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Representation of Multiple Integrals via the
Generalized Lerch Transcendent

Zhongfeng Sun, Aijuan Li, and Huizeng Qin

Abstract—In this paper, we derive several properties of the
generalized Lerch transcendent ®(z, 5, ) and the generalized
Euler sum with parameters H(z,5,%), and establish their
connections with some certain types of multiple integrals. In

particular, ®(z,3,%) and H(z,5,%) can be expressed as the

linear combination of the Lerch transcendent ®(z, s, u) and the
Euler sum with parameters H(z, s, u), respectively. With the aid
of those connections, the closed forms of some special multiple
integrals which can be expressed by the special constants and
the Riemann zeta functions are established.

Index Terms—Multiple Integrals, Lerch Transcendent, Euler
Sum, Closed Form.

I. INTRODUCTION

ULTIPLE integrals which can be expressed as the

linear forms of Riemann zeta functions with rational
coefficients was first proposed by Beukers [1] in the follow-
ing form(n =0,z = 1,5 = 0,u,v € Np)

IV

where No = {0,1,2,...}. In recent years the issue of
Beukers’ integrals and its generalization have attracted much
attention, see [2]~[8], [11], [12], [13]. Now, a short list about
the generalization of Beukers’ integrals are given as follows.
Hadjicostas [2] provided a method to generalize Beukers’
integrals (1) for s € Ng, n = 0 and z = 1, which was
achieved by using an expansion of an infinite geometric
series. Sondow [3] derived the criteria for irrationality of
Euler’s constant. Zlobin [4], [5] considered the expansion
of multiple integrals as linear forms in generalized polylog-
arithms. A conjecture-generalization of Sondow’s formula
(1) foru = v = 0,n = 1,z = 1,s € C,Rs > -2
was proposed by Hadjicostas [6] and proved by Chapman
[7], where C denotes the complex set and Rs denotes the
real part of the complex number s. Salikhov and Frol-
ovichev [8] represented multiple integrals as linear forms
in 1,¢(3),¢(5),...,{(2k — 1) over Q, where ((p)(p > 1)
are Riemann zeta functions which can also be applied to
establish the closed forms of the Beta function in [9] and
[10]. Zudilin [11] represented well-poised hypergeometric
series and integrals as the Euler-type multiple integrals.
Guillera and Sondow [12] used analytic continuation of the
Lerch transcendent to unify and generalize the results of [1],
[2], [3] and [6]. Brychkov [13] considered the generalization

u v ln .Ty } n
" ————= (1 —z)"dzdy, (1)
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of the Guillera-Sondow double integrals and its connection
with the hypergeometric function.

n [12], Guillera and Sondow showed that (1) for n = 0
can be expressed by the Lerch transcendent in the following

forms,
-1
/ / ) Y
= T(s+1)®(z, s+ 1,u),
and
P i 1 -1
/ / [“In(zy)l” dy
1—zay
(3)
_ F(s)(b(z’ s,v) — ®(z, s,u)7
u—v
where I'(s) is the Gamma function defined by
I(s) :/ t*le7tdt, Rs>0 4)
0

and ®(z,s,a) is the Lerch transcendent([14], section 1.11)
defined by

0 k

®(z,8,a) = Zig, 5)
];) (k+ a)

for ¥a > 0 and |z| < 1 or |z| = 1,Rs > 1. Special cases
include the Riemann zeta function ((s) = ®(1,s,1) and
the polylogarithm Li,(z) = z®(z, s, 1). Moreover, the Lerch
transcendent can be calculated by the following integral

1 00 xs—le—ax
d 6
I‘(s)/o 1—ze— 0 ©
where Ra > 0 and either |z| < 1,%s > 0or |z| = 1,Rs > 1.

In this paper, we consider the following multiple integrals
which are the extension of the double integrals (2) and (3),

T
[071]771 j:1
/ H ( SJ71 1)
[0,1]™ j Lj (8)

1 dzidzs -+ - dz,,
1—zri20- -~

where m € N={1,2,...} and |z| < 1, Ru;, Rs; > 0.
For Ru; > 0(j = 1,2,...,m) and either |z| < 1 or

m

ol = LR(E 5

D(z,8,a) =

1 dridzxsy - - - dx,y,
lnsj—l > L1A4T2 X , (7)
z;) 1 —zrxo- Ty

and

x In

)

Tm 1 —2zx129 - T,y

i) > 1, we introduce the generalized Lerch

j=
transcendent defined by

m

- k
el b o

k=0 j:l
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and the generalized Euler sum with parameters defined by

(10)

V) and I =

k
where H, = Z% v = (v1,vg,...
l

=1

(1,1,...,1) is a m-dimensional vector. If u; = ... = u,, =
m

u, then ®(z,5,4) = ®(z, > s;,u) reduces to the Lerch
Jj=1

m
transcendent and H (z, 5, @) = H(z, ) s;,u) reduces to the
j=1

Euler sum with parameters [15], WhiC_h is defined by

oo
H(z,s,u) = Z HE (w4 k)77
k=1

Our aim is to discuss some connections of multiple inte-
grals (7) and (8) with the generalized Lerch transcendent (9)
and the generalized Euler sum with parameters (10).

The structure of the paper is given as follows. In Section
II, several properties of the generalized Lerch transcendent
and the generalized Euler sum with parameters are derived.
In particular, their connections with some certain types of
multiple integrals are established. In Section III, the closed
forms of some special multiple integrals are discussed. The
conclusion is given in the last Section of the paper.

II. THE GENERALIZED LERCH TRANSCENDENT AND
MULTIPLE INTEGRALS

In the following Lemma, the integral representation of
the Euler sum with parameters H(z, s, u) is established.

Lemma 2.1 If ®u > 0 and either |2|] < 1,Rs > 0 or
|z| = 1,Rs > 1, then

H(z,s,u)
S /OO vl In(1 — ze *)dz
B I'(s) Jo 1—ze™® (11D
1 pu=t !
= —— In®"" —In(1 — zx)dx.
F(s)/o 1—2z " % n(l - zz)de
Proof. Combining (10) with (6), we conclude that
H(z,s,u)
= 7@(2’, s,u+1)
=1
_ 1 /OO xsflefua: Zleflw L
O T(s) )y 1—ze® — l (12)

where Ru > 0 and either |2| < 1,Rs > 0or|z| =1,Rs > 1.
Therefore, (11) holds. M

It follows from (6) and (11) that ®(z, s,u) and H(z, s, u)
have the same parameter range and domain.
Denote

87L
F™ (2, 5,1) = F(z,5,1),

T 92n

13)

for F = ®, H and n € Ny.

In the following Lemma, ®(™)(z,s,u) and H™ (2, s, u)
(n € N) can be expressed by ®(z,s,u) and H(z,s,u),
respectively.

Lemma 2.2 If n € N, Ru > 0 and either |z] < 1 or
|z| =1,Rs > n + 1, then
n
O (2, 5,u) = Z(—l)”‘jé(z, s—j,n+u)
§=0

n (14)
X ZC{s(n,l) (n—1+u)™
l=j
and
H™ (2, 5,u)
= Ln Z(_l)n—j
=0 (15)

X[H(z,s—j,u)—G(n,z,s—j,u)}

n

X ZC{s(n,l) (n—1+u)"7,

I=j
where s(n,1) is the Stirling number of the first kind and

n—1

G(n,z,8 — j,u) = Z

k=1

Zka

where an empty sum is understood to be nil.
Proof. Calculating n-order partial derivatives on z for (5),
we obtain

00 k
dM(z,5,u) = k1,2 (17)
99y (k/’ +n+ U)S’
k=0
where (x),, is a Pochhammer symbol, i.e.,
(), =z@+1)---(x+n-1)
_ Z(*l)n+l5(n, l):l?l (13)

l

Il
o

Inserting (z),, into (17) and exchanging the order of series
summation, we come to

M (2, 5,u)
oo k n
z !
- Y S s ) (k4 1)
’; (k+n+u) ;
= Z(—l)"‘jq)(z7s—j,n+u) (19)
=0
X Z Cljs(n, Din—14u)",
l=j

so (14) holds.

Moreover, (15) can be proved similarly. H

In the following theorem, ®(™) (2,5, @) and H™ (2, 5, )
can be expressed as the linear combination of ®(™(z, s, u)
and H™ (z,s,u) (n € N), respectively.
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Theorem 2.3 Let n,m,1,s;(i < m) be positive integers,
Ru; > 0 and F(z,5,4) = ®(z, 5, 4) or H(z,§,4).
1) If |z| < 1, then

m s;—1
z,8,1) = Z ar i (8, W) F(z,s; —lLiu;)  (20)
i=1 1=0
and
m s;—1
F (2,5, 1) = Z ai (8, W F™ (2,8, — Lu;), (21)
i=1 1=0
where
a8 @) = J[ (uj—u)™, (22)
J=1,j#i
-1 1
wilsi) = Y1) (s )
=0 (23)
k—1
x Z Sj (uj u’b) ’
Jj=1,5#i
forl=1,...,s;, — 1.
2) If |z] =1, then
F(z,8,10) = 3 sgn(s; —1)"
=1 o
[Z ar (8, 0)F(z si—l,ui)] (24)
+z101§z Z; asi_lyi(sﬂ, ﬁ)F(Zo, 1, Ui)
and

(a5 i) = 3 sgn(h)
S;—2—n =1
X [ Z ari (8, @) F™ (2,5 — l,ui)]

=0
m s;—1

+2101§ZZ Z a’l,l S F(n 20781 l7ui)’

=1 l=l;

(25)

for 3" s; > n+ 1, where |20] < 1, (k)" = max(0,k),l; =
j=1

(si —1—=mn)" and a;,;(5, @) in (24) and (25) are given by

(22) and (23), and the function sgn(z) defined by

1, x>0,
sgn(zx) = 0, z=0, (26)
-1, z<O0.
Proof. 1) Denote
filz) = ﬁ S =1,2 m 27
[ 1l ,(Uj-f—.’l,')sj, 3 Ly ey 10
Jj=1,j#i

It is worth noting that the notation ¢ satisfies ¢ € N and
1 < m throughout this part.
Using the following rational function decomposition [16],

m m s;—1

Hu+m’ ZZ

=1 o 1o (wit )

a; (5, @)

sfl’

(28)

we deduce that

s;—1
- H l
Z ar;(8, %) (u; + )
sj—1 (29)
8 a; (8, 1)
v Y Y GO
7j=1,7#1 1=0 (U‘J +‘T !

Calculating [-order derivatives on x for (29) and setting x =
—u;, we have

1 d
1 dx ——fil-w), 1=0,1,...,8 — 1.

Combining (27) with (30), we get (22).

wi(5.@) = (30)

Next, we calculate a;;(5,%@)(l =1,...,s; — 1). Differen-
tiating (27) with respect to z, we find
d % .
fil@) = filz) x Y (=) (wy+w) " G
j=1,5#i
It follows that
2 lfz( )
= Z del 1|:f1 )(U]+$)
s (32)
N e (L= D) d*
= Sy s
k=0
X Z s (uj + z)"
=1t

Setting x = —u; in (32), we can yield (23) with the help of
(30).
From (28), (9) and (5) it follows that

- _, _ k
R | o
[e'e] m s;—1 a S ’LL
k lz
= z
2N
m s;—1 s} Zk ( )
=22 i)y
i=1 1=0 o (wi + k)™
m S;—
= Z a; (8, 0)D(z, 8, — 1, u;).
i=1 1=0

Therefore, (20) holds for F'(z, §, @) =
In the same way, (20) also holds for F'(z, §, @)
and |z| < 1.

Calculating n-order partial derivatives on z for both sides
of (20), we conclude that (21) hold for |z| < 1.

®(z,5,4) and |2| < 1.
= H(z,5§,4)

2) Attention to ®(1,1,u;) =

Zaél_u (8,@)®(1,1,u;)

oo, SO

does not exist. Setting x = k in (28), we have

i as,—1,i(8) 1)

= withk

m m S;—2 (34)
o I D D

j=1 i=1 1=0 uz+k
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which implies that

m
Z asi,u(é’ ﬁ)(I)
i=1

(35)

Since the power series Z zF (s > 1) is convergence at

k=0
|z| = 1, the following limits

m

zlon—l)lz Z asi_l,i(s, U)CI)(Z(), 1, ul)

=1

1
- ZEQZZ%(HW

Jj=1

(36)
m Ss;—2

B Z Z a;(5,4) )

51
= 1o (it k)®

exist, where |zp| < 1,]z| =1, Z si>1lands; —1>1(
0,1,...,8 — 2). It means that (24) holds for F(z, 5,4)
®(z,5,1) and |z| = 1.

Similarly, (24) and (25) also hold for |z|

|z =1, > s; > n+ 1, respectively. B
j=1

1 and

Now, some connections of multiple integrals (7) and
(8) with the generalized Lerch transcendent (9) and the
generalized Euler sum with parameters (10) are established
in the following theorem.

Theorem 2.4 If Ru; > 0,Ns; > 0(j =1,2,...,m) and
either |z| <1 or [z| = 1,R(D>_ s;) > 1, then
=1
v w1 s 1
/ H (xj] Lpsi—t )
[0,1]™ j=1 z] (37)
odr o din g o) ﬁ T'(sk)
1— 22129 T e pae] 4§
and
L)
0. 1]m 1 T
dridxs - - - dx,, (38)
1 — anquQ Ty 1l —zx120 - T

= H(z5 i) [[T(sk).
k=1

Proof. Using power series expansions, it directly follows
from the left side of (37) that

[T (et L)
[0,1]m j=1 J Z;

= Ezkx

dry---dz,

1l—zx1- -2,

1 (39)

[l
Z 2 x H

/ ufHkl si—1 dm
-
Ly

With the help of variable substitution and (4), (39) gives

/ ( 1 sj—1 1)
[01 Lj

— Zz xH/ “ﬁ’“)t“‘ldt

k=0 =

dzy---dz,,

1—zx1- 2z

= o 1 o (40)
k —T
= Zz X H - / e Jx dx]
P oy (g k)% Jo
= ®(z,5 1) [[ se),

=~
Il

1
where Ru; > 0, ?st >0(j =1,2,...,m) and either |z| < 1
or |z =1 ER(Z i) > 1. Therefore, (37) holds.
=1
With the a1d of (37), we have

|
/ H (ij In% ! )
0,1 52 T

" dridzs - - - dz,y, (41)
(1= Zx129- Xp) (1 — 2T1Xg - Ty
O(z,5,14) — P(Z,5,4)
A H Tlsw)

k=1

for z # Z. Integrating from 0 to z on Z for (41) and using
9), (10), we yield

uJ 1 sj—1 1)
[ I

1 dridxs - - - dx,,
X In
O10— 2T1T2 --Walcml—lea:g---xm
z k _ Zk 1
_ / I —dZ
0 = 2= Z jzl(uj+k)-
XHF(Sk)
k=1 i
© ez m 1 (42)
k—1ryl—1
-y [ ]
k=070 =1 j:l( i+ k)
XHF(Sk)
k=1
S S
k
- Yy ok T
k=0 =1 ! =1 (uj + k)™ k=1
= H(z5a) [[T(sk),
k=1

which means that (38) holds. W

Calculating n-order partial derivatives on z for (37), we
can obtain the following relation.

Corollary 2.5 Let n,m, s; be positive integers and fu; >
0(¢=1,2,...,m). Then

1 1
/ H (x;‘j"rnl lnijl x)
[0_’1]m j=1 g

dry---do,,

43
(1—2xq1--- LEm)TH_l (“43)
1 m

= —o"(z 3 0) H I'(sg)

n!
k=1
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for [z| < lor|z| =1, ZSJ > n + 1, where ®(")(z, 5, i)
are given by (21) or (25)

Integrating from 0 to z on z for (38), the following
relation holds.

Corollary 2.6 If Ru; > 0,Rs; > 0(j =1,2,...,m) and

either |z] < 1 or |z| = 1,R(D_ s;) > 1, then

=1
[ i)
[0,1]" L

x In? 1—7;:171 Tm) dxy -+ dapy, (44)

= 2zH(2,8m+1,Um+1) H Sk),

where 5,41 = (5,1) and @41 = (4, 1).

Remark 2.7 If u; = uj,i < j(i,j = 1,2,...,m) in

the above-mentioned multiple integrals, we just need replace
(wi + k)% (u; + k)%, mwith (u; + k)", m—1in
®(z,5,4) or H(z,§,u), respectively.

III. THE EXPRESSIONS OF THE CLOSED FORMS FOR
MULTIPLE INTEGRALS

If u;,s;(j =1,2,...,m) are integers and z = 1,—1 or
5, we can obtain the closed forms of multiple integrals (37)
and (38), which can be expressed by the special constants
and Riemann zeta functions in the following examples by
using the Mathematica software.

Example 3.1 Setting z = 1,4 = (4,3,2,5),5§ =
(2,4,5,3) and m = 4 in (37), we have

PRSI B
/ TIT5L30
[0,1]* 1-— L1X2T3X4

1 1 1
xIn —In® — In* — In?

n dxl - dxy
T T T T
1 2 3 4 45)
4607653 _ 885572 B 267
7776 162 45
10
+320(3) + 505).

Example 3.2 Setting z = 1,4 = (4,4,5,5),5§ =
(2,4,5,3) and m = 4 in (37), we have

3,34 .4
/ TITETZLy
[0,1]% 1-— L1X2T3X4

1 1 1
x In — In® — In* — In? —d:cl
Xr1 To I3 T4

da?4

1672 (46)
= 197 (1247400 4 17010 + 2207 + 2%)

525

+1728[22¢(3) + 8¢(5) + ¢(7)]

737850270985
1492992

Example 3.3 Setting z = 1,4 = (4,3,2,5,6),58 =
(2,4,5,3,6) and m = 5 in (37), we have

/ wtesrsrgad 1y s Lya 1
01p 1 —@izox3zs 1 ®2 T3
2 5 1
X In® —In° —dxq -+ - dxs
Ty T (47)

_ 3085376801 _ 1625123572 _ 557574
B 57600000 2985984 124416

76 124775 55

9072 ' 41472 @)+ 55(5)'

Example 3.4 Setting z = 1,4 = (4,3,3,6,6),5 =
(2,4,5,3,6) and m = 5 in (37), we have

3,.2,.2,.5,.5
/ L1TT3L4Ts lnilngi
[0,1] 1-— T1X2T3T4 T xT9
21
x In? —ln —1n —dxq1---dzs
T3 T4 s
9932928724197737267
92958251200000000 4s)
'/T2 2
4771161?16{40028238254748w (2472295
10644565
2072 + 172 4)} 2022909
+93820m° + 17287 ) | + 2 C(3)
528620 560
200 ¢+ ey + 200,

Example 3.5 Setting z = 3.4 = (5,4,2,3),§ =

(2,2,2,2) and m = 4 in (38), we have

),
[0,1)4

atadrsa?
| TITHT3TY Hlnxj
2 — 11727374 e

2
XIn ———dxy -+ - dxy
2— L1X2T3XL4 (49)
275503 83 T((3)
B 15552 81 8
402 (10885 — 4810 2(67 + 211n2)
— —481In n2)).
864
Example 3.6 Setting z = —1,4 = (5,4,2,3,6),5 =
(2,2,2,2,2) and m = 5 in (38), we have
rirdzzria?
—==-22 ||llnz
/[0 s 1+ 2122032425 H g
1
xIn ——dx; - - - dxs
1+ 2122737475 (50)

— 1406541 — 3585072
20736000{ g

—1228801n 2 + 27000¢(3) |-
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IV. CONCLUSION

In this paper, we focus on some properties of the general-
ized Lerch transcendent ®(z, §, @) and the generalized Euler
sum with parameters H(z, 3, %) and their connections with
multiple integrals (7) and (8). Moreover, Lemma 2.2 and
Theorem 2.3 show that ®(™) (2, 5, @) and H™ (2,5, ) (n €
Np) can be expressed by ®(z,s,u) and H(z,s,u), respec-
tively. It means that multiple integrals in (37), (38), (43) and
(44) can be expressed as the linear combination of ®(z, s, u)
or H(z,s,u).
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