
 
Abstract—In this paper, we present an active fault-tolerant 

control method for a continuous stirred tank reactor (CSTR) 

system. In the proposed method, a piecewise affine (PWA) 

form of the system is modeled in both the normal and fault 

situations, and then an active fault-tolerant controller is 

designed using an explicit model predictive control algorithm. 

By this way, the control objective can be achieved simply by 

changing the controller parameters without re-computing the 

controller online when the system faults occur. So the method 

greatly reduces the computational burden and has a better 

real-time performance. Finally, simulation experiments for the 

system exposed to multiple sensor or actuator faults are 

carried out and show the effectiveness of the method. 

 

Index Terms—piecewise affine model, active fault-tolerant 

control, explicit model predictive control, continuous stirred 

tank reactor system. 
 

I. INTRODUCTION 

HE continuous stirred tank reactor (CSTR) system 

plays a vital role in the polymerization reaction and 

therefore is widely used in the chemical industry. However, 

once faults of the system occur, such as actuator or sensor 

faults, it will lead to poor quality and low yield of the 

products. So finding an appropriate fault-tolerance control 

technique of the system is very necessary and important. 

The fault-tolerant control technique is capable of 

achieving the system acceptable performance and stability 

properties in both the normal and fault situations and can be 

classified into two types: passive and active. In the passive 

fault-tolerant control approach, it takes into account of all 

the expected component faults during the design of a 

controller, so that the system can maintain its expected 

performance when these faults occur. It doesn’t change but 

uses the same robust controller during the whole operation 

period which will sacrifice parts of system performance and 

have great conservativeness. This method can be found in 

[1-4]. Contrary to the passive approach, the active approach 

uses a detection and diagnosis module (FDD) to get the 

real–time information of system faults and changes the 

control strategies with types of the faults,  such as 

reconfiguration of the current controller, re-scheduling of  
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the control law and so on. So it is able to achieve the 

control goal even in the situation of unexpected system 

failure. This method is received more attention and can be 

found in [5-9]. 

For the CSTR system, several fault-tolerant control 

methods have already been proposed. In [10], a fault- 

tolerant controller is designed for a CSTR system subject to 

constraints and sensor data losses faults via a 

reconfiguration-based approach which can always preserve 

closed-loop stability. In [11], a CSTR system is modeled in 

an adaptive neural network form. When faults occur, it 

compensates the fault effects by employing an auto-tuning 

PID controller based on the established model. In [12], it 

proposes a method to design a controller on the basis of an 

adaptive learning and a switching function mechanism and 

then applies this method to a CSTR system with actuator 

faults successfully. In [13], it provides a new fault-tolerant 

method to control a CSTR system with multiple control 

failures relying on the coordination of a multi-loop 

proportional controller and a decentralized unconditionally 

stabilizing controller. However, these research results are 

mainly concentrated in passive fault-tolerant control of the 

CSTR system. For active methods, to the knowledge of the 

authors it is still lacking in studies. In this paper, an active 

fault-tolerant control method is proposed for a CSTR 

system. As some literatures, such as [14-18], has already 

presented fault detection and diagnosis strategies and their 

available for the CSTR system, we mainly focus our 

attention on active fault-tolerant controller design.  

The idea of the proposed method combines active 

fault-tolerant control strategies with explicit model 

predictive control algorithms based on piecewise affine 

(PWA) model. In the method, a CSTR system is modeled in 

a PWA form which not only describes the system 

characteristics very well, but is convenient to be used to 

design the controller as well. Then an active fault-tolerant 

controller is designed using an explicit model predictive 

control approach and it can remain stable and feasible by 

properly choosing the design parameters. The method 

enables the system to make corresponding response to 

faults, mainly considering actuator or sensor faults here, 

quickly. The rest of this paper is organized as follows. In 

Section II, a brief description of PWA model and a PWA 

form of the CSTR system are presented. In Section III, an 

active fault-tolerant control algorithm is researched in detail. 

In Section IV, the proposed method is applied to the CSTR 

system subjected to actuator and sensor faults. Finally, 

conclusions are drawn in Section V. 
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II. CSTR SYSTEM BASED ON PWA MODEL 

A. PWA Model 

PWA model is a typical model which contains a finite 

number of continuous dynamic submodels and can be 

switched among the submodels according to a specific 

switching law. It can describe a large number of physical 

systems very well, especially for nonlinear systems. In the 

model, the extended state+input space is partitioned into 

several polyhedral regions and each region is associated 

with a different linear state-update equation. It can be 

expressed by the following form: 
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where 0k  , nx is the state, mu and
py is the 

input and the output respectively.    
1

,
s

i ixi
x u H x


 

, 1, ,iu iH u K i s    is the polyhedral partition of the sets 

which are in the extended space  , n mx u  . It should be 

noted that linear state and input constraints in the form of

   Kx k Lu k M  can be easily incorporated in the 

description of i [25]. 

B. CSTR System in PWA Form 

In this paper, a schematic of a standard two-state CSTR 

system is shown in Figure 1. 

 
 

Fig. 1.  Continuous stirred tank reactor system 

 

It is assumed that a single irreversible, exothermic 

reaction A B occurs in this reactor. With concentration of

A ( AC ) and the reactor temperature ( T ) as states

1 2[ , ]Tx x x , the coolant temperature ( cfT ) as input u , 

AC  as output y , a set of nonlinear equations can be 

obtained to describe the system as follows according to 

[20,22]: 
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 and the ranges of the 

variables are [0,1] [0,6]x  , [ 2,2]u  . Values of parameters 

in the nonlinear equations are shown in Table 1. 

 
TABLE I 

VALUES OF PARAMETERS 

    q      1 fx  2 fx  

20.0 0.072 1.0 8.0 0.3 1.0 0 

 

Apparently, the system is highly nonlinear and multi- 

operating points. If it is modeled in PWA form, these 

characteristics can be well captured. 

For the nominal parameters, it has three steady states 

(steady operating points):
1

(0.856,0.886)sx  , 
2

0.5528,sx 

2.7517 ,
3

(0.2353,4.7050)sx  . By linearizing the system 

around each steady state point and then discretizing it with 

a sampling time of 0.1 sec, we can get the PWA model of 

the CSTR system as follows： 
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where     
3

1
, , 1,2,3i ix iu ii

x u H x H u K i


    is the 

polyhedral partition of the sets of the state+input space. 

, , , 1,2,3ix iu iH H K i   are, respectively, 6 2 , 6 1 , 6 1  

corresponding matrices. 

III. ACTIVE FAULT-TOLERANT CONTROL ALGORITHM 

A. Active Fault-tolerant Control Based on PWA Model 

Active fault-tolerant control of a system with PWA form 

achieves control objectives by way of changing control 

strategies when system faults, mainly considering actuator 

or sensor faults here, are detected. In detail, it needs to use 

a FDD module to real-time monitor the system and get the 

information of the faults in time once it occurs. Then the 

information is passed to a supervision module and 

corresponding control actions are subsequently taken to 

accommodate and recover the faulty system according to 

the fault messages. The general structure of this active 

fault-tolerant control system can be depicted in Figure 2. 
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One way of achieving the above fault-tolerant control 

process is to employ the controller reconfiguration 

technique. The basic idea of this technology is to use the 

FDD module to gain the fault information and generate a 

discrete event signal passing to the supervision module 

once the system failure occurs. Then the supervision 

module reconstructs the controller online to obtain an 

appropriate control law for the system so that the system 

will not be greatly influenced by the faults and can still 

achieve the control goal. If we assume the FDD module 

works normally, it is not difficult to see that a kind of 

control algorithms selected to reconfigure the controller is 

the key to guarantee the successful application of the 

proposed technique. As the characteristics of the system 

and the system's internal model and constraints may be 

changed with the types of faults, choosing the model 

predictive control algorithm seems to be quite suitable 

because of its outstanding ability to deal with these kinds of 

situations. However, it needs to receding-horizon 

optimization which solves the optimization problem online 

repeatedly. In the case of complex, frequent or multiple 

faulty systems, it may fail. To some extended, an explicit 

model predictive control algorithm will be introduced in the 

following section which can solve these problems perfectly. 

B. Active Fault-tolerant Control Using an Explicit Model 

Predictive Control Approach 

Explicit model predictive control inherits almost all 

characteristics of model predictive control. Besides these, it 

solves the optimization problem offline by using multi- 

parametric program which greatly reduces the on-line 

computational burden and leads to be excellent in real-time 

performance. Because of these advantages, this algorithm 

can be used to active fault-tolerant control well even in 

some extreme situations. 

Faults of a plant are treated as additional states and 

added to the plant model . This relative uniform structure of 

model is called PWA fault model which is similar to (1) 

with the following form: 
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represents the j-th possible fault of the system during its run 

time. fA , fB , ff , fC , fD and fg are the corresponding 

matrices based on the fault types.  

If the control objective is to track a constant reference 

state of the system, the following optimal control problem 

should be considered: 
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Where N is the prediction horizon, the input sequence
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 

   is the optimizer variable, 

n l

setT  is a compact terminal set,  1,2,p  defines 

the norm type of the objective function and ,NQ Q , R are 

weight matrices with full rank. 

The above optimization problem can be solved by 

transforming it into a multi-parametric program. If 1p   

or p   , it can be converted into multi-parametric linear 

program. If 2p  , it can be converted into multi- 

parametric quadratic program. As linear program needs less 

amount of calculations and a higher speed of computation 

compared with quadratic program,  -norm is chosen as 

the nom of the objective function in this paper. 

According to Bellman’s optimality principle, the optimal 

control problem (2) can be transformed into an equivalent 

dynamic program (DP) as follows [23,25]: 
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Fig. 2.  Structure of the active fault-tolerant control system 
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is the set of all states which make the problem (3) feasible. 

If we utilize an inverse-order-solving method to solve the 

above DP problem, for each iteration step, it can be 

converted into several problems with the form given by the 

following: 
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Where  
~ ~

x x k . f , G , E and W are, respectively, suitable 

constant matrices easily obtained from Q , R . It is 

essentially a multi-parametric linear program if 
~

x  is 

treated as parameters and z  as the optimization vector. 

According to [24,25], the solutions to the above 

multi-parametric linear programs have a PWA form: 
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Where
k

iP is a polyhedral partition of the set of feasible 

states  
~

x k including system states and fault states and kN

is the number of 
k

iP at each iteration step 0, , 1k N  . 

Then, an explicit active fault-tolerant controller is obtained 

by 0k  . The whole process of designing the controller can 

be done offline. 

For online computation, it just needs to decide the 

position of the current state in the controller partition and 

then evaluate the corresponding piecewise affine function. 

If faults of the system occur, it only requires to change the 

controller parameters with the fault type which is detected 

by the FDD module. The architecture of the proposed 

active fault-tolerant scheme can be depicted in Figure 3. 

Note that as the system faults which are treated as 

additional states increase the state dimension, the explicit 

controller may have a large numbers of partitions and that 

can lead to bad real-time perfermance. Countering this 

problem,a bounding box search tree method is proposed. 

The algorithm requires three steps. First, a bounding box 

search tree is constructed according to [28]. Secondly, 

traverse the tree from the root node to a leaf node to find 

partitions possibly containing the current state, and then 

search among these candidate partitions sequentially to 

determine the exact partition. Thirdly, evaluate the 

corresponding piecewise affine function to obtain the 

optimal control input and apply it to the system. By this 

way, the speed of the online calculation is significantly 

improved at the cost of a low additional memory storage 

demand and a very short pre-computation time. 

In the proposed active fault-tolerant control method, the 

relationship between the states (including intrinsic states 

and fault states) and the input is explicit, so it doesn’t need 

to repeatedly solve optimization problem online even in the 

fault condition. It also ensures the closed loop stability via 

choosing the proper design conditions, such as terminal set, 

prediction horizon and weight matrices. Moreover, the 

supervision module is well-placed to be embedded in the 

explicit controller which makes the whole system more 

simple and applicable. 

IV. SIMULATION RESULTS 

The CSTR system needs to work at different operating 

points in order to produce necessary products. In this paper, 

we choose 
1s

x  as the operating point and make the system 

ultimately work at this steady point from an arbitrary initial 

state even in the condition of actuator or sensor fault by 

using the proposed active fault-tolerant method. 

Here actuator faults mainly cause a change of the coolant 

temperature range to the range where the actuator is still 

working. If this kind of fault occurs, the FDD module will 

pass the new range of the coolant temperature to the 

controller which subsequently makes a corresponding 

response to accommodate and recover the faulty system. It 

supposes the system initial state is  0 0.3,4.5x  , 1 is the 

upper bound of the actuator and 2 is the lower bound. 

Add  1 2

T
f    to the system states as additional 

states and then establish a fault model. When system runs 

without faults, 1 2  and 2 2   , that is to say [ 2,2]u  . 

The simulation results are shown in Figure 4 and Figure 5. 

Fig. 3.  Structure of the active fault-tolerant control system based on explicit model predictive control approach 
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Fig. 4.  Projection of the controller partition on  1 2,x x  plane cut 

through 1 2  , 2 2    

 

 

Fig. 5.  Evolution of the states and input in the normal condition 

 

If the actuator faults occur during operation, we suppose 

they are detected by the FDD module at sample time 

10k  , 20k  and 22k  , which cause the coolant 

temperature range to change to [ 1.5,1.5] , [ 1,1]  and 

[ 0.5,0.5]  respectively. The simulation results are shown 

in Figure 6-9. 

 

Fig. 6.  Projection of the controller partition on  1 2,x x  plane cut 

through 1 1.5  , 2 1.5    

 

Fig. 7.  Projection of the controller partition on  1 2,x x  plane cut 

through 1 1  , 2 1    

 

Fig. 8.  Projection of the controller partition on  1 2,x x  plane cut 

through 1 0.5  , 2 0.5    

 

Fig. 9.  Evolution of the states and input under the actuator fault 

condition. The red dash dot line represents real-time constraints of the 

input during the whole control process. 

The explicit active fault-tolerant controller has 6049 

polyhedral partitions with 94 different control laws. Figure 

4 and Figure 6-8 show projections of the controller 

partition on two states  ,AC T  cutting through  1 2,  

 2, 2 ,    1 2, 1.5, 1.5    ,    1 2, 1, 1    and  1 2,  

 0.5, 0.5  respectively. Figure 5 shows the system can 
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ultimately work at the steady point from the initial state and 

the whole regulation process is rather fast and smooth. 

Figure 9 shows the controller can quickly make 

corresponding remedial actions to correct and recover the 

system with multiple actuator faults occurrence at a short 

interval and ensure the control objective is still achieved. In 

this situation, the whole online control process takes only 

3.49 seconds, that is to say, merely needs 0.0349 seconds 

on average at each sampling time.  

The sensor fault is similar to the actuator fault. It mainly 

causes a change of the system state range to the range 

where the sensor is still working. We assume the sensor is 

insensitive to the value below 3  due to the fault. Add 

3f   to the system states as additional states to build a 

fault model. If the system runs without fault from 

 0 0.3,2.5x  , the simulation result is shown in Figure 

10(a). While if that kind of sensor fault occurs at 5k  , 

which leads to the lower bounds of the states increasing 0.4, 

the simulation results are shown in Figure 10(b) and Figure 

11. It can be seen the system states have reached the desired 

states without violating constraints. In this situation, the 

whole online control process takes only 2.51 seconds, that 

is to say, merely needs 0.0251 seconds on average at each 

sampling time.  

 

Fig. 10.  Evolution of the states under the normal and sensor fault 
condition. The red dash dot line represents real-time lower bounds of state 

constraints during the whole control process. 

 

Fig. 11.  Projection of the controller partition on  1 2,x x  plane cut 

through 0.4   

V. CONCLUSION 

In this paper, an active fault-tolerant control algorithm 

for a CSTR system has been researched in detail. System 

faults are unified in the framework of the system model by 

treating them as additional states and the controller is 

designed by using an explicit model predictive control 

approach. The simulation results show the system states 

evolve from the initial state to the steady state rapidly and 

smoothly in both the normal and fault conditions. It 

demonstrates the effective of the proposed method and also 

reflects it is excellent in real-time performance. However, 

as the number of the controller partitions increases with the 

system state dimension, it may make the optimization 

problem unfeasible if there are too many considered faults 

and limits the application of this method. More efforts are 

required to solve this problem. 
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