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Abstract—Block methods have been seen to be an adequate
numerical method for finding the approximate solution to
second order ordinary differential equations. Thus, this article
presents a block method of maximal order for the direct solution
of second order initial and boundary value problems. Taylor
series expansion approach is adopted for the derivation of the
block methods. From the numerical results obtained, this new
block method performs better than previous numerical methods
in existence in terms of accuracy, when compared to the exact
solution of the numerical problems considered.

Index Terms—Maximal Order, Block Method, Second Order,
Initial Value Problems, Boundary Value Problems.

I. INTRODUCTION

Mathematical models have been observed to birth second
order ordinary equations either as initial or boundary value
problems when it comes to modelling real life situations.
Some of these real life models include models for beam
deflection and deformation, transmission of heat, temperature
distribution across a rod, amongst others [1], [2]. The need
to adopt numerical solutions for obtaining an approximate
solution of these second order ordinary differential equations
is expedient. This is due to the condition that sometimes these
ordinary differential equations have more than one solution,
or the solution may not exist.
Quite a number of scholars have proposed numerical and ap-
proximate methods for the solution of second order ordinary
differential equations of the form

y′′ = f (x, y, y′) . (1)

Some authors who have discussed finding approximate solu-
tions to (1) with initial conditions imposed include [3], [4],
[5], while the numerical solution when boundary conditions
were imposed include the work of [1], [6] and [7].
However, this paper intends to explore the simultaneous
solutions of both initial and boundary value problems using
the same block method. Although, this approach has been
explored by [7] and [8], however, none this work presented
a method of maximal order 2k + 2.
Hence, this paper presents a k-step second derivative (k = 3)
method to numerically approximate (1) and the numerical
results obtained were compared with the results from the
previously existing method in literature of equal order despite
being of higher step-lengths.
The sections of this paper is arranged as follows; Section
2 presents the methodology, Section 3 shows the basic
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properties of the method while Section 4 will display the
results to the numerical problems considered, and Section 5
concludes this paper.

II. METHODOLOGY

The first step entails the derivation of the 3−step discrete
scheme and its corresponding derivatives. Consider the fol-
lowing expression for deriving the discrete scheme.

yn+3 = α0yn + α1yn+1 +
3∑
j=0

βjfn+j +
3∑
j=0

λjf
′
n+j (2)

which can also be expressed as

yn+3 = α0yn + α1yn+1

+(β0fn + β1fn+1 + β2fn+2 + β3fn+3)
+
(
λ0f

′
n + λ1f

′
n+1 + λ2f

′
n+2 + λ3f

′
n+3

) (3)

Using Taylor series expansion to expand individual terms
in (3 )and substituting back gives the following matrix
representation Ax = B as:

1 1 0 0 0 0 0 0 0 0
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(2h)6
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× (α0, α1, β0, β1, β2, β3, λ0, λ1, λ2, λ3)

T

=

(
1, 3h,

(3h)2

2! ,
(3h)3

3! ,
(3h)4

4! ,
(3h)5

5! ,
(3h)6

6! ,
(3h)7

7! ,
(3h)8

8! ,
(3h)9

9!

)T

and using matrix inverse approach, the following values are
obtained

(α0, α1, β0, β1, β2, β3, λ0, λ1, λ2, λ3)
T
= (−2, 3,

1961h2

9072
,
263h2

168
,
365h2

336
,
599h2

4536
,
131h3

3780
,−103h3

1680
,

− 71h3

840
,−349h3

15120
)T (4)

which gives the following method after substituting back in
(3)

yn+3 = −2yn + 3yn+1 +
h2

9072
(1961fn + 14202fn+1

+ 9855fn+2 + 1198fn+3) +
h3

15120
(524f ′n − 927f ′n+1

− 1278f ′n+2 − 349f ′n+3) (5)

The next group of methods required is the additional meth-
ods for the discrete scheme and the derivatives. The same
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procedure is followed as that of (5) and the methods are
given to be:

yn+2 = −yn + 2yn+1 +
h2

9072 (908fn + 6183fn+1

+ 1836fn+2 + 145fn+3) +
h3

15120 (233f
′
n

− 1044f ′n+1 − 1161f ′n+2 − 58f ′n+3),
y′n = 1

h (−yn + yn+1) +
h

272160 (−78076fn − 3512fn+1

− 19548fn+2 − 3329fn+3) +
h2

90720 (−2597f
′
n

+ 11268f ′n+1 + 4005f ′n+2 + 274f ′n+3),
y′n+1 = 1

h (−yn + yn+1) +
h

272160 (25319fn + 91638fn+1

+ 16497fn+2 + 2626fn+3) +
h2

90720 (1252f
′
n

− 11709f ′n+1 − 3258f ′n+2 − 215f ′n+3),
y′n+2 = 1

h (−yn + yn+1) +
h

272160 (28964fn + 224073fn+1

+ 148932fn+2 + 6271fn+3) +
h2

90720 (1531f
′
n

− 2556f ′n+1 − 12411f ′n+2 − 494f ′n+3),
y′n+3 = 1

h (−yn + yn+1) +
h

272160 (34919fn + 260118fn+1

+ 275697fn+2 + 109666fn+3) +
h2

90720 (2020f
′
n

+ 4707f ′n+1 + 10566f ′n+2 − 4343f ′n+3)
(6)

Combining equations (5) and (6) in matrix form gives:


−3 0 1 0 0 0
−2 1 0 0 0 0
− 1
h 0 0 0 0 0
− 1
h 0 0 1 0 0
− 1
h 0 0 0 1 0
− 1
h 0 0 0 0 1




yn+1

yn+2

yn+3

y′n+1

y′n+2

y′n+3

 =


A0

A1

A2

A3

A4

A5

 (7)

where

A0 = −2yn + h2

9072 (1961fn + 14202fn+1 + 9855fn+2

+1198fn+3) +
h3

15120 (524f
′
n − 927f ′n+1 − 1278f ′n+2

−349f ′n+3)

A1 = −yn + h2

9072 (908fn + 6183fn+1 + 1836fn+2

+145fn+3) +
h3

15120 (233f
′
n − 1044f ′n+1 − 1161f ′n+2

−58f ′n+3)
A2 = −y′n − 1

hyn + h
272160 (−78076fn − 3512fn+1

−19548fn+2 − 3329fn+3) +
h2

90720 (−2597f
′
n + 11268f ′n+1

+4005f ′n+2 + 274f ′n+3)
A3 = − 1

hyn + h
272160 (25319fn + 91638fn+1

+16497fn+2 + 2626fn+3) +
h2

90720 (1252f
′
n − 11709f ′n+1

−3258f ′n+2 − 215f ′n+3)
A4 = − 1

hyn + h
272160 (28964fn + 224073fn+1

+148932fn+2 + 6271fn+3) +
h2

90720 (1531f
′
n − 2556f ′n+1

−12411f ′n+2 − 494f ′n+3)
A5 = − 1

hyn + h
272160 (34919fn + 260118fn+1

+275697fn+2 + 109666fn+3) +
h2

90720 (2020f
′
n

+4707f ′n+1 + 10566f ′n+2 − 4343f ′n+3)

and using matrix inverse approach again, the following
expressions are obtained:

yn+1 = yn + hy′n + h2

272160 (78076fn + 35127fn+1

+ 19548fn+2 + 3329fn+3) +
h3

90720 (2597gn
− 11268gn+1 − 4005gn+2 − 274gn+3),

yn+2 = yn + 2hy′n + h2

8505 (5731fn + 7992fn+1

+ 2943fn+2 + 344fn+3) +
h3

2835 (206gn
− 900gn+1 − 468gn+2 − 28gn+3),

yn+3 = yn + 3hy′n + h2

1120 (1206fn + 2187fn+1

+ 1458fn+2 + 189fn+3) +
h3

1120 (135gn − 486gn+1

− 243gn+2 − 36gn+3),
y′n+1 = y′n + h

18144 (6893fn + 8451fn+1 + 2403fn+2

+ 397fn+3) +
h2

30240 (1283gn − 7659gn+1

− 2421gn+2 − 163gn+3),
y′n+2 = y′n + h

567 (223fn + 540fn+1 + 351fn+2 + 20fn+3)

+ h2

945 (43gn − 144gn+1 − 171gn+2 − 8gn+3) ,
y′n+3 = y′n + h

224 (93fn + 243fn+1 + 243fn+2 + 93fn+3)

+ h2

1120 (57gn − 81gn+1 + 81gn+2 − 57gn+3) .
(8)

Equation (8) gives the expected family of methods needed
to approximate boundary value problems in the form of (1)
above.

III. PROPERTIES OF THE BLOCK METHOD

As conventionally known, a linear multistep method is
convergent iff it is consistent and zero-stable [9]. Hence,
considering the linear operator associated with equation (2)
is defined as

L [y(x);h] =
k∑
j=0

αjyn+j −
k∑
j=0

βjfn+j +
k∑
j=0

λjf
′
n+j (9)

Expanding yn+j , fn+j and f ′n+j , we obtain the equation of
the following form

L [y(x);h] = C0y(xn)+C1hy
1(xn)+· · ·+Cphpyp(xn)+. . .

The method is said to be of order p if C0 = C1 = · · · =
Cp = Cp+1 = 0, Cp+2 6= 0 and Cp+2 is the error constant,
where m is the order of the differential equation under
consideration.
Likewise, considering the linear k-step method, the order p
is said to be maximal if p = 2k + 2 [10].
Hence, the block method displays uniform maximal order
p = (8, 8, 8, 8, 8, 8)T with error constant
C10 =

(
359

50803200 ,
17

793800 ,
27

627200 ,
313

25401600 ,
13

793800 ,
9

313600

)T
.

Definition 3.1 (10): Given a linear k-step method, the
order p is said to be maximal if p = 2k + 2.

Definition 3.2 (7): A linear multistep method is consistent
if it has order p ≥ 1.

To analyze the method for zero stability, the block method
(12) is normalized to give the first characteristic polynomial
as

ρ(R) = det
(
RA0 −A1

)
= R2(R− 1)

where A0 is the identity matrix of dimension 3 and A1 is
given by

A1 =

 0 0 1
0 0 1
0 0 1
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The roots of ρ(R) = 0 satisfy |Rj | ≤ 1, j = 1, 2, 3.
Hence, the block method is convergent since it is both
consistent and zero-stable.

The region of absolute stability is determined by obtaining
the stability polynomial from

det

[
k∑
i=0

Aiqk−i + zm
k∑
i=0

Biqk−i + zm+1
k∑
i=0

Ciqk−i

]
(10)

where z = λh and m is the order of the differential equation.
Hence, the stability polynomial for the block method is
gotten as

R(q) = − 29q6z9

235200 + 3q6z8

6400 + q6z7

1960 −
17971q6z6

1693440 + q6z5

32

+ 43q6z4

2240 −
9q6z3

28 + 649q6z2

1008 + 43q3z9

313600 + 277q3z8

134400

+ 569q3z7

31360 + 197143q3z6

1693440 + 79q3z5

1280 + 3187q3z4

2240 − 27q3z3

112

+ 3887q3z2

1008 + q3

Plotting the roots of the stability polynomial in boundary
locus approach displays the region of absolute stability as
shown below.

Figure 1: Region of Absolute Stability for (8)

IV. NUMERICAL RESULTS AND DISCUSSION

The following numerical problems are considered for the
purpose of showing the accuracy of the new method when
compared to previously existing methods

1) Consider the general second order initial value problem
from [11]

y′′ +
6

x
y′ +

4

x2
y = 0, y(1) = 1, y′(1) = 1, h =

0.1

32
(11)

with exact solution

y(x) =
5

3x
− 2

3x4

2) Consider the special second order initial value problem
from [12]

y′′ − 100y = 0, y(0) = 1, y′(0) = −10, h = 0.01
(12)

with exact solution

y(x) = e−10x

3) Consider the non-linear second order initial value prob-
lem from [13]

y′′ − x(y′)2 = 0, y(0) = 1, y′(0) =
1

2
, h = 0.1 (13)

with exact solution

y(x) = 1 +
1

2
ln

(
2 + x

2− x

)
4) Consider the linear second order boundary value prob-

lem from [6]

y′′ = y + cosx, y(0) = 0, y(1) = 1, h = 0.125
(14)

with exact solution

y(x) =
−3 cosh 1 + 3 sinh 1 + cos 1 + 2

4 sinh 1
ex +

3 cosh 1 + 3 sinh 1− cos 1− 2

4 sinh 1
e−x − cosx

2

5) Consider the general second order boundary value
problem from [6]

y′′ = y′ − e(x−1) − 1, y(0) = 0, y(1) = 0, h = 0.1
(15)

with exact solution

y(x) = x
(
1− e(x−1)

)
6) Consider the boundary value problem from [6]

y′′ + xy =
(
3− x− x2 + x3

)
sinx+ 4x cosx,

y′(0) = −1, y′(1) = 2 sin 1 (16)

with exact solution

y(x) = (x2 − 1) sinx

7) Consider the oscillatory nonlinear system of initial
value problems studied by [14]

y′′1 = −4x2y1−
2y2√
y21 + y22

, y1(x0) = 1, y′1(x0) = 0,

y′′2 = −4x2y2 +
2y1√
y21 + y22

, y2(x0) = 0, y′2(x0) = 0

(17)

whose exact solutions are given by y1(x) = cosx2 and
y2(x) = sinx2

8) Consider the linear system of second order boundary
value problems studied by [15]

d2u1
dx2

+ (2x− 1)
du1
dx

+ cosπx
du2
dx

= f1(x)

d2u2
dx2

+ xu1 = f2(x) 0 ≤ x ≤ 1 (18)

where

f1(x) = −π2 sinπx+ (2x− 1)(π + 1) cosπx

f2(x) = 2 + x sinπx

subject to boundary conditions

u1(0) = u1(1) = 0, u2(0) = u2(1) = 0

whose exact solutions are

u1(x) = sinπx and u2(x) = x2 − x
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9) (Bessel’s IVP) Consider the Bessel differential equa-
tion that was solved by [16] and also [17]

x2y′′ + xy′ +
(
x2 − 0.25

)
y = 0, x ∈ [1, 8] (19)

subject to initial conditions

y(1) =

√
2

pi
sin 1 ' 0.671397071418031

whose exact solutions are

y′(1) =
2 cos 1− sin 1

2 ∗ pi
' 0.0954005144474746

The results and comparison of error of the problems
considered are given in the tables below.

Table 1: Comparison of results for solving (11)
x Exact Solution Computed Solution Error [11], p = 8 Error (New

Method), p = 8
1.003125 1.0030765258576962262 1.0030765258576962261 8.30000E-08 1.00000E-19
1.006250 1.0060575030835162830 1.0060575030835162832 1.16000E-06 2.00000E-19
1.009375 1.0089449950888375792 1.0089449950888375790 6.63000E-06 2.00000E-19
1.012500 1.0117410181679885288 1.0117410181679885288 9.49100E-06 0.00000
1.015625 1.0144475426864138744 1.0144475426864138743 1.95350E-06 1.00000E-19
1.018750 1.0170664942356726084 1.0170664942356726084 9.41600E-06 0.00000
1.021875 1.0195997547562875920 1.0195997547562875921 4.65050E-05 1.00000E-19
1.025000 1.0220491636294317413 1.0220491636294317414 4.71220E-05 1.00000E-19
1.028125 1.0244165187384026804 1.0244165187384026804 1.86926E-04 0.00000
1.031250 1.0267035775008059839 1.0267035775008059840 4.43321E-04 1.00000E-19

Table 2: Comparison of results for solving (12)
x Exact Solution Computed Solution Error [12], p = 8 Error (New

Method), p = 8
0.01 0.904837418035959573 0.904837418035958956 5.744294E-13 1.211946E-16
0.02 0.818730753077981859 0.818730753077979986 1.225396E-10 1.872274E-15
0.03 0.740818220681717866 0.740818220681714096 2.179856E-10 3.769960E-15
0.04 0.670320046035639301 0.670320046035632537 3.139226E-10 6.763560E-15
0.05 0.606530659712633424 0.606530659712623130 4.196442E-10 1.023430E-14
0.06 0.548811636094026433 0.548811636094012045 5.896942E-10 1.438769E-14
0.07 0.496585303791409515 0.496585303791390105 2.036323E-10 1.941016E-14
0.08 0.449328964117221591 0.449328964117196617 1.847891E-10 2.497409E-14
0.09 0.406569659740599112 0.406569659740567982 1.677546E-10 3.112974E-14
1.00 0.367879441171442322 0.367879441171404144 1.523623E-10 3.817771E-14

Table 3: Comparison of results for solving (13)
x Exact Solution Computed Solution Error (New Method), k = 3
0.100 1.05004172927849126820 1.05004172927829556360 1.957046E-13
0.200 1.10033534773107558060 1.10033534773047159090 6.039897E-13
0.300 1.15114043593646680530 1.15114043593520520730 1.261598E-12
0.400 1.20273255405408219100 1.20273255405036688830 3.715303E-12
0.500 1.25541281188299534160 1.25541281187507644990 7.918892E-12
0.600 1.30951960420311171550 1.30951960418894993510 1.416178E-11
0.700 1.36544375427139616910 1.36544375423523601570 3.616015E-11
0.800 1.42364893019360180680 1.42364893011887655380 7.472525E-11
0.900 1.48470027859405174160 1.48470027846053761650 1.335141E-10
1.000 1.54930614433405484570 1.54930614390236873630 4.316861E-10
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Table 4: Comparison of results for solving (14)
x Exact Solution Computed Solution Error [6], k = 3 Error (New Method),

k = 3
0.125 0.060985349100553900 0.060985349100585467 1.140000E-07 3.156651E-14
0.250 0.138427934741475654 0.138427934741531975 2.220000E-07 5.632173E-14
0.375 0.233175541509714373 0.233175541509788966 3.200000E-07 7.469267E-14
0.500 0.346110454006479368 0.346110454006558011 3.120000E-07 7.864313E-14
0.625 0.478172624479587739 0.478172624479663170 2.900000E-07 7.543095E-14
0.750 0.630387283060996859 0.630387283061061692 2.560000E-07 6.483289E-14
0.875 0.803897221213436799 0.803897221213473963 1.300000E-07 3.716422E-14
1.000 1.000000000000000000 1.000000000000000000 N/A 0.000000

Table 5: Comparison of results for solving (15)
x Exact Solution Computed Solution Error [6], k = 3 Error (New Method), k =

3
0.1 0.059343034025940089 0.059343034025920284 1.130000E-07 1.980493E-14
0.2 0.110134207176555682 0.110134207176517352 2.190000E-07 3.832952E-14
0.3 0.151024408862577146 0.151024408862521633 3.290000E-07 5.551284E-14
0.4 0.180475345562389427 0.180475345562322612 3.740000E-07 6.681520E-14
0.5 0.196734670143683288 0.196734670143608656 4.170000E-07 7.463205E-14
0.6 0.197807972378616420 0.197807972378537720 4.680000E-07 7.869950E-14
0.7 0.181427245522797494 0.181427245522724979 4.280000E-07 7.251511E-14
0.8 0.145015397537614513 0.145015397537555324 3.620000E-07 5.918955E-14
0.9 0.085646323767636384 0.085646323767598270 2.620000E-07 3.811464E-15
1.0 0.000000000000000000 0.000000000000000000 N/A 0.000000

Table 6: Comparison of results for solving (16)
h Maximum Error (Majid

et al, 2013), k = 3
Total Steps [6], k = 3 Maximum Error (New

Method), k = 3
Total Steps (New
Method), k = 3

1
8 3.59× 10−5 3 1.19× 10−11 3
1
16 3.49× 10−6 6 4.50× 10−14 6
1
32 1.87× 10−7 11 - -
1
64 1.28× 10−8 22 - -
1

128 7.76× 10−10 43 - -

Table 7: Comparison of results for solving (19)
N Maximum Error [16] Maximum Error [17] Maximum Error

(New Method)
67 1.14× 10−9 7.11× 10−7 1.46× 10−10

82 3.50× 10−10 9.26× 10−8 3.30× 10−11

97 1.30× 10−10 87.8× 10−9 9.31× 10−12

112 5.50× 10−11 1.12× 10−10 3.51× 10−12

125 2.90× 10−11 2.71× 10−11 1.44× 10−12

IAENG International Journal of Applied Mathematics, 46:4, IJAM_46_4_03

(Advance online publication: 26 November 2016)

 
______________________________________________________________________________________ 



Figure 2 shows the maximum error for Problem (17)
plotted against various step sizes h = 1

2i , i = 5, . . . , 8

Figure 2: Step sizes versus Maximum Error for Problem
(17)

Figure 3 shows the maximum error for problem (18)
plotted against increasing number of iterations N =
10, 20, 30, 40, 50

Figure 3: Number of Iterations versus Maximum Error for
Problem (18)
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V. CONCLUSION

This work presents a three-step method of maximal order
for approximating the solution of second order initial and
boundary value problems. To show the superiority of the
maximal order block method introduced, certain numerical
examples were considered. These included the solution of
system of linear initial and boundary value problems, and
the results were compared to previously existing methods
of either equal order or equal steplength. From the results
displayed in the tables above, the maximal order block
method was seen to display more favourable results and
also in accordance to literature, the accuracy increased as
the number of iterations (N) increased and as the step-
size (h) reduced when adopted for the solution of the
system of ordinary differential equations. This is further
justified as seen in Table 6, where the maximum error of
the maximal order block method at h−value of 1

16 is giving
faster convergence than the previously existing method even
at a smaller h−value of 1

128 . Therefore, the maximal order
block method can be adopted for the solution of equations
in the form of (1) or a system of (1) with either initial or
boundary conditions imposed.
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