+(C+
1 + C−

1 )
√

ω + α2x2
k−1F

2
k < 0

and implies the inequality

α <
C+

1 λ2
1 + C−

1 − C−
2

(C+
1 + C−

1 )D
.

So, we obtain the ergodicity conditions forλ1
1 in the form

α <
t(1− λ2

1)− q

(1 + t)D
, λ2

1 ≥ 0;

α <
λ2

1 + t− q

(1 + t)D
, λ2

1 < 0.
(8)

Finally, by making use (5) and (6) we combine all ergod-
icity conditions for the parameterα

α <
(1− λ1

1)− s

(1 + t)D
, λ1

1 > 0;

α <
tλ1

1 + 1− s

(1 + t)D
, λ1

1 ≤ 0;

α <
t(1− λ2

1)− q

(1 + t)D
, λ2

1 ≥ 0;

α <
λ2

1 + t− q

(1 + t)D
, λ2

1 < 0.

(9)

Note that the upper bound forα should be positive. Taking
into account thatt > 0 we obtain additional conditions

(1− λ1
1)− s > 0, λ1

1 > 0;
tλ1

1 + 1− s > 0, λ1
1 ≤ 0;

t(1− λ2
1)− q > 0, λ2

1 ≥ 0;
λ2

1 + t− q > 0, λ2
1 < 0;

(10)

By making use (8) and (7) we combine all ergodicity
conditions for the parameterλl

2

max
{
−s

t
,−q

}
≤ λl

2 ≤ min
{

s,
q

t

}
. (11)

To obtain the widest ergodicity region forα, we should
minimize s andq taking into account conditions (11). There
can be several cases subject to the parametersλl

2.
Case 1:0 ≤ λ2

2 < λ1
2. In this case, condition (11) has the

form
λ1

2 ≤ min
{

s,
q

t

}
,

and minimum values of the constants ares = λ1
2, q = tλ1

2.
Note that the case0 ≤ λ1

2 < λ2
2 is in fact the same; we

only need to replace furtherλ1
2 by λ2

2. Using this, we can
construct the ergodicity region forα subject to the signs of
the parametersλl

1.
λ1

1 > 0, λ2
1 ≥ 0. The ergodicity region takes the form

α < min
{

1− λ1
1 − λ1

2

(1 + t)D
,
t(1− λ2

1 − λ1
2)

(1 + t)D

}
(12)

with the additional conditions

1− λ1
1 − λ1

2 > 0;
1− λ2

1 − λ1
2 > 0,

which can be generalized in the form

λj
1 + λl

2 < 1, j, l ∈ {1, 2}. (13)

We obtain the widest region if the parametert satisfies the
equation

1− λ1
1 − λ1

2 = t(1− λ2
1 − λ1

2).

In this case both upper bound constants forα are equal;
hence, choosing minimum between them, we obtain the
maximum value of the upper bound. By expressingt from
this and using it in (12), we obtain

α <
(1− λ1

1 − λ1
2)(1− λ2

1 − λ1
2)

(2− λ1
1 − λ2

1 − 2λ1
2)D

. (14)

Due to condition (13), the right hand side of (14) is positive.
λ1

1 > 0, λ2
1 < 0. The ergodicity region takes the form

α < min
{

1− λ1
1 − λ1

2

(1 + t)D
,
λ2

1 + t− tλ1
2

(1 + t)D

}
(15)
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with the additional conditions

1− λ1
1 − λ1

2 > 0

which has already obtained in (13). The parametert provid-
ing the biggest region of ergodicity satisfies the equation

1− λ1
1 − λ1

2 = λ2
1 + t− tλ1

2.

By expressingt from this and using it in (15), we obtain

α <
(1− λ1

1 − λ1
2)(1− λ1

2)
(2− λ1

1 − λ2
1 − 2λ1

2)D
. (16)

Due to condition (13), the right hand side of (16) is positive.
Similarly, we can consider two remaining cases.
λ1

1 ≤ 0, λ2
1 ≥ 0. The ergodicity region is

α <
(1− λ2

1 − λ1
2)(1− λ1

2)
(2− λ1

1 − λ2
1 − 2λ1

2)D
(17)

if conditions (13) fulfill.
λ1

1 ≤ 0, λ2
1 < 0. The ergodicity region is

α <
(1− λ1

2)
2 − λ1

1λ
2
1

(2− λ1
1 − λ2

1 − 2λ1
2)D

(18)

with the additional conditions

(1− λl
2)

2 − λ1
1λ

2
1 > 0. (19)

So, forλ1
2 ≥ 0 andλ2

2 ≥ 0 combining (13)–(19) we obtain
the following ergodicity region

λl
2 ≥ 0, l ∈ {1, 2};

λj
1 + λl

2 < 1, j, l ∈ {1, 2};
λ1

1λ
2
1 < (1− λl

2)
2, l ∈ {1, 2};

α <
min{A1, A2, A3, A4}

(2− λ1
1 − λ2

1 − 2 max{λ1
2, λ

2
2})D

= α∗,

(20)

where

A1 = (1− λ1
1 −max{λ1

2, λ
2
2})(1− λ2

1 −max{λ1
2, λ

2
2});

A2 = (1− λ1
1 −max{λ1

2, λ
2
2})(1−max{λ1

2, λ
2
2});

A3 = (1− λ2
1 −max{λ1

2, λ
2
2})(1−max{λ1

2, λ
2
2});

A4 = (1−max{λ1
2, λ

2
2})2 − λ1

1λ
2
1.

Case 2:λ1
2 < λ2

2 ≤ 0. In this case, condition (11) has the
form

min
{
−q,−s

t

}
≤ λ1

2

and minimum values of the constants ares = −tλ1
2, q =

−λ1
2. Note that the caseλ2

2 < λ1
2 ≤ 0 is in fact the same; we

only need to replace furtherλ1
2 by λ2

2. Using this, we can
construct the ergodicity region forα as described above for
the case 1. The region has the following form

λl
2 ≤ 0, l ∈ {1, 2};

(1− λ1
1)(1− λ2

1)−
(
λl

2

)2
> 0, l ∈ {1, 2};

λj
1 + λl

2(λ
3−j
1 + λl

2) < 1, j, l ∈ {1, 2};
λ1

1λ
2
1 + λl

2(λ
1
1 + λ2

1 + λl
2) < 1, l ∈ {1, 2};

α <
min{B1, B2, B3, B4}

(2− λ1
1 − λ2

1 − 2 min{λ1
2, λ

2
2})D

= α∗,

(21)

where

B1 = (1− λ1
1)(1− λ2

1)−
(
min{λ1

2, λ
2
2}
)2 ;

B2 = 1− λ1
1 −min{λ1

2, λ
2
2}(λ2

1 + min{λ1
2, λ

2
2});

B3 = 1− λ2
1 −min{λ1

2, λ
2
2}(λ1

1 + min{λ1
2, λ

2
2});

B4 = 1− λ1
1λ

2
1 −min{λ1

2, λ
2
2}(λ1

1 + λ2
1 + min{λ1

2, λ
2
2}).

If we choose

M >
ω

(α∗)2 − α2
,

and

g(Xk+1) = x+
k + tx−k + sx+

k−1 + qx−k−1,

wheres, q and t are constructed as above, subject to signs
of λj

1, λl
2, j, l ∈ {1, 2}, condition (3a) will be fulfilled.

Case 3:λ1
2 < 0 < λ2

2. In this case, evaluations and q is
more difficult then in the previous one, because we should
take into account not only signs ofλj

2 but their absolute
values. As a result, we have three possible sets of values
for s and q, and we should consider these sets subject to
signs ofλl

1, i.e., for four cases. These calculations are rather
cumbersome; so, we do not consider this case in the paper.

To prove condition (3b) we have to bound from above
E [g(Xk+1)|Xk = X] whenX ∈ K; we have

E [g(Xk+1)|Xk = X]
= (C+

1 + C−
1 )
(
λj

1xk−1 + λj
2xk−2

)
F 1

k

−C−
1

(
λj

1xk−1 + λj
2xk−2

)
+ C+

2 xk−1

+(C+
1 + C−

1 )
√

ω + α2x2
k−1F

2
k

≤ (C+
1 + C−

1 )
(
|λj

1|+ |λj
2|
)

M

+C+
2 M + (C+

1 + C−
1 )
√

ω + α2M2D < ∞.

Note that whenλ1
2 = λ2

2 = 0, the ergodicity re-
gions (20) and (21) matches the one obtained in [10] for
TAR(1)/ARCH(1). It differs from regions described in [18]
and [14], because it includes negative values of the parame-
tersλ1

1 < −1 or λ2
1 < −1; in [18] and [14] absolute values

of all parameters are less then one. Cline and Pu in [16]
obtained the exact ergodicity region for more general model
TAR(p)/ARCH(p), but it should be calculated numerically
for p > 1; in our paper, we proposed explicit expressions.

Fig. 1 demonstrates an example of an ergodic
TAR(2)/ARCH(1) process behavior, and Fig. 2 presents an
example of non-ergodic one. Both trajectories have cluster
effect and outliers, but the latter one is more chaotic and
maximum values of the process are greater then for the
former one.

IV. GUARANTEED PARAMETER ESTIMATOR

Since the parameters both before and after the change
point are unknown, it is logical to apply the estimators of the
unknown parameters in the change point detection procedure.
In this section we construct guaranteed sequential parameter
estimators for the parameter vectorsΛj , j = 1, 2. Such esti-
mators were proposed in [20] for an autoregressive process.
The main advantage of the estimators is their preassigned
mean square accuracy depending on the parameter of the
estimation procedure.

It should be noted that if parametersω andα are unknown
then the process (1) has unknown and unbounded from above
noise variance. To obtain a process with bounded noise
variance we denotemax{1, |xk−1|} as mk and rewrite the
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Fig. 1. Ergodic TAR(2)/ARCH(1) process

Fig. 2. Non-ergodic TAR(2)/ARCH(1) process

process in the form

yk = Y 1
k Λ1 + Y 2

k Λ2 + γkξk;

Y 1
k =

1
mk

Xk1{xk−1≥a}. Y 2
k =

1
mk

Xk1{xk−1<a};

yk =
xk

mk
, γk =

√
w + α2x2

k−1

mk
.

(22)
The noise variance of the process{yk} is bounded from
above by the unknown value(ω + α2). To eliminate the
influence of the unknown constant in [10] we proposed to
use the special factorΓN constructed by firstN observations
in the following form

ΓN = CN

N∑
k=1

(
xk

min{1, |xk|}

)2

;

CN = E

(
N∑

k=1

ξ2
k

)−1

,

(23)

whereN observations are taken at the interval where all the
values|xk| are sufficiently large. It was proved in [20] that

for the process AR(p) the compensating factor satisfies the
following condition

E
1

ΓN
≤ 1

ω + α2
. (24)

This proof can be generalized for our case with minimum
changes so we omit it.

If the random variables{ξk} have standard normal dis-

tribution, then the sum
N∑

k=1

ξ2
k has χ2 distribution with N

degrees of freedom. In this case

CN =
1

2N/2Γ(N/2)

+∞∫
0

xN/2−3e−x/2dx =
1

(N − 2)(N − 4)
.

This constant is defined forN ≥ 5.
Let us consider now a weighted least squares estimator for

process (22). The process can be rewritten in the form

yk = YkΛ + γkξk;
Yk = [Y 1

k , Y 2
k ]. (25)

So the weighted least squares estimator has the following
form

Λ̂ = C−1(m)
m∑

k=N+1

vk(Yk)T yk;

C(m) =
m∑

k=N+1

vk(Yk)T Yk,
(26)

where0 < vk ≤ 1. According to definition (22)(Y j
k )T Y i

k =
Op for i 6= j (hereOp stands for a zero matrix of the orderp).
Hence, taking into account (25), one obtains that the matrix
C(m) has a block structure

C(m) =
[

C(1,m) Op

Op C(2,m)

]
C−1(m) =

[
C−1(1,m) Op

Op C−1(2,m)

]
C(j,M) =

m∑
k=N+1

vk(Y j
k )T Y j

k , j = 1, 2.

Using this result and (22), (25) one can obtain

Λ̂1 = [C−1(1,m) Op]
m∑

k=N+1

vk(Yk)T yk

= [C−1(1,m) Op]
m∑

k=N+1

vk(Yk)T (YkΛ + γkξk)

= [C−1(1,m) Op]
[

C(1,m)Λ1

C(2,m)Λ2

]
+[C−1(1,m) Op]

m∑
k=N+1

vk(Yk)T γkξk.

Hence,
Λ̂1 = Λ1 + C−1(1,m)η(1,m);

η(1,m) =
m∑

k=N+1

vk(Y 1
k )T γkξk.

(27)

The same result can be obtained forΛ̂2. It allows us to
construct estimators forΛ1 andΛ2 separately, i.e.

Λ̂j = C−1(j;m)
m∑

k=N+1

vk(Y j
k )T yk, j = 1, 2. (28)

The obtained estimator can be modified in order to bound
the standard deviation of the estimator from above. To do
so, we change the sample sizem for a special random
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stopping timeτ j . Also, we use special weightsvj,k for every
estimator.

Let H > 0 be a parameter of the estimation procedure.
Further we prove that it defines the accuracy of the proposed
parameter estimators. Then the estimators are constructed
by using the sequential weighted least squares method and
consequently can be written in the following form:

Λ̂j = Λ̂j(H) = C−1(j; τ j)
τj∑

k=N+1

vj,k(Y j
k )T yk;

C(j, M) =
m∑

k=N+1

vj,k(Y j
k )T Y j

k , j = 1, 2.

(29)

Let νmin(j, M) be the minimum eigenvalue of the matrix
C(j,M). Then the stopping instantsτ j = τ j(H) are defined
by the following conditions

τ j = inf (M > N : νmin(j,M) ≥ H) . (30)

Now we consider the choice of the weightsvj,k. Let the
matrix C(j,M) be degenerate forM = N + 1, ..., N + σj

and C(j, σj + 1) be non-degenerated. The weights on the
interval [N + 1, N + σj ] are taken in the following form:

vj,k =


1√

ΓNY j
k (Y j

k )T

,
if Y j

N , . . . , Y j
k

are linearly
independent;

0, otherwise.

(31)

The weights on the intervals[N + σj + 1, τ j − 1] are found
from the following condition:

νmin(j, k)
ΓN

=
k∑

l=N+σ

v2(j, l)Y j
l (Y j

l )T . (32)

At the instantsτ j , the weights are determined by the condi-
tion:

νmin(j, τ j)
ΓN

≥
τj∑

l=N+σ+1

v2(j, l)Y j
l (Y j

l )T ;

νmin(j, τ j) = H.

(33)

Theorem 1.Let the parameter vectorΛj in (1) be constant.
Then the stopping timeτ j (30) is finite with probability one
and the mean square accuracy of estimator (29) is bounded
from above

E||Λ̂j(H)− Λj ||2 ≤ H + p− 1
H2

. (34)

Proof. According to the definition of the instantτ j (30) it
is finite with probability one if

k∑
l=N+σ

v2(j, l)Y j
l (Y j

l )T →∞ ask →∞. (35)

The series converges if and only if∀ε > 0 asM →∞ (see
[23])

P

∑
l≥M

v2(j, l)Y j
l (Y j

l )T ≥ ε

→ 0. (36)

The factor Y j
l (Y j

l )T does not tend to zero because
the absolute value of the first component is equal to
|xl−1|1[xl−1≥a]/ max{1, |xl−1|} for j = 1, and it is equal
to |xl−1|1[xl−1<a]/ max{1, |xl−1|} for j = 2. According to
equation (1),|xl−1| exceeds unity with a non-zero probability

and can be both greater and smaller thena; hence, the
absolute value of the first component is equal to 1 with non-
zero probability. So condition (36) can hold true only because
of the choice of the weightsv(j, l).

Suppose that the matrixC(j, M − 1) is not diagonal.
According to the definition of the minimum eigenvalue of
a matrix

νmin(j, M) = min
x:||x||=1

(x,C(j, M)x),

where (x, y) is the scalar product of the vectorsx and y.
Then by using (29), we obtain

νmin(N + 1, N)
= min

x:||x||=1
(x, ((C(j, M − 1) + vj,M (Y j

M )T Y j
M )x)

= min
x:||x||=1

((x, C(j, M − 1)x) + vj,M (Y j
Mx)2).

Let zM be the argument of the minimum in the above
equation. According to (32), we obtain

(zM , C(j, M − 1)zM ) + vj,M (Y j
MzM )2

= νmin(j,M − 1) + v2
j,MY j

M (Y j
M )T .

So we have derived the quadratic equation forvj,M with
roots in the form

v1,2 =
1

2Y j
M (Y j

M )T

[
(Y j

MzM )2 ±
√

D
]
;

D = (Y j
MzM )4

+4Y j
M (Y j

M )T [(zM , C(j, M − 1)zM )− νmin(j,M − 1)].

It is obvious that

(zM , C(j, M − 1)zM )− νmin(j,M − 1) ≥ 0.

Thus the following two cases are possible.
Case 1.The equation has two zero roots:v1 = v2 = 0.

This is possible if and only ifzM is the eigenvector of the
matrix C(j, M − 1) corresponding toνmin(j, M − 1) and
Y j

MzM = 0. However, the first component ofY j
M depends

on the random variableξM , which is independent on the
{Y j

k }k<M . Hence the vectorY j
M is orthogonal to the given

eigenvector of the matrixC(j, M −1) with zero probability.
Case 2.The equation has one non-positive and one positive

root. Taking the major root asvj,M , one obtains

v2
j,MY j

M (Y j
M )T ≥

(Y j
MzM )4

Y j
M (Y j

M )T

+(zM , C(j, M − 1)zM )− νmin(j, M − 1).
(37)

The first term in (37) is equal toY j
M (Y j

M )T cos4(αM )/2,
where αM is the angle betweenY j

M and zM . Since
Y j

M (Y j
M )T does not converge to zero, the first term converges

to zero if and only ifcos(αM ) → 0 whenM →∞. On the
other hand, if the second term in (37) converges to zero then
zM converges to the eigenvector of the matrixC(j, M − 1)
corresponding toνmin(j, M − 1). If vj,M → 0, then the
matrix C(j, M) changes slightly with the increasingM .
Hence, the eigenvectors of the matrix change slightly too, and
zM converges to a certain vectorz∗. Therefore, the right side
of (37) converges to zero if the cosine of the angle between
Y j

M andz∗ converges to zero. However, the first component
of Y j

M depends onxM−1 which can take any value, this
cosine can be sufficiently large with non-zero probability.
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Note that condition (36) can hold true if all eigenvalues
of the matrix C(j, M − 1) for certain M are equal. It is
possible if and only if the matrixC(j, M − 1) is diagonal.
The matrixC(j, N +k) = vj,N+k(Y j

N+k)T Y j
N+k, wherek is

the least number such asY j
N+k is non-zero, is not diagonal.

It can easily be proved that if the matrixC(j, M − 1) is not
diagonal, then the next matrixC(j, M) is diagonal with zero
probability.

Hence, condition (36) does not hold true for
TAR(p)/ARCH(1) process (1), and this implies (35).

According to (27), one can obtain

Λ̂j = Λj + C−1(j, τ j)η(j, τ j);

η(j, τ j) =
τj∑

k=N+1

vj,k(Y j
k )T γkξk.

By using the norm properties and (32), one obtains

||Λ̂j(H)− Λj ||2 ≤ (νmin(j, τ j))−2||η(j, τ j)||2

≤ ||η(j, τ j)||2

H2
.

(38)

Let Fk = σ{ξ1, ..., ξk} be a sigma-algebra generated by the
random variables{ξ1, ..., ξk} and τ j(M) = min{τ j ,M} is
a truncated stopping instant. According to (30) the instant
τ j(M) satisfy the condition{τ j(M) = k} ∈ Fk−1. Using
the properties of conditional expectations one obtains

E||η(j, τ j(M))||2

= E
M∑

k=N+1

E[v2
j,kY j

k (Y j
k )T γ2

kξ2
k1τj≤k|Fk−1]

+2E
M∑

k=N+2

k−1∑
l=N+1

E[vj,kvj,lY
j
k (Y j

l )T γkγlξkξl1τj≤k|Fk−1]

= E
M∑

k=N+1

v2
j,kY j

k (Y j
k )T γ2

k1τj≤kE[ξ2
k|Fk−1]

+2E
M∑

k=N+2

k−1∑
l=N+1

vj,kvj,lY
j
k (Y j

l )T γkγlξl1τj≤kE[ξk|Fk−1].

Sinceξk does not depend onFk−1, the second summand is
equal to zero and one obtains

E||η(j, τ j(M))||2 = E

τj(M)∑
k=N+1

v2
j,kY j

k (Y j
k )T γ2

k.

Due to the choice of the weightsvj,k (31–32) one obtains

E
τj∑

k=N+1

v2
j,kY j

k (Y j
k )T = E

N+σj∑
k=N+1

v2
j,kY j

k (Y j
k )T

+E
τj∑

k=N+σj+1

v2
j,kY j

k (Y j
k )T ≤ p− 1

ΓN
+

H

ΓN
.

According to (22) one can see thatγ2
k ≤ ω + α2. Note that

τ j(M) → τ j asM →∞, so

E||η(j, τ j)||2 ≤ (ω + α2)(H + p− 1)E
1

ΓN
.

Due to property (24) of the factorΓN and inequality (38)
one obtains

||Λ̂j(H)− Λj ||2 ≤ H + p− 1
H2

.

The theorem has been proved.
Further we establish asymptotic properties of the con-

structed procedures. We need the following auxiliary result.

Lemma 1. Let ξ1, . . . , ξn be independent identically
distributed standard Gaussian variables. Then for any
λ1, . . . , λn, λi ≥ 0, λ1 + . . . + λn = 1 and for sufficiently
large C

P
{
λ1ξ

2
1 + . . . + λnξ2

n > C
}
≤ P

{
ξ2
1 > C

}
. (39)

Proof. First we give the proof for the case ofn = 2. We
need to minimize the function

J(λ1) = P
{
λ1ξ

2
1 + (1− λ1)ξ2

2 < C
}
→ min

0≤λ1≤1/2
. (40)

Here we take into account that the variablesξ1 and ξ2 are
independent identically distributed, thusJ(λ1) = J(1−λ1).
We rewrite the last expression in the form

J(λ1) =

C/λ1∫
0

P
{
λ1y + (1− λ1)ξ2

2 < C
}

f(y)dy

=

C/λ1∫
0

P
{

ξ2
2 <

C − λ1y

1− λ1

}
f(y)dy

=

C/λ1∫
0

F

(
C − λ1y

1− λ1

)
f(y)dy,

wheref(·) is the density of distribution,F (·) is the distribu-
tion function of the variableξ2

i . DifferentiatingJ(λ1), one
obtains

J ′(λ1) =

C/λ1∫
0

f

(
C − λ1y

1− λ1

)
C − y

(1− λ1)2
f(y)dy

=

C∫
0

f

(
C − λ1y

1− λ1

)
C − y

(1− λ1)2
f(y)dy

−
C/λ1∫
C

f

(
C − λ1y

1− λ1

)
y − C

(1− λ1)2
f(y)dy.

Both integrals in the last expression are positive. The second
one tends to zero whenC →∞. Thus

lim
C→∞

J ′(λ1) ≥ 0 ∀λ1 ∈ [0, 1/2].

For λ1 = 0 one can obtain

J ′(0) =

∞∫
0

f (C) (C − y)f(y)dy = f(C)(C − 1)

If C > 1 thenJ ′(0) > 0, andJ(λ1) increases withλ1. For
λ1 = 1/2 we can obtain

J ′(1/2) = 4

2C∫
0

f(2C − y)(C − y)f(y)dy

= 2

2C∫
0

f(2C − y)(2C − y)f(y)dy

−2

2C∫
0

f(2C − y)yf(y)dy = 0.
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Here we use the change of the variabley = 2C − z in the
second integral. For an arbitraryλ1 ∈ (0, 1/2] one obtains

J ′(λ1) =

C∫
0

f

(
C − λ1y

1− λ1

)
C − y

(1− λ1)2
f(y)dy

−
C/λ1∫
C

f

(
C − λ1y

1− λ1

)
y − C

(1− λ1)2
f(y)dy.

Both integrals in the last expression are positive. The second
one tends to zero whenC →∞. Thus

lim
C→∞

J ′(λ1) ≥ 0 ∀λ1 ∈ [0, 1/2].

Hence using (40) one obtains

P
{
λ1ξ

2
1 + (1− λ1)ξ2

2 < C
}
≥ P

{
ξ2
1 < C

}
. (41)

Let λ1 ≤ . . . ≤ λn, λ1+. . .+λn = 1, henceλ1 ∈ [0, 1/n].
We need to prove that for sufficiently largeC

P
{
λ1ξ

2
1 + . . . + λnξ2

n > C
}
≥ P

{
ξ2
1 < C

}
. (42)

Inequality (41) gives us this result forn = 2. Suppose that
(42) holds for 2, 3, ...,n− 1 summands. Then

P
{
λ1ξ

2
1 + . . . + λnξ2

n > C
}

=

C/λ1∫
0

P
{

λ2ξ
2
2

1− λ1
+ . . . +

λnξ2
n

1− λ1
>

C − λ1y

1− λ1

}
f(y)dy.

Taking into account thatλ2 + . . . + λn = 1− λ1, and using
(42) for the case(C − λ1y)(1 − λ1) ≥ C (i.e. y < C) for
sufficiently largeC, one obtains

P
{

λ2ξ
2
2

1− λ1
+ . . . +

λnξ2
n

1− λ1
>

C − λ1y

1− λ1

}
≥ P

{
ξ2
2 >

C − λ1y

1− λ1

}
.

Thus

P
{
λ1ξ

2
1 + . . . + λnξ2

n > C
}

≥
C∫

0

P
{

ξ2
2 <

C − λ1y

1− λ1

}
f(y)dy

+

C/λ1∫
C

P
{

λ2ξ
2
2

1− λ1
+ . . . +

λnξ2
n

1− λ1
>

C − λ1y

1− λ1

}
f(y)dy

=

C/λ1∫
0

P
{

ξ2
2 <

C − λ1y

1− λ1

}
f(y)dy

−
C/λ1∫
C

P
{

ξ2
2 <

C − λ1y

1− λ1

}
f(y)dy

+

C/λ1∫
C

P
{

λ2ξ
2
2

1− λ1
+ . . . +

λnξ2
n

1− λ1
>

C − λ1y

1− λ1

}
f(y)dy

The last two integrals tend to zero asC →∞. So one obtains

lim
C→∞

P
{
λ1ξ

2
1 + . . . + λnξ2

n > C
}

≥ lim
C→∞

C/λ1∫
0

P
{

ξ2
2 <

C − λ1y

1− λ1

}
f(y)dy

= lim
C→∞

P
{
λ1ξ

2
1 + (1− λ1)ξ2

2 > C
}

This and (41) imply (39). The Lemma has been proved.
Theorem 2. If process (1) is ergodic, and the sample

volumeN to construct the compensating factorΓN satisfies
the following conditions

N →∞, N/H → 0 asH →∞,

then for sufficiently largeH

P
{∣∣∣∣∣∣Λ̂j − Λj

∣∣∣∣∣∣2 > x

}
≤ 2

(
1− Φ

(√
xH2

H + p− 1

)) (43)

whereΦ(·) is the standard normal distribution function.
Proof. We consider estimator (29). According to (38),∣∣∣∣∣∣Λ̂j − Λj

∣∣∣∣∣∣2 ≤ ||η(j, τ j)||2

H2
,

i.e.

∣∣∣∣∣∣Λ̂j − Λj
∣∣∣∣∣∣2 ≤ 1

H2

∣∣∣∣∣∣
∣∣∣∣∣∣

τj∑
k=N+1

vj,k(Y j
k )T γkξk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (44)

DenoteZ = [z1, . . . , zp], ||Z|| = 1, and consider a linear
combination of the components of the vector from the last
equation

X(τ j) =
1√

P (H)

τj∑
k=N+1

vj,kZ(Y j
k )T γkξk,

whereP (H) = H + p− 1.
Further we find the limit distribution ofX(τ j) along the

lines of the proof of the martingale central limit theorem
(see [23]). Let us calculate the characteristic function ofXτ .
Denote

εk = εk(H) =
1√

P (H)
vj,kZ(Y j

k )T γkξkχ[τj≥k],

X(n) =
n∑

k=N+1

εk.
(45)

It is evident that under the assumptions of Theorem 1 as
n →∞

|X(τ j)−X(n)| →P 0.

Thus, in order to find the characteristic function ofX(τ j),
one needs to find the limit of the characteristic function of
X(n). Denote

En(η) =
n∏

k=N+1

E
(
eiηεk

∣∣Fk−1

)
,

Lemma ([23]). If (for given η) |En(η)| ≥ c(η) > 0,
n > 1, then convergence in probabilityEn(η) → E

(
eiηX

)
is sufficient for convergenceE

(
eiηX(n)

)
→ E

(
eiηX

)
.

Check the lemma conditions for the process
TAR(p)/ARCH(1)

|En(η)| =
n∏

k=N+1

∣∣E [eiηεk
∣∣Fk−1

]∣∣
=

n∏
k=N+1

∣∣1 + E
[
eiηεk − 1− iηεk

∣∣Fk−1

]∣∣ .
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By using the inequality
∣∣eiηx − 1− iηx

∣∣ ≤ (ηx)2/2, we
obtain

|En(η)| ≥
n∏

k=N+1

(
1− E

[∣∣eiηεk − 1− iηεk

∣∣∣∣Fk−1

])
≥

n∏
k=N+1

(
1− 1

2
E
[
(ηεk)2

∣∣Fk−1

])
=

n∏
k=N+1

(
1−

(ηvj,kZ(Y j
k )T γk)2χ[τj≥k]

2P (H)
E
[
ξ2
k

∣∣Fk−1

])

= exp

{
n∑

k=N+1

ln

(
1−

(ηvj,kZ(Y j
k )T γk)2χ[τj≥k]

2P (H)

)}
.

Model (22) implies(vj,kZ(Y j
k )T γk)2 ≤ ||Z||2p(ω + α2);

hence, asH →∞

(vj,kZ(Y j
k )T γk)2

P (H)
→ 0.

By using the inequalityln(1−x) ≥ −2x, wherex ∈ (0, 1/2],
for anyH ≥ H0(η), and taking into account thatγ2

k ≤ ω+α2

one obtains

|En(η)| ≥ exp

−
min(n,τj)∑
k=N+1

(ηvj,kZ(Y j
k )T γk)2

P (H)


≥ exp

{
−η2(ω + α2)

P (H)

τ∑
k=N+1

(
vj,kZ(Y j

k )T
)2
}

.

Taking into account (31) and (33), we obtain

|En(η)| ≥ exp
{
−η2(ω + α2)

P (H)
||Z||2P (H)

ΓN

}
= exp

{
−η2(ω + α2)

ΓN

}
.

If the process (1) is ergodic, then the random variable1/ΓN

tends to its expectation asN → ∞. Consequently, in the
conditions of the theorem and taking into account (24), for
sufficiently largeH we obtain(ω + α2)/ΓN ≤ 1, and

|En(η)| ≥ exp
{
−η2

}
> 0.

The lemma conditions hold true.
Further we investigate an asymptotic behavior ofEn(η).

Write this function in the form

En(η)

= exp

{
n∑

k=N+1

E
[
eiηεk − 1− iηεk

∣∣Fk−1

]}

× exp

{
−

n∑
k=N+1

E
[
eiηεk − 1− iηεk

∣∣Fk−1

]}

×
n∏

k=N+1

(
1 + E

[
eiηεk − 1− iηεk

∣∣Fk−1

])
.

(46)

Then we show that the product of the last two factors tends
to 1. Denoteαk = E

[
eiηεk − 1− iηεk

∣∣Fk−1

]
. Using the

inequality |ex − 1| ≤ e|x||x|, we have∣∣∣∣∣ n∏
k=N+1

(1 + αk) e−αk − 1

∣∣∣∣∣
=

∣∣∣∣∣exp

{
ln

τ∏
k=N+1

(1 + αk) e−αk

}
− 1

∣∣∣∣∣
≤ exp

{∣∣∣∣∣ln n∏
k=N+1

(1 + αk) e−αk

∣∣∣∣∣
}

∣∣∣∣∣ln n∏
k=N+1

(1 + αk) e−αk

∣∣∣∣∣ .
Taking into account the inequalities| ln(1 + x)− x| ≤ 2|x|2
for |x| < 1/2 and

∣∣eiηx − 1− iηx
∣∣ ≤ (ηx)2/2, as H >

H0(η), we have∣∣∣∣∣ln n∏
k=N+1

(1 + αk) e−αk

∣∣∣∣∣ ≤
n∑

k=N+1

|ln (1 + αk)− αk|

≤ 2
n∑

k=N+1

|αk|2 = 2
n∑

k=N+1

(
E
[
eiηεk − 1− iηεk

∣∣Fk−1

])2
≤ η4

P 2(H)

τj∑
k=N+1

(
vj,kZ(Y j

k )T γk

)4

.

Taking into account that

(vj,kZ(Y j
k )T )2γ4

k ≤ ||Z||2p(ω + α2)2,

with the usage of (31–33) one obtains∣∣∣∣∣ln n∏
k=N+1

(1 + αk) e−αk

∣∣∣∣∣
≤ η4||Z||2p(ω + α2)2

P 2(H)

τj∑
k=N+1

(vj,kZ(Y j
k )T )2

≤ η4||Z||4p(ω + α2)2

P (H)ΓN
→ 0.

Thus the product of the last two multipliers in (46) tends to
1 in probability asn →∞, H →∞.

Consider the first multiplier

exp

{
n∑

k=N+1

E
[
eiηεk − 1− iηεk

∣∣Fk−1

]}

= exp

{
− 1

2

n∑
k=N+1

E
[
(ηεk)2

∣∣Fk−1

]}

× exp

{
n∑

k=N+1

E

[
eiηεk − 1− iηεk +

(ηεk)2

2

∣∣∣∣Fk−1

]}
.

Let us prove that the second multiplier in this equation tends
to 1. By using the inequality∣∣eiηx − 1− iηx + (ηx)2/2

∣∣ ≤ |ηx|3/6

and (33), one can rewrite it as∣∣∣∣∣
n∑

k=N+1

E

[
eiηεt − 1− iηεk +

(ηεk)2

2

∣∣∣∣Fk−1

]∣∣∣∣∣
≤ 1

6P 3/2(H)

×
n∑

k=N+1

E

[∣∣∣ηvj,kZ(Y j
k )T γkξk

∣∣∣3 χ[τj≥k]

∣∣∣∣Fk−1

]
=

B3|η|3E|ξk|3

6P 3/2(H)

τ∑
k=N+1

∣∣∣vj,kZ(Y j
k )T γk

∣∣∣3 χ[τj≥k].
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By using (31)–(33), and
∣∣∣vj,kZ(Y j

k )T γk

∣∣∣ ≤ √
p(ω + α2),

one obtains that the last expression tends to 0. So the second
multiplier in the previous expression tends to 1 asH →∞.
Consider the first multiplier

exp

{
−1

2

n∑
k=N+1

E
[
(ηεk)2

∣∣Fk

]}

= exp

− η2

2P (H)

min(n,τj)∑
k=N+1

(vj,kZ(Y j
k )T γk)2


= exp

{
−η2

2
〈Xn〉

}
.

Note that according to (22) and (31)–(33),〈Xn〉 is a bounded
submartingale. Thus, the limit〈X∞〉 = limn→∞ 〈Xn〉 exists
almost surely, and〈X∞〉 ≤ (ω + α2)/ΓN . On the other
hand,〈Xn〉 → 〈Xτ 〉 as n → ∞. So the distributionXτ is
asymptotically normal. Thus, the random vector

Y =
1√

P (H)

τj∑
k=N+1

vj,k(Y j
k )T γkξk (47)

is asymptotically normal with the parameters(0,Σ), where
the covariance matrix

Σ = E
1

P (H)

τj∑
k=N+1

v2
j,k(Y j

k )T Y j
k γ2

k (48)

possess the following property

trΣ = E
1

P (H)

τj∑
k=N+1

v2
j,kY j

k (Y j
k )T γ2

k

≤ E
ω + α2

ΓN
≤ 1,

(49)

which can be proved by using (31)–(33).
Now turn to estimation the probability (43). By using (44)

and (47), one obtains

P
{∣∣∣∣∣∣Λ̂j − Λj

∣∣∣∣∣∣2 > x

}
≤ P

{
P (H)
H2

||Y ||2 > x

}
.

Using the Fubini’s theorem to change the order of inte-
gration and denotingxH2/P (H) asCH , one obtains

P
{
||Y ||2 >

xH2

P (H)

}
=

∫
Y Y T >CH

∞∫
−∞

exp
{
−iλT Y

}
2π

E exp
{
−1

2
λT Σλ

}
dλdY

= E

∫
Y Y T >CH

∞∫
−∞

exp
{
−iλT Y

}
2π

exp
{
−1

2
λT Σλ

}
dλdY

= E
1√

(2π)m|Σ|

∫
Y Y T >xH

exp
{
−1

2
Y Σ−1Y T

}
dY.

The matrixΣ is symmetric and positive definite, hence an
orthogonal transformationT , resulting in a matrixΣ to diag-
onal formΣ′, exists. Thus,TΣTT = Σ′, TTT = TT T = I,
whereI is the identity matrix. Using the change of variables

S = Y Σ−1/2TT , one obtains

P
{
||Y ||2 > CH

}
= E

1√
(2π)m

∫
m∑

j=1

νjs2
j
>CH

exp
{
−1

2
SST

}
dS =

EP


m∑

j=1

νjs
2
j > CH

 ,

whereν1, . . . , νm are the eigenvalues of the matrixΣ′, and
s1, . . . , sm are the independent components of the Gaussian
vectorS. Using inequality (49), one obtains

m∑
j=1

νj = trΣ′ = trΣ ≤ 1.

This and Lemma 1 imply (43). The Theorem has been
proved.

V. CHANGE POINT DETECTION PROCEDURE

Let us consider now the change point detection problem
for process (1). At the first stage, we define intervals[τ j

n−1+
1, τ j

n], n ≥ 1. The estimatorŝΛj
n of the parameters of process

(1) are constructed on each interval. Then the estimators on
intervals[τ j

n−l−1+1, τ j
n−l] and[τ j

n−1+1, τ j
n], wherel > 1 is

an integer, are compared. If the interval[τ j
n−l−1+1, τ j

n] does
not include the change pointθ, then the vectorΛj on this
interval is constant. It can be equal to the initial valueµj or
the final valueβj . Thus for certainn, if τ j

n−l < θ < τ j
n−1+1,

the difference between values of the parameters on intervals
[τ j

n−l−1 +1, τ j
n−l] and [τ j

n−1 +1, τ j
n] is no less then∆. This

is the key property for the change point detection.
We construct a set of sequential estimation plans

(τ j
n, Λ̂j

n) = (τ j
n(H), Λ̂j

n(H)), n ≥ 1, j = 1, 2,

where{τ j
n}, n ≥ 0 is the increasing sequence of the stopping

instances (τ0 = N ), and Λ̂j
n is the guaranteed parameter

estimator on the interval[τ j
n−1 + 1, τ j

n]. Then we choose an
integerl > 1 and define the statisticsIj

n

Ij
n = ||Λ̂j

n − Λ̂j
n−l||

2. (50)

This statistic is the squared deviation of the estimators with
numbersn and n − l. Statistics properties are given in the
following theorem.

Theorem 3. The expectation of the statisticsIj
n (50)

satisfies the following inequality:

E
[
Ij
n

∣∣ τ j
n < θ

]
≤ 4(H + p− 1)

H2
;

E
[
Ij
n

∣∣ τ j
n−l < θ ≤ τ j

n−1

]
≥ ∆− 4

√
∆

H + p− 1
H2

.

(51)

Proof. Denote the deviation of the estimatorΛ̂j
n from the

true value of the parameterΛj asζj
n. Let the parameter value

remain unchanged until the instantτ j
n, i.e., θ > τ j

n. In this
case,Λ̂j

n = µj + ζj
n, λ̂j

n−l = µj + ζj
n−l and statistic (50) can

be written in the form

Ij
n =

∣∣∣∣∣∣ζj
n − ζj

n−l

∣∣∣∣∣∣2 .
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According to Theorem 1,

E||ζj
n||2 ≤

H + p− 1
H2

(52)

To estimate the expectation of the statistic, we use property
(52) and the inequality||a− b||2 ≤ 2||a||2 + 2||b||2:

EIj
n ≤ E

(
2||ζj

n||2 + 2||ζj
n−l||

2
)
≤ 4

H + p− 1
H2

. (53)

Let the change of the parameter take place on the interval
[τ j

n−l, τ
j
n−1] i.e. τ j

n−l < θ ≤ τ j
n−1. In this case,̂Λj

n = βj +
ζj
n, Λ̂j

n−l = µj + ζj
n−l, and statistic (50) is

Ij
n = ||βj − µj + ζj

n − ζj
n−l||

2.

To estimate the expectation of the statistics, we take advan-
tage of the inequality||a − b|| ≥ ||a|| − ||b|| and condition
(52)

EIj
n ≥ E

(
||βj − µj || − ||ζj

n − ζj
n−l||

)2

≥ ||βj − µj ||2 − 2||βj − µj ||E||ζj
n − ζj

n−l||

≥ ∆− 4

√
∆

H + p− 1
H2

.

The theorem has been proved.
Hence, the change of the expectation of the statisticIj

n

allows us to construct the following change point detection
algorithm. TheIj

n values are compared with a certain thresh-
old δ, where

4(H + p− 1)
H2

< δ < ∆− 4

√
∆

H + p− 1
H2

. (54)

When the value of the statistic exceedsδ then the change
point is considered to be detected. If at least one parameter
of the vectorΛ = [Λ0,Λ1] changes, then the change pointθ
can be detected.

The probabilities of false alarm and delay in the change
point detection in any observation cycle are important char-
acteristics of any change point detection procedure. Due to
the application of the guaranteed parameter estimators in the
statistics, we can bound these probabilities from above.

Theorem 4. The probability of false alarmP0,n and
the probability of delayP1,n in n-th observation cycle
[τ j

n−1 + 1, τ j
n] are bounded from above

P0,n ≤
2(H + p− 1)

δH2
;

P1,n ≤
2(H + p− 1)

(
√

∆−
√

δ)2H2
.

(55)

Proof. First, we consider the false alarm probability, i.e.
the probability that the statisticJi exceeds the threshold
before the change point. Using the norm properties and the
Chebyshev inequality, we obtain

P0,n = P
{

Ij
n > δ

∣∣ τ j
n < θ

}
= P

{
||ζj

n − ζj
n−l||2 > δ

}
≤

2E
(
||ζj

n||2 + ||ζj
n−l||2

)
δ

.

This and (52) imply the first inequality from (55).
Then we consider the delay probability, i.e., the probability

that the statisticIj
n does not exceed the threshold after the

change point

P1,n = P
{

Ij
n < δ

∣∣ τ j
n−l < θ < τ j

n−1

}
= P

{
||βj − µj + ζj

n − ζj
n−l||2 < δ

}
= P

{
||ζj

n − ζj
n−l|| <

√
δ
}

.

Taking into account that||βj − µj ||2 > ∆ and using the
norm properties and the Chebyshev inequality, one obtains

P1,n ≤ P
{
||βj − µj || − ||ζj

n − ζj
n−l|| <

√
δ
}

≤ P
{√

∆− ||ζj
n − ζj

n−l|| <
√

δ
}

= P
{
||ζj

n − ζj
n−l|| >

√
∆−

√
δ
}

≤
2E
(
||ζj

n||2 + ||ζj
n−l||2

)
(
√

∆−
√

δ)2
.

This and (52) imply the second inequality from (55).
The theorem has been proved.
Then we consider asymptotic properties of the proposed

change point detection procedure forH →∞ if process (1)
is ergodic, i.e. the asymptotic inequalities for the probabilities
of false alarm and delay.

Theorem 5. If process (1) is ergodic, and the compen-
sating factorΓN satisfies the following conditionsN →∞,
N/H → 0 as H → ∞, then for sufficiently largeH the
probabilities of false alarm and delay inn-th observation
cycle [τ j

n−1 + 1, τ j
n] are bounded from above

P0,n ≤ 2

(
1− Φ

(√
δH2

2(H + p− 1)

))
;

P1,n ≤ 2

1− Φ


√√√√(√∆−

√
δ
)2

H2

2(H + p− 1)




(56)

whereΦ(·) is the standard normal distribution function.
Proof.First, we consider the false alarm probability. Along

the lines of the proof of Theorem 4, we obtain

P0,n = P
{
||ζj

n − ζj
n−l||2 > δ

}
.

Note thatζj
n is the difference between the estimatorΛ̂j

n and
the true value of the parameterΛj ; hence, the vector

Zj
n =

1√
2P (H)

(ζj
n − ζj

n−l)

has the same properties that the vectorY (47) and, according
to (43),

P
{∣∣∣∣∣∣ζj

n − ζj
n−l

∣∣∣∣∣∣2 > x

}
≤ 2

(
1− Φ

(√
xH2

2(H + p− 1)

)) (57)

This implies the first inequality from (56).
Then we consider the delay probability. Along the lines

of the proof of Theorem 4, we obtain

P1,n ≤ P
{
||ζj

n − ζj
n−l|| >

√
∆−

√
δ
}

.

This and (57) imply the second inequality from (56).
The theorem has been proved.
These estimators can be used instead of (55) for suffi-

ciently largeH.
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TABLE I
PARAMETER ESTIMATION FOR THETAR(2)/ARCH(1) PROCESS

H µ̂1
1 µ̂1

2 µ̂1
2 µ̂2

2 T d D

50 0.501 0.303 0.303 0.492 724 0.009 0.02
100 0.506 0.304 0.293 0.497 1444 0.0046 0.01
200 0.498 0.295 0.304 0.497 2686 0.0028 0.005
250 0.503 0.301 0.300 0.500 13811 0.0005 0.001

VI. SIMULATION RESULTS AND THEIRDISCUSSION

This section presents the simulation results for the de-
scribed algorithms. For every experiment 100 replications
were conducted.

First, we considered the parameter estimation problem for
the TAR(2)/ARCH(1) process (1) with the parameters

Λ1 = [ 0.5, 0.1 ], Λ2 = [ 0.1, 0.3 ];
ω = 0.6, α2 = 0.4,

and with the standard Gaussian noise. The compensating fac-
tors Γn was constructed with additional conditionsx2

k−1 >
0.1 andx2

k/ max{1, x2
k−1} < 5. We add these conditions in

order to bound from above the compensating factor and to
avoid increasing the estimation interval. The noise variance
of the process in the special form (22) is bounded from above
by the value0.6 + 0.4 = 1. The numbern was chosen as
the integral part of

√
H.

Table I presents the simulation results. HereH is the pa-
rameter of the procedure,̂µ1

1 andµ̂1
2 are the mean estimators

of the corresponding parametersµ1
1 = 0.5 and µ1

2 = 0.3
µ̂1

2 and µ̂2
2 are the mean estimators of the corresponding

parametersµ1
2 = 0.3 and µ2

2 = 0.5 calculated by 100
replications,T is the mean number of observations used to
calculate the estimator,d = ||Λ̂ − Λ||2 averaged over 100
realizations,D is the theoretical upper bound for the mean
square accuracy of the estimator given by inequality (34).

One can see that the mean number of the observation
increases linearly byH. This property is important for
sequential estimators (see [24]) because it characterizes the
optimality of the procedure in the case of independent
observation.

The sample mean square error of the estimation is about
four times less then the theoretical one. It is connected with
the complicated structure of the TAR/ARCH process. It has
the unbounded noise variation, so we divide the equation by
the number not less then unity. As a resultνmin(j,m) in (30)
grows slowly and the estimation interval increases. Besides,
the compensating factor exceeds the real upper bound of the
noise variance about two times. It implies decreasing of the
mean square error and increasing of the mean estimation
interval in the same proportion.

Fig. 3 – Fig. 6 demonstrate examples of the sequences
of TAR(2)/ARCH(1) parameters estimates forH = 100.
Here solid lines indicate true values of the parameters, and
dotted lines shows the behavior of estimates. Every time
unity corresponds to 10000 observations.

Further we conducted simulations of the proposed change
point detection procedure. The simulations were conducted
for the TAR(2)/ARCH(1) process. Before the instantθ it was
specified by the equation (1) with the parameters

Λ1 = [ 0.5, 0.3 ], Λ2 = [ 0.3, 0.5 ];
ω = 0.4, α = 0.1,

Fig. 3. Estimator forµ1
1.

Fig. 4. Estimator forµ2
1.

After the instantθ = 10000 he parameters are

Λ1 = [ 0.2, 0.2 ], Λ2 = [ 0.8, 0.1 ];
ω = 0.4, α2 = 0.6,

In this process in form (22) the noise variance is bounded
from above by unity both before and after the change point.
The change pointθ = 10000 and δ = 0.025. Note that we
choose the change point as a rather big number in order to
have possibility to estimate the mean number of observation
between false alarm using a sufficient sample size.

Fig. 5. Estimator forµ1
2.
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Fig. 6. Estimator forµ2
2.

TABLE II
CHANGE-POINT DETECTION FOR THETAR(2)/ARCH(1) PROCESS

H T0 T1 p̂0 P0a P0 p̂1 P1a P1

100 10901 1237 0.63 0.46 0.81 0.0 0.46 0.81
200 196750 2242 0.05 0.22 0.4 0.0 0.22 0.4
400 1000000 5151 0.0 0.05 0.2 0.0 0.05 0.2

Table II presents the results of the simulations. HereH
and δ are the parameters of the procedure,T1 is the mean
delay in the change point detection,T0 is the mean interval
between false alarms (if the cell is empty then there were no
false alarms),̂p0 and p̂1 are the sample probabilities of the
false alarms and of the delay, respectively,P0a, P1a andP0,
P1 are the asymptotic and non-asymptotic upper bounds for
the probabilities expressed by formulas (55) and (56).

One can see that when the parameterH increases then
the mean delay increases too. It is explained by the fact that
increase ofH leads to rise of the number of observation
which are necessary to construct more accurate parameter
estimator. On the other hand, the difference between the es-
timator and the exact parameter becomes less and hence, the
error probabilities also decrease. When parameterH = 100
one can see, that the asymptotic upper bound for probability
of false alarm does not work well, this arises from complexity
of the model and the estimation procedure needs bigger
value of H to construct more accurate estimations of the
parameters.

When the parameterH increases then the mean interval
between false alarms increases too, what leads to the decrease
of probabilities of delay. Actually, in this experiment, the
sample probability of delay is equal to 0. It can be explained
in connection with value ofT1. Hence, we have zero sample
probability of delay, but also we always have mean delay,
which grows linearly withH.

VII. C ONCLUSION

The results in this paper were derived with strong mathe-
matical evidence and are theoretical. Besides, the efficiency
of the algorithms is checked via simulation. It can be very
interesting to test them on the real data.
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