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Abstract—In this paper, we deal with the Orlicz geominimal
surface area and give an integral representation by the Orlicz-
Petty body. The notion of Orlicz mixed geominimal surface area
will be introduced as an extension of the Orlicz geominimal
surface area. Furthermore, some related inequalities are estab-
lished, including Alexandrov-Fenchel type inequality, analogous
cyclic inequality, Blaschke-Santaló type inequality, and affine
isoperimetric inequality.

Index Terms—Convex bodies, Orlicz geominimal surface
area, Orlicz mixed geominimal surface area.

I. INTRODUCTION

LET Kn denote the class of convex bodies (compact,
convex subsets with nonempty interiors) in Euclidean

n-space Rn. For the class of convex bodies containing the
origin in their interiors and the class of origin-symmetric
convex bodies in Rn, we write Kn

o and Kn
c , respectively.

Sn
o denotes the class of star bodies (about the origin) in

Rn. Write Sn−1 and B for the unit sphere and the standard
Euclidean unit ball in Rn, respectively. Besides, we use
V (K) to denote the n-dimensional volume of a body K,
and write ωn = V (B) for the n-dimensional volume of B.

The classical geominimal surface area was firstly intro-
duced by Petty [1], which serves as a bridge connecting
many areas of geometry: affine differential geometry, rela-
tive differential geometry, and Minkowskian geometry. For
K ∈ Kn

o , the geominimal surface area, G(K), of K is
defined by (see [1])

ω1/n
n G(K) = inf{nV1(K,Q)V (Q∗)1/n : Q ∈ Kn

o }, (1)

where Q∗ denotes the polar of convex body Q, and V1(K,Q)
is the mixed volume of K,Q ∈ Kn

o (see [2]).
The development of Lp-space appeared in the early 1960s

(see [3]), and started to make rapidly progress from the initial
Lutwak’s contributions ([4], [5]) in the mid 1990s. In his
seminal paper [5], Lutwak extended the classical geominimal
surface area to Lp-version and obtained related inequalities.
Ma et al. also studied this topic of Lp-space. For instance, Ma
et al. [6] defined the concept of ith Lp-mixed affine surface
areas and established related monotonic inequality. In [7],
Ma et al. obtained some Brunn-Minkowski type inequalities
of Lp-geominimal surface area. There are many papers on
Lp-space, see e.g., [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17].
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Lutwak [5] defined the Lp-geominimal surface area
Gp(K) of K ∈ Kn

o as follows: For p ≥ 1,

ωp/n
n Gp(K) = inf{nVp(K,Q)V (Q∗)p/n : Q ∈ Kn

o }, (2)

where Vp(K,Q) denotes the Lp-mixed volume of K,Q ∈
Kn

o (see [5]). When p = 1, G1(K) is just classical geomin-
imal surface area G(K).

Based on the homogeneous of volume and Lp-mixed
volume, the Lp-geominimal surface area can be defined by

Gp(K) = inf{nVp(K,Q) : Q ∈ Kn
o and V (Q∗) = ωn}.

(3)
In recent years, the Orlicz Brunn-Minkowski theory has

aroused increasing attention, which plays such a significant
role that it is undeniably applied to a large number of
areas of geometry. The beautiful Orlicz Brunn-Minkowski
theory, a new extension of Lp-Brunn-Minkowski theory,
originated from Lutwak, Yang and Zhang (see [18], [19]).
In these papers, the affine isoperimetric inequalities for Lp-
projection bodies and Lp-centroid bodies were expanded to
Orlicz space. However, because of lacking homogeneity for
nonhomogeneous function ϕ(t), the way of defining Orlicz
addition is nontrivial extremely to be found appropriately.
Fortunately, in the groundbreaking paper [20], Gardner, Hug
and Weil have gotten over the difficulty. They introduced the
definition of Orlicz addition and Orlicz mixed volume. On
the basis of the linear Orlicz addition for convex bodies, they
also established the new Orlicz Brunn-Minkowski inequality
and the Orlicz Minkowski mixed volume inequality. Their
classical counterparts are the Brunn-Minkowski inequality
and Minkowski inequality, which have been applied in
many fields. The more development of the Orlicz Brunn-
Minkowski theory, see, for example, [21], [22], [23], [24],
[25], [26], [27], [28] among others.

More recently, Yuan et al. introduced the Orlicz geomini-
mal surface area Gϕ(K) of K ∈ Kn

o (see [29]). Let Φ denote
the set of convex functions ϕ : [0,∞) → [0,∞) such that
ϕ(0) = 0 and ϕ(1) = 1. For K ∈ Kn

o , and ϕ ∈ Φ,

Gϕ(K) = inf{nVϕ(K,Q) : Q ∈ Kn
o and V (Q∗) = ωn},

(4)
where Vϕ(K,Q) denotes Orlicz mixed volume of K, Q (see
[25]).

Yuan et al. [29] have proved the existence property of
Orlicz geominimal surface area. In this paper, the first goal
is to establish the uniqueness property of Orlicz geominimal
surface area. Then we can give the integral representation
of Orlicz geominimal surface area by the Orlicz-Petty body
(see Section 3.1).

Motivated by the work of Zhu et al. [30], we introduce
Orlicz geominimal surface area and extend the related theory
to Orlicz version. We define the Orlicz mixed geominimal
surface area (see Section 3.2), which extends the concept of
Orlicz geominimal surface area. In addition, we devote to
the general ith Orlicz mixed geominimal surface area. Some
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related inequalities for Orlicz mixed geominimal surface are
established, including Alexandrov-Fenchel type inequality,
analogous cyclic inequality, Blaschke-Santaló type inequal-
ity, and isoperimetric inequality (see Section 3.3). These
inequalities are natural extensions of inequalities for Lp-
geominimal surface area.

Our paper is organized as follows. Firstly, in Section II, we
provide some preliminaries, including definitions and known
results we will use. Then, in Section III, we give our main
results and proofs.

II. PRELIMINARIES

For a compact convex set K ∈ Kn
o , its support function,

hK = h(K, ·) : Sn−1 → R is defined by,

hK(u) = max{u · x : x ∈ K}, u ∈ Sn−1,

where u · x denotes the standard inner product of u and
x in Rn. Note that the compact convex set K is uniquely
determined by its support function hK .

Let GL(n) denote the group of linear transformations. If
A ∈ GL(n), then

hAK(u) = hK(Atu),

where At denotes the transpose of A (see [31]). For K,L ∈
Kn

o , the Hausdorff metric is defined by

δ(K,L) = sup
u∈Sn−1

|h(K,u)− h(L, u)|.

A set K ⊂ Rn is said to be a star body (about the
origin), if the line segment from the origin to any point
x ∈ K is contained in K and K has continuous and
positive radial function ρK(·). Here, the radial function of
K, ρK = ρ(K, ·) : Sn−1 → [0,∞), is defined by

ρK(u) = max{λ : λu ∈ K},

and it uniquely determines the compact convex set K. Two
star bodies K, L are said to be dilates (of one another) if
ρK(u)/ρL(u) is independent of u ∈ Sn−1.

For K ∈ Kn
o , then K∗, the polar body of K is defined by

(see [31], [32])

K∗ = {x ∈ Rn : x · y ≤ 1,∀y ∈ K}.

When K ∈ Kn
o , it can be easily proved that (K∗)∗ = K.

From the definitions it follows obviously that for each
convex body K ∈ Kn

o , we easily get

hK∗(u) =
1

ρK(u)
and ρK∗(u) =

1

hK(u)
, for all u ∈ Sn−1.

For K ∈ Kn
o , the Blaschke-Santaló inequality (see [33],

[34]) states as follows: If K ∈ Kn
c then

V (K)V (K∗) ≤ ω2
n, (5)

with equality if and only if K is an ellipsoid.
For K,L ∈ Kn, and λ, µ ≥ 0 (not both zero), the

Minkowski linear combination λK + µL ∈ Kn is defined
by (see [5])

h(λK + µL, ·) = λh(K, ·) + µh(L, ·).

The classical Brunn-Minkowski inequality states that for
K,L ∈ Kn and λ, µ ≥ 0 (not both zero), the volume of

the bodies and of their Minkowski linear combination λK+
µL ∈ Kn are related by (see [35])

V (λK + µL)
1
n ≥ λV (K)

1
n + µV (L)

1
n ,

with equality if and only if K and L are homothetic.
For real p ≥ 1, K,L ∈ Kn

o , and λ, µ ≥ 0 (not both zero),
the Firey linear combination λ · K +p µ · L, is defined by
(see [3])

h(λ ·K +p µ · L, ·) = λh(K, ·)p + µh(L, ·)p,

where “·” in λ ·K denotes the Firey scalar multiplication.
After that Firey [3] established the Lp-Brunn-Minkowski

inequality. If p > 1, λ, µ ≥ 0 (not both zero), and K,L ∈
Kn

o , then

V (λ ·K +p µ · L)
p
n ≥ λV (K)

p
n + µV (L)

p
n ,

with equality if and only if K and L are dilates.
In [5], Lutwak defined the harmonic Lp-combination λ ◦

K+̂pµ ◦ L, as follows: For K,L ∈ Sn
o and λ, µ ≥ 0 (not

both zero),

ρ(λ ◦K+̂pµ ◦ L, ·)−p = λρ(K, ·)−p + µρ(L, ·)−p.

If K,L ∈ Kn
o (rather than being in Sn

o ), then

λ ◦K+̂pµ ◦ L = (λ ·K∗ +p µ · L∗)∗.

Further Lutwak established the Lp Brunn-Minkowski in-
equality. If p ≥ 1, λ, µ ≥ 0 (not both zero), and K,L ∈ Kn

o ,
then

V (λ ◦K+̂pµ ◦ L)−
p
n ≥ λV (K)−

p
n + µV (L)−

p
n , (6)

with equality if and only if K and L are dilates (see [5]).
In [20], Gardner, Hug and Weil introduced the definition

of Orlicz mixed volume. For ϕ ∈ Φ, K,L ∈ Kn
o , the Orlicz

mixed volume Vϕ(K,L) of K,L is defined by

Vϕ(K,L) =
1

n

∫
Sn−1

ϕ

(
hL(u)

hK(u)

)
hK(u)dSK(u), (7)

where SK(·) is the surface area measure of K.
Apparently, we have

Vϕ(K,K) = V (K). (8)

For ϕ(t) = tp with p ≥ 1, the Orlicz mixed volume Vϕ(K,L)
reduces to Lp-mixed volume Vp(K,L) of K,L (see [5]):

Vp(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp(K,u),

where Sp(K, ·) is the Lp-surface area measure of K.
Xi, Jin and Leng [25] established the Orlicz Minkowski

inequality: Let ϕ ∈ Φ, if K,L ∈ Kn
o , then

Vϕ(K,L) ≥ V (K)ϕ

((
V (L)

V (K)

) 1
n
)
, (9)

with equality if K and L are dilates. When ϕ is strictly
convex, equality in (9) holds if and only if K and L are
dilates. When ϕ(t) = tp(p ≥ 1), the corresponding results
of above reduces to the Lp-Brunn-Minkowski inequality.

The following result provides an Orlicz geominimal sur-
face area inequality by Yuan et al. [29]. If K ∈ Kn

c and
ϕ ∈ Φ, then

Gϕ(K) ≤ nV (K)ϕ

((
ωn

V (K)

) 1
n
)
, (10)

with equality only if K is an ellipsoid.
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III. MAIN RESULTS AND PROOFS

A. Orlicz geominimal surface area

At first, we prove the uniqueness of Orlicz geominimal
surface area. Then combining with the existence of Orlicz
geominimal surface area proved by Yuan et al. [29], we give
the integral representation of Orlicz geominimal surface area.
Theorem 3.1. If K ∈ Kn

o and ϕ ∈ Φ, then there exists a
unique body K̄ ∈ Kn

o such that

Gϕ(K) = nVϕ(K, K̄) and V (K̄∗) = ωn.

Proof. In [29], the existence property of Theorem 3.1 has
been proven, now we just prove the uniqueness.

Suppose L1, L2 ∈ Kn
o with L1 ̸= L2, such that V (L∗

1) =
ωn = V (L∗

2), and

Vϕ(K,L1) = Vϕ(K,L2).

Defined L ∈ Kn
o , by

L =
1

2
· L1 +

1

2
· L2.

Since obviously,

L∗ =
1

2
◦ L∗

1+̂
1

2
◦ L∗

2,

and V (L∗
1) = ωn = V (L∗

2), it follows from the (6) that

V (L∗) ≤ ωn,

with equality if and only if L1 = L2.
By the definition (7) of Orlicz mixed volume, together

with the convexity of ϕ, we have

Vϕ(K,L)

=
1

n

∫
Sn−1

ϕ

(
hL(u)

hK(u)

)
hK(u)dSK(u)

=
1

n

∫
Sn−1

ϕ

(
h 1

2 ·L1+
1
2 ·L2

(u)

hK(u)

)
hK(u)dSK(u)

=
1

n

∫
Sn−1

ϕ

(
1

2

hL1(u)

hK(u)
+

1

2

hL2(u)

hK(u)

)
hK(u)dSK(u)

≤ 1

2n

∫
Sn−1

ϕ

(
hL1(u)

hK(u)

)
hK(u)dSK(u)

+
1

2n

∫
Sn−1

ϕ

(
hL2(u)

hK(u)

)
hK(u)dSK(u)

=
1

2
Vϕ(K,L1) +

1

2
Vϕ(K,L2)

= Vϕ(K,L1)

= Vϕ(K,L2),

with equality if and only if L1 = L2. Thus

Vϕ(K,L) < Vϕ(K,L1) = Vϕ(K,L2),

is the contradiction that would arise if it were the case that
L1 ̸= L2.

The unique convex body whose existence is guaranteed by
Theorem 3.1 can be denoted by TϕK (Orlicz-Petty body of
K). We use T ∗

ϕK to denote the polar body of TϕK. Thus,
for K ∈ Kn

o , the body TϕK is defined by

Gϕ(K) = nVϕ(K,TϕK) and V (T ∗
ϕK) = ωn.

Let

Tn = {K̄ ∈ Kn
o : Gϕ(K) = nVϕ(K, K̄) and V (K̄∗) = ωn}.

Lemma 3.1. (and Definition) For K ∈ Kn
o and ϕ ∈ Φ, there

exists a unique convex body TϕK ∈ Tn with

Gϕ(K) = nVϕ(K,TϕK).

By Lemma 3.1 and (7), we get the following integral
representation of Gϕ(K).
Theorem 3.2. For K ∈ Kn

o and ϕ ∈ Φ, there exists a unique
convex body TϕK ∈ Tn with

Gϕ(K) =

∫
Sn−1

ϕ

(
hTϕK(u)

hK(u)

)
hK(u)dS(u).

B. Orlicz mixed geominimal surface area

We now define a new concept: the Orlicz mixed geomini-
mal surface area, Gϕ(K1, · · · ,Kn), of K1, · · · ,Kn ∈ Kn

o as
follow:
Definition 3.1. For each Ki ∈ Kn

o , there exists a unique
convex body (Orlicz-Petty body of Ki) TϕKi ∈ Tn(i =
1, · · · , n) with

Gϕ(K1, · · · ,Kn)

=

∫
Sn−1

[
ϕ

(
hTϕK1(u)

hK1(u)

)
hK1(u)ϕ

(
hTϕK2(u)

hK2(u)

)
hK2(u)

· · ·ϕ
(
hTϕKn(u)

hKn(u)

)
hKn(u)

] 1
n

dS(u).

Let gϕ(Ki, u) = ϕ

(
hTϕKi

(u)

hKi
(u)

)
hKi(u), then the above

formula can be expressed as follows:

Gϕ(K1, · · · ,Kn) =

∫
Sn−1

[gϕ(K1, u) · · · gϕ(Kn, u)]
1
n dS(u).

(11)
Lemma 3.2. (Hölder’s integral inequality, see [36], [37]) Let
f0, f1, · · · , fk be Borel measurable functions on X. Suppose
that p0, p1, · · · , pk are nonzero real numbers with

∑k
i=1

1
pi

=
1. Then∫
X

f0(u)f1(u) · · · fk(u)du ≤
k∏

i=1

(∫
X

f0(u)fi(u)
pidu

) 1
pi

,

with equality if and only if either (a) there are con-
stants b1, b2, · · · , bk not all zero, such that b1|f1(u)|p1 =
b2|f2(u)|p2 = · · · = bk|fk(u)|pk , or (b) one of the functions
is null.

The classical Alexandrov-Fenchel inequality for mixed
volume (see [32], [38]) is one of important inequalities in
convex geometry. It states that

m−1∏
i=0

V (K1, · · · ,Kn−m,Kn−i, · · · ,Kn−i︸ ︷︷ ︸
m

)

≤ V (K1, · · · ,Kn)
m.

We then prove the following Alexandrov-Fenchel type
inequality for Orlicz mixed geominimal surface area.
Theorem 3.3. If K1, · · · ,Kn ∈ Kn

o , then for 1 ≤ m < n,

Gϕ(K1, · · · ,Kn)
m

≤
m−1∏
i=0

Gϕ(K1, · · · ,Kn−m,Kn−i, · · · ,Kn−i︸ ︷︷ ︸
m

),

with equality if the Kj are dilates of each other for j =
n−m+ 1, · · · , n. If m = 1 equality holds trivially.
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In particular, if m = n, then

Gϕ(K1, · · · ,Kn)
n ≤ Gϕ(K1) · · ·Gϕ(Kn), (12)

equality holds if the Ki are dilates of each other.
Proof. Let H0(u) = [gϕ(K1, u) · · · gϕ(Kn−m, u)]

1
n and

Hi+1(u) = [gϕ(Kn−i, u)]
1
n for i = 0, . . . ,m−1. From (11)

and Lemma 3.2, we get

Gϕ(K1, · · · ,Kn)

=

∫
Sn−1

[gϕ(K1, u) · · · gϕ(Kn, u)]
1
n dS(u)

=

∫
Sn−1

H0(u)H1(u) · · ·Hm(u)dS(u)

≤
m−1∏
i=0

(∫
Sn−1

H0(u)Hi+1(u)
mdS(u)

) 1
m

=
m−1∏
i=0

G
1
m

ϕ (K1, . . . ,Kn−m,Kn−i, . . . ,Kn−i︸ ︷︷ ︸
m

).

As can be seen from Lemma 3.2, the equality of
above inequality holds if and only if H0(u)H

m
i+1(u) =

cmijH0(u)H
m
j+1(u) for some cij > 0 and all 0 ≤ i ̸= j ≤

m− 1. This is equivalent to

ϕ

(
hTϕKn−i(u)

hKn−i(u)

)
hKn−i(u) = cijϕ

(
hTϕKn−j (u)

hKn−j (u)

)
hKn−j (u),

which can observe the equality holds if Kn−i and Kn−j are
dilates.

For ϕ ∈ Φ, by the definition of Orlicz mixed volume
Vϕ(K,L) of K,L ∈ Kn

o , taking L = B, then we immediately
get

Vϕ(K,B) =
1

n

∫
Sn−1

ϕ

(
hB(u)

hK(u)

)
hK(u)dSK(u).

Now we define the Orlicz geominimal surface area Sϕ(K),
namely, Sϕ(K) = nVϕ(K,B). The special case of ϕ(t) = tp

with p ≥ 1 is Lp-geominimal surface area. Then we can
prove the analogous isoperimetric inequality for Orlicz mixed
geominimal surface area.
Theorem 3.4. Let Ki ∈ Kn

o , 1 ≤ i ≤ n, then(
Gϕ(K1, · · · ,Kn)

Gϕ(B, · · · , B)

)n

≤ Sϕ(K1) · · ·Sϕ(Kn)

nV (B) · · ·nV (B)
. (13)

When ϕ is strictly convex, equality holds if and only if the
Ki are ellipsoids with dilates of each other.

Proof. By inequality (10), we have Gϕ(B) = nV (B) =
nωn, then Gϕ(B, · · · , B) = Gϕ(B) = nωn. By inequalities
(12), (10) and (9), we get(

Gϕ(K1, · · · ,Kn)

Gϕ(B, · · · , B)

)n

≤ Gϕ(K1) · · ·Gϕ(Kn)

Gϕ(B) · · ·Gϕ(B)

≤
nV (K1)ϕ

((
ωn

V (K1)

) 1
n

)
· · ·nV (Kn)ϕ

((
ωn

V (Kn)

) 1
n

)
nV (B) · · ·nV (B)

≤ nVϕ(K1, B) · · ·nVϕ(Kn, B)

nV (B) · · ·nV (B)

=
Sϕ(K1) · · ·Sϕ(Kn)

nV (B) · · ·nV (B)
.

With the existence and uniqueness of TϕK, equality holds
in (10) if and only if K is an ellipsoid. Combining with
the equality condition of (9), we see that when ϕ is strictly
convex, equality holds in (13) if and only if the Ki are
ellipsoids with dilates of each other.

C. The ith Orlicz mixed geominimal surface area

In this section, we introduce the concept of ith Orlicz
mixed geominimal surface area.

For K,L ∈ Kn
o , and i ∈ R, the ith Orlicz mixed

geominimal surface area, Gϕ,i(K,L), of K, L is defined
by

Gϕ,i(K,L) =

∫
Sn−1

gϕ(K,u)
n−i
n gϕ(L, u)

i
n dS(u). (14)

By the Lemma 3.1, we get

Gϕ(B) = nVϕ(B, TϕB), (15)

since
Gϕ(B) = nωn = nVϕ(B,B), (16)

combining (15), (16) and the uniqueness of Lemma 3.1, we
have

TϕB = B.

Let L = B and write

Gϕ,i(K,B) = Gϕ,i(K). (17)

Combining (14), (17) and hTϕB = hB = 1, we have

Gϕ,i(K) =

∫
Sn−1

gϕ(K,u)
n−i
n dS(u).

By (11), (14) and (17), we easily get

Gϕ,0(K,B) = Gϕ(K), Gϕ,i(K,K) = Gϕ(K), (18)

Gϕ,0(K,L) = Gϕ(K), Gϕ,n(K,L) = Gϕ(L). (19)

The following Theorem deals with the cyclic inequality
for the ith Orlicz mixed geominimal surface.
Theorem 3.5. Let K,L ∈ Kn

o , i, j, k ∈ R, and i < j < k,
then

Gϕ,i(K,L)k−jGϕ,k(K,L)j−i ≥ Gϕ,j(K,L)k−i, (20)

equality holds if K and L are dilates.
Proof. From definition (14) and Hölder’s integral inequal-

ity (see [36]), we get

Gϕ,i(K,L)
k−j
k−i Gϕ,k(K,L)

j−i
k−i

=

[ ∫
Sn−1

gϕ(K,u)
n−i
n gϕ(L, u)

i
n dS(u)

] k−j
k−i

×
[ ∫

Sn−1

gϕ(K,u)
n−k
n gϕ(L, u)

k
n dS(u)

] j−i
k−i

=

{∫
Sn−1

[
gϕ(K,u)α1gϕ(L, u)

α2

] k−i
k−j

dS(u)

} k−j
k−i

×
{∫

Sn−1

[
gϕ(K,u)β1gϕ(L, u)

β2

] k−i
j−i

dS(u)

} j−i
k−i

≥
∫
Sn−1

gϕ(K,u)
n−j
n gϕ(L, u)

j
n dS(u)

= Gϕ,j(K,L),
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where α1 = (n−i)(k−j)
n(k−i) , α2 = i(k−j)

n(k−i) , β1 = (n−k)(j−i)
n(k−i) and

β2 = k(j−i)
n(k−i) .

We prove inequality (20). According to the equality condi-
tion of Hölder’s integral inequality, the equality in (20) holds
if and only if for any u ∈ Sn−1,

gϕ(K,u)
n−i
n gϕ(L, u)

i
n

gϕ(K,u)
n−k
n gϕ(L, u)

k
n

is a constant. Namely, for any u ∈ Sn−1, gϕ(K,u)/gϕ(L, u)
is a constant. By the similar to the proof of Theorem 3.3, we
conclude that equality in (20) holds if K and L are dilates
of one another.

Taking L = B in Theorem 3.5 and using (17), we
immediately obtain:
Corollary 3.1. If K,L ∈ Kn

o , i, j, k ∈ R, and i < j < k,
then

Gϕ,i(K)k−jGϕ,k(K)j−i ≥ Gϕ,j(K)k−i,

equality holds if K is a ball with centroid at the origin.
The following inequalities are the Minkowski inequalities

for the ith Orlicz mixed geominimal surface area.
Theorem 3.6. For K,L ∈ Kn

o , i ∈ R, then
for i < 0 or i > n,

Gϕ,i(K,L)n ≥ Gϕ(K,L)n−iGϕ(L)
i, (21)

for 0 < i < n,

Gϕ,i(K,L)n ≤ Gϕ(K,L)n−iGϕ(L)
i. (22)

Equality of each inequality holds if K and L are dilates. For
i = 0 or i = n, above inequalities are identical.

Proof. (i) For i < 0, let (i, j, k) = (i, 0, n) in Theorem
3.5, we get

Gϕ,i(K,L)nGϕ,n(K,L)−i ≥ Gϕ,0(K,L)n−i,

equality holds if K and L are dilates.
From (19), we have

Gϕ,i(K,L)nGϕ(L)
−i ≥ Gϕ(K)n−i,

i.e.,
Gϕ,i(K,L)n ≥ Gϕ(K)n−iGϕ(L)

i,

equality holds if K and L are dilates.
(ii) For i > n, let (i, j, k) = (0, n, i) in Theorem 3.5, we

get
Gϕ,0(K,L)i−nGϕ,i(K,L)n ≥ Gϕ,n(K,L)i,

equality holds if K and L are dilates.
From (19), we have

Gϕ(K)i−nGϕ,i(K,L)n ≥ Gϕ(L)
i,

i.e.,
Gϕ,i(K,L)n ≥ Gϕ(K)n−iGϕ(L)

i,

equality holds if K and L are dilates.
(iii) For 0 < i < n, let (i, j, k) = (0, i, n) in Theorem 3.5,

we get

Gϕ,0(K,L)n−iGϕ,n(K,L)i ≥ Gϕ,i(K,L)n,

equality holds if K and L are dilates.
From (19), we have inequality (22).

(iv) For i = 0 (or i = n), by (19), inequality (21) (or (22))
is identical.

Taking L = B in Theorem 3.6, using (17) and Gϕ(B) =
nωn, we immediately obtain:
Corollary 3.2. For K,L ∈ Kn

o , i ∈ R, then
for i < 0 or i > n,

Gϕ,i(K)n ≥ (nωn)
iGϕ(K)n−i, (23)

for 0 < i < n,

Gϕ,i(K)n ≤ (nωn)
iGϕ(K)n−i. (24)

Equality of each inequality holds if K is a ball with centroid
at the origin. For i = 0 or i = n, above inequalities are
identical.

Zhu, Li and Zhou [39] established the Blaschke-Santaló
type inequality for Lp-geominimal surface area. It states that
if K ∈ Kn

o , p ≥ 1, then

Gp(K)Gp(K
∗) ≤ (nωn)

2, (25)

with equality if and only if K is an ellipsoid.
Then, we can prove the following Blaschke-Santaló type

inequality for Orlicz geominimal surface area.
Theorem 3.7. Let K ∈ Kn

c and ϕ ∈ Φ, then

Gϕ(K)Gϕ(K
∗) ≤ (nωn)

2.

When ϕ is strictly convex, equality holds if and only if K
is an elliposoid.

Proof. From the definition of Orlicz geominimal surface
area (4) and Orlicz Minkowski inequality (9), we have

ωnGϕ(K)ϕ

((
V (K∗)

V (Q∗)

) 1
n
)

≤ nVϕ(K,Q)ϕ

((
V (K∗)

V (Q∗)

) 1
n
)
V (Q∗)

≤ nVϕ(K,Q)Vϕ(Q
∗,K∗).

Since K ∈ Kn
o , taking Q = K, and together with the

equation (8) and the Blaschke-Santaló inequality (5), we get

ωnGϕ(K) ≤ nV (K)V (K∗) ≤ nω2
n,

i.e.,
Gϕ(K) ≤ nωn. (26)

Similarly,
Gϕ(K

∗) ≤ nωn. (27)

Combining (26) and (27), we get

Gϕ(K)Gϕ(K
∗) ≤ (nωn)

2. (28)

Suppose that ϕ is strictly convex. By the equality condi-
tions of (9) and (5), equality holds in (28) if and only if K
is an ellipsoid.

When ϕ(t) = tp with p ≥ 1, the above Blaschke-
Santaló type inequality (28) for Orlicz geominimal surface
area reduces to the Blaschke-Santaló type inequality (25) for
Lp-geominimal surface area.

Then the following similar results of the ith Orlicz mixed
geominimal surface area can be established.
Theorem 3.8. If K,L ∈ Kn

c , and 0 ≤ i ≤ n, then

Gϕ,i(K,L)Gϕ,i(K
∗, L∗) ≤ (nωn)

2.
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For 0 < i < n, equality holds if K and L are ellipsoids with
dilates of each other. For i = 0 (or i = n), the equality of
above inequality holds if K (or L) is an ellipsoid.

Proof. For 0 < i < n, by (22) and Theorem 3.7, we get

Gϕ,i(K,L)nGϕ,i(K
∗, L∗)n

≤ [Gϕ(K)Gϕ(K
∗)]n−i[Gϕ(L)Gϕ(L

∗)]i

= (nωn)
2n.

That is,

Gϕ,i(K,L)Gϕ,i(K
∗, L∗) ≤ (nωn)

2,

equality holds if K and L are ellipsoids with dilates of each
other.

Based on (19) and (22), we can see Theorem 3.8 is
obviously for i = 0 (or i = n), and equality holds if K
(or L) is an ellipsoid.
Theorem 3.9. If K,L ∈ Kn

c , then
(i) 0 ≤ i ≤ n,

Gϕ,i(K)Gϕ,i(K
∗) ≤ (nωn)

2,

equality holds if K is a ball.
(ii) i ≥ n,

Gϕ,i(K)Gϕ,i(K
∗) ≥ (nωn)

2,

equality holds if K is a ball.
Proof. (i) By Theorem 3.8, letting L = B, we get

Gϕ,i(K,B)Gϕ,i(K
∗, B∗) ≤ (nωn)

2.

By (17), we get

Gϕ,i(K)Gϕ,i(K
∗) ≤ (nωn)

2,

equality holds if K is a ball.
(ii) For all i ≥ n, by inequality (23), we have(

Gϕ,i(K)

Gϕ,i(B)

)n

≥
(
Gϕ(K)

Gϕ(B)

)n−i

.

From Theorem 3.7 and Gϕ(B) = nωn, we obtain(
Gϕ,i(K)Gϕ,i(K

∗)

Gϕ,i(B)2

)n

≥
(
Gϕ(K)Gϕ(K

∗)

Gϕ(B)2

)n−i

≥ 1.

That is
Gϕ,i(K)Gϕ,i(K

∗) ≥ (nωn)
2,

equality holds if K is a ball.
Now we establish the generalized isoperimetric inequali-

ties for Gϕ,i(K).
Theorem 3.10. If K,L ∈ Kn

c , then
(i) 0 ≤ i ≤ n,

Gϕ,i(K)

Gϕ,i(B)
≤

(
V (K)

V (B)
ϕ

((
ωn

V (K)

) 1
n
))n−i

n

,

equality holds if K is a ball.
(ii) i ≥ n,

Gϕ,i(K)

Gϕ,i(B)
≥

(
V (K)

V (B)
ϕ

((
ωn

V (K)

) 1
n
))n−i

n

,

equality holds if K is a ball.

Proof. (i) For i = 0, by (18) and (10), we have

Gϕ(K)

Gϕ(B)
≤

nV (K)ϕ

((
ωn

V (K)

) 1
n
)

nV (B)ϕ

((
ωn

V (B)

) 1
n
)

=
V (K)

V (B)
ϕ

((
ωn

V (K)

) 1
n
)
,

equality holds if K is a ball.
For i = n, by (17), (18), (19), the equality holds trivially.
For 0 < i < n, by (24), we get(

Gϕ,i(K)

Gϕ,i(B)

)n

≤
(
Gϕ(K)

Gϕ(B)

)n−i

≤
(
V (K)

V (B)
ϕ

((
ωn

V (K)

) 1
n
))n−i

,

equality holds if K is a ball.
(ii) For i = n, by (17), (18), (19), the equality holds

trivially. For i > n, by (23), we get(
Gϕ,i(K)

Gϕ,i(B)

)n

≥
(
Gϕ(K)

Gϕ(B)

)n−i

≥
(
V (K)

V (B)
ϕ

((
ωn

V (K)

) 1
n
))n−i

.

We complete the proof.

ACKNOWLEDGMENT

The referee of this paper proposed many very valuable
comments and suggestions to improve the accuracy and
readability of the original manuscript. We would like to
express our most sincere thanks to the anonymous referee.

REFERENCES

[1] C. M. Petty, “Geominimal surface area,” Geometry Dedicata, vol. 3,
no. 1, pp. 77-97, 1974.

[2] E. Lutwak, “Volume of mixed bodies,” Transactions of the American
Mathematical Society, Vol. 294, no. 2, pp. 487-500, 1986.

[3] W. J. Firey, “p-means of convex bodies,” Mathematica Scandinavica,
vol. 10, no. 1, pp. 17-24, 1962.

[4] E. Lutwak, “The Brunn-Minkowski-Firey theory I: Mixed volumes and
the Minkowski problem,” Journal Difierential Geometry, vol. 38, no. 1,
pp. 131-150, 1993.

[5] E. Lutwak, “The Brunn-Minkowski-Firey theory II: Affine and geo-
minimal surface areas,” Advances in Mathematics, vol. 118, no. 2, pp.
244-294, 1996.

[6] T. Y. Ma and W. D. Wang, “Some Inequalities for Generalized -
mixed Affine Surface Areas,” IAENG International Journal of Applied
Mathematics, vol. 45, no. 4, pp. 321-326, 2015.

[7] T. Y. Ma and Y. B. Feng, “Some Inequalities for p-Geominimal Surface
Area and Related Results,” IAENG International Journal of Applied
Mathematics, vol. 46, no. 1, pp. 92-96, 2016.

[8] E. Lutwak, D. Yang and G. Zhang, “Lp affine isoperimetric inequali-
ties,” Journal Difierential Geometry, vol. 56, no. 1, pp. 111-132, 2000.

[9] W. D. Wang and Y. B. Feng, “A general Lp-version of Prttys affine
projection inequality,” Taiwanese Journal of Mathematics, vol. 17, no.
2, pp. 517-528, 2013.

[10] W. D. Wang and G. S. Leng, “Lp-mixed affine surface areas,” Journal
of Mathematical Analysis and Applications, vol. 335, no. 1, pp. 341-
354, 2007.

[11] E. Werner, “On Lp-affine surface areas,” Indiana University Mathe-
matics Journal, vol. 56, no. 5, pp. 2305-2324, 2007.

[12] E. Werner and D. Ye, “New Lp-affine isoperimetric inequalities,”
Advances in Mathematics, vol. 218, no. 6, pp. 762-780, 2008.

[13] E. Werner and D. Ye, “Inequalities for mixed p-affine surface area,”
Mathematische Annalen, vol. 347, no.3, pp. 703-737, 2010.

IAENG International Journal of Applied Mathematics, 46:3, IJAM_46_3_16

(Advance online publication: 26 August 2016)

 
______________________________________________________________________________________ 



[14] J. Yuan, S. J. Lv and G. S. Leng, “The p-affine surface area,”
Mathematical Inequalities Applications, vol. 10, no. 3, pp. 693-702,
2007.

[15] D. Ye, “Lp-geominimal surface area and related inequalities,” Interna-
tional Mathematics Research Notices, vol. 2015, no. 9, pp. 2465-2498,
2014.

[16] D. Ye, B. C. Zhu and J. Z. Zhou, “The mixed Lp-geominimal surface
areas for multiple convex bodies,” to be published.

[17] B. C. Zhu, J. Z. Zhou and W. X. Xu, “Affine isoperimetric inequalities
for Lp-geominimal surface area,” in Proceedings of ICMSC 2014,
Springer, 2014.

[18] E. Lutwak, D. Yang and G. Zhang, “Orlicz projection bodies,” Ad-
vances in Mathematics, vol. 223, no. 1, pp. 220-242, 2010.

[19] E. Lutwak, D. Yang and G. Zhang, “Orlicz centroid bodies,” Journal
Difierential Geometry, vol. 84, no. 2, pp. 365-387, 2010.

[20] R. J. Gardner, D. Hug and W. Weil, “The Orlicz-Brunn-Minkowski
theory: a general framework, additions, and inequalities,” Journal of
Differential Geometry, vol. 97, no. 3, pp. 427-476, 2014.

[21] F. W. Chen, J. Z. Zhou and C. L. Yang, “On the reverse Orlicz
Busemann-Petty centroid inequality,” Advances in Applied Mathemat-
ics, vol. 47, no. 4, pp. 820-828, 2011.

[22] C. Haberl, E. Lutwak, D. Yang and G. Zhang, “The even Orlicz
Minkowski problem,” Advances in Mathematics, Vol. 224, no. 6, pp.
2485-2510, 2010.

[23] Q. Z. Huang and B. W. He, “On the Orlicz Minkowski problem for
polytopes,” Discrete and Computational Geometry, Vol. 48, no. 2, pp.
281-297, 2012.

[24] A. J. Li and G. S. Leng, “A new proof of the Orlicz Busemann-
Petty centroid inequality,” Proceedings of the American Mathematical
Society, Vol. 139, no. 4, pp. 1473-1481, 2011.

[25] D. M. Xi, H. L. Jin and G. S. Leng, “The Orlicz Brunn-Minkowski
Theory,” Advances in Mathematics, vol. 260, no. 1, pp. 350-374, 2014.

[26] D. Ye, “New Orlicz Affine Isoperimetric Inequalities,” Journal of
Mathematical Analysis and Applications, vol. 427, no. 2, pp. 905-929,
2015.

[27] G. X. Zhu, “The Orlicz centroid inequality for star bodies,” Advances
in Applied Mathematics, vol. 48, no. 2, pp. 432-445, 2012.

[28] D. Zou, G. Xiong, “Orlicz-Legendre ellipsoids,” The Journal of
Geometric Analysis, pp. 1-29, 2015.

[29] S. F. Yuan, H. L. Jin and G. S. Leng, “Orlicz geominimal surface
areas,” Mathematical Inequalities and Applications, vol. 18, no. 1, pp.
353-362, 2015.

[30] B. C. Zhu, J. Z. Zhou and W. X Xu, “Lp-mixed geominimal surface
area,” Journal of Mathematical Analysis and Applications, vol. 422, no.
2, pp. 1247-1263, 2015.

[31] R. J. Gardner, “Geometric tomography, second edition”, Cambridge
University Press, New York, 2006.

[32] R. Schneider, “Convex bodies: The Brunn-Minkowski theory”, Cam-
bridge University Press, Cambridge, 1993.

[33] M. Meyer and A. Pajor, “On Santalós inequality,” in “Gemetric aspects
of functional analysis (Joram Lindenstrauss and Vitali D. Milman,
Eds.), Springer Lecture Notes in Mathematics, vol. 1376, pp. 261-263,
Springer-Verlag, New York/Berlin, 1989.

[34] M. Meyer and A. Pajor, “On the Blaschke-Santalós inequality,” Archiv
Der Mathematik, vol. 55, no. 1, pp. 82-93, 1990.

[35] R. J. Gardner, “The Brunn-Minkowski inequality,” Bulletin of the
American Mathematical Society, vol. 39, no. 3, pp. 355-405, 2002.

[36] H. Federer, “Geometric Measure Theory”, Springer-Verlag, New York,
1969.

[37] G. H. Hardy, J. E. Littlewood and G. Pólya, “inequalities”, Cambridge
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