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Abstract—The Kohn-Vogelius objective functional that
evolves from the exterior Bernoulli free boundary problem is be-
ing studied. The first-order Eulerian derivative of this functional
is being recalled. Assuming the sufficient regularity of domains
and functions, this paper computes the shape derivatives of
all functions involved, and derives the second-order Eulerian
derivative of the functional by using the approach of Sokolowski
and Zolesio. We also use a domain differentiation technique as
an alternative way to validate our result. It is shown that the
second-order Eulerian derivative satisfies a structure theorem.
As a supplement, the explicit form of the derivative is also
derived.

Index Terms—Bernoulli problem, boundary value problems,
perturbation of identity, shape derivative, material derivative,
Eulerian derivative.

I. INTRODUCTION

IN this paper, we are interested in two-dimensional exterior
Bernoulli free boundary problems. These problems arise

in various applications such as electrochemical machining,
fluid mechanics, optimal insulation, electrical impedance
tomography, among others [8], [10], [15], [18], [19], [35].
The exterior Bernoulli problem is formulated as follows:
Given a negative constant λ and a bounded connected domain
A ⊂ R2 having a fixed boundary Γ := ∂A, we wish to
find (i) a bounded connected domain B ⊂ R2 with a free
boundary Σ such that Ā ⊂ B, and (ii) a function u : Ω→ R,
where Ω = B\Ā, satisfying the following conditions:

−∆u = 0 in Ω,

u = 1 on Γ,

u = 0 on Σ,

∂u

∂n
= λ on Σ.

(1)

Here, n refers to the outward unit normal vector to Σ.
Details about the exterior Bernoulli problems can be seen,
for instance, in [1], [2], [7], [9], [18], [20], [21], [24], [33].

The presence of overdetermined conditions on Σ makes
the problem difficult to solve. Shape optimization method,
however, is an established tool in solving such problems,
and one way to reformulate the problem is as follows:

min
Ω
J(Ω) ≡ min

Ω

1

2

∫
Ω

|∇(uD − uN )|2 dx (2)
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over all admissible domains Ω, where the state function uD
is the solution to the Dirichlet problem:

−∆uD = 0 in Ω,

uD = 1 on Γ,

uD = 0 on Σ,

(3)

and the state function uN is the solution to the Neumann
problem: 

−∆uN = 0 in Ω,

uN = 1 on Γ,

∂uN
∂n

= λ on Σ.

(4)

The functional J is commonly known as Kohn-Vogelius
cost functional because Kohn and Vogelius were among the
first to use it in the context of inverse conductivity problems
[27], as mentioned by Eppler and Harbrecht in their paper
[16].

Minimizing a shape functional requires, most of the time,
some gradient information and Hessian. For the functional
under consideration, the first-order Eulerian derivative had
already been carried out (cf. [4]). This was done through
variational means similar to the techniques developed in
[20], [21], [25], wherein the Hölder continuity of the state
variables satisfying the Dirichlet and Neumann problems
are considered; however, we did not introduce any adjoint
variables in our work. The Eulerian derivative was also
computed using material or shape derivatives of the states
(cf. [1], [5]).

In 2012, Kasumba and Kunisch [26] used the techniques in
[25] to compute the second-order Eulerian derivative of a par-
ticular shape functional without using the shape derivative of
the state variable. In their approach, Hölder continuity of the
given state variable and the corresponding adjoint variable
were used. However, this strategy of Kasumba and Kunisch
seems to be difficult to apply in computing the second-
order Eulerian derivative of the Kohn-Vogelius functional.
The difficulty arises from the complexity of the first-order
Eulerian derivative and the presence of two boundary value
problems. So we used instead the approach of Sokolowski
and Zolesio [32] wherein material derivatives, as well as
shape derivatives of the state variables, are highly involved.
The material and shape derivatives of the unit normal vector
n, the unit tangent vector τ and the mean curvature κ of
Σ were also computed and applied in the derivation of the
second-order derivative. The explicit form of the second-
order derivative for general domains was finally obtained
using Steklov-Poincare operators. To further validate our
result, we also used a different technique which uses a
domain differentiation formula. Contrary however to Simon
[31] and Eppler [14] we managed not to use the second
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variations of the states in characterizing the second-order
Eulerian derivative of J . Interestingly, the computed second-
order Eulerian derivative has symmetric and nonsymmetric
terms – a structure that was given in [11] and further
investigated by Novruzi and Pierre [29]. Other techniques
in computing the second-order Eulerian derivative of J in
the direction of normal deformation fields to Σ are seen in
the papers [5], [6] and [17].

II. TOOLS FROM SHAPE CALCULUS

In this work we consider two-dimensional bounded con-
nected domains Ω of class Ck,1, k ≥ 1, and these domains
are subsets of a hold-all domain U . Moreover, Ω is an
annulus having a fixed boundary Γ which is disjoint from
another boundary Σ, which is freely moving. We also con-
sider deformation fields V belonging to the space Θ defined
by

Θ =
{
V ∈ C1,1(Ū ,R2) : V|Γ∪∂U = 0

}
. (5)

We deform Ω via the perturbation of identity operator

Tt : Ū → R2, Tt(x) = x+ tV(x), x ∈ Ū (6)

where V ∈ Θ. For t = 0, we have the reference domain
Ω := Ω0, with a fixed boundary Γ := Γ0 and a free boundary
Σ := Σ0. For a given t > 0 we denote the deformed domain
to be Ωt, with a fixed boundary Γt and a free boundary Σt.

Throughout the paper, the following notations are used:
It(x) = detDTt(x), x ∈ Ū ,
Mt(x) = (DTt(x))−T , x ∈ Ū ,
At(x) = ItM

T
t Mt(x), x ∈ Ū ,

wt(x) = It(x)|(DTt(x))−Tn(x)|, x ∈ Σ
(7)

The determinant It of the transformation Tt has the following
property.

Lemma 2.1 (see [20], [25]): Consider the operator Tt
defined by (6), where V ∈ Θ, which is described by (5).
Then

i. It = 1 + tdivV + t2 detDV, and
ii. there exists tV , α1, α2 > 0 such that 0 < α1 ≤ It(x) ≤

α2, for |t| ≤ tV , x ∈ U .
Using Lemma 2.1 one can show the following:

Theorem 2.2 (see [4]): Let Ω and U be nonempty
bounded open connected subsets of R2 with Lipschitz con-
tinuous boundaries, such that Ω̄ ⊆ U , and ∂Ω is the union
of two disjoint boundaries Γ and Σ. Let Tt be defined as in
(6) where V belongs to Θ, defined by (5).

Then for sufficiently small t,
1) Tt : Ū → Ū is a homeomorphism,
2) Tt : U → U is a C1,1 diffeomorphism, and in

particular, Tt : Ω→ Ωt is a C1,1 diffeomorphism,
3) Γt = Tt(Γ) = Γ, and
4) ∂Ωt = Γ ∪ Tt(Σ).

Remark 2.3: We note the following observations for
fixed, sufficiently small t: It ∈ C0,1(Ū); Mt,M

T
t ∈

C(Ū ;R2×2); At ∈ C(Ū ;R2×2); and wt ∈ C(Σ;R).
Here are some useful properties of Tt.

Lemma 2.4 (see [20], [25]): Consider the transforma-
tion Tt, where the fixed vector field V belongs to Θ, defined
in (5). Then the exists tV > 0 such that Tt and the functions

in (7) restricted to the interval IV = (−tV , tV ) have the
following regularity and properties:

(1.) t 7→ Tt ∈ C1(IV , C
1,1(Ū ,R2)).

(2.) t 7→ It ∈ C1(IV , C
0,1(Ū)).

(3.) t 7→ T−1
t ∈ C(IV , C

1(Ū ,R2)).
(4.) t 7→ wt ∈ C1(IV , C(Σ)).
(5.) t 7→ At ∈ C(IV , C(Ū ,R2×2)).
(6.) There is β > 0 such that At(x) ≥ βI for x ∈ U.

(7.)
d

dt
Tt|t=0 = V.

(8.)
d

dt
T−1
t |t=0 = −V.

(9.)
d

dt
DTt|t=0 = DV.

(10.)
d

dt
(DTt)

−1|t=0 = −DV.

(11.)
d

dt
It|t=0 = divV.

(12.)
d

dt
At|t=0 = A, where A = (divV)I − (DV + (DV)T

(13.) limt→0 wt = 1.

(14.)
d

dt
wt|t=0 = divΣ V

where divΣ V = divV|Σ − (DVn) · n.
In the discussion of the second-order Eulerian derivative

we need to perturb the reference domain twice. Hence we
consider the transformations TV

t : Ū → R2 and TW
s : Ū →

R2 defined by TV
t (x) = (I + tV)(x), and TW

s (y) = (I +
sW)(y), x, y ∈ Ū , respectively where V,W ∈ Θ. For the
sake of simplicity, unless stated otherwise, we denote Tt the
transformation TV

t in the direction V. Also, we let Ts :=
TW
s . Using Theorem 2.2, the mapping Tt,s := Tt ◦Ts : Ω→

Ωt,s, defined by

Tt,s(x) := Tt(Ts(x))

= x+ sW(x) + tV(x+ sW(x)), x ∈ Ω,(8)

may be proven to be a C1,1 diffeomorphism. We define the
perturbed domain Ωt,s as:

Ωt,s := Tt(Ts(Ω)) := {Tt,s(x) : x ∈ Ω}.

Hence, for sufficiently small t and s, Ωt,Ωt,s are of class
C1,1, and they are contained in U .

A. The Method of Mapping

If u is defined in Ω and ut is defined in Ωt then the
direct comparison of ut with u is generally not possible since
the functions are defined on different domains. To overcome
this difficulty one maps ut back to Ω by composing it with
Tt; that is, one defines ut ◦ Tt : Ω → R. With this new
mapping one can define the material and the shape derivatives
of states, the domain and boundary integral transformations,
derivatives of integrals, as well as the Eulerian derivatives of
the shape functional.

1) Material and shape derivatives: The material and
shape derivatives of state variables are defined as follows
[22], [34]:

Definition 2.5: Let u be defined in [0, tV ] × U . An
element u̇ ∈ Hk(Ω), called the material derivative of u,
is defined as
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u̇(x) := u̇(0, x) := lim
t→0+

u(t, Tt(x))− u(0, x)

t

=
d

dt
u(t, x+ tV(x))

∣∣∣∣
t=0

if the limit exists in (Hk(Ω)).
Remark 2.6: The material derivative can be written as

u̇(x) = lim
t→0+

ut ◦ Tt(x)− u(x)

t
=

d

dt
(ut ◦ Tt(x))

∣∣∣∣
t=0

. (9)

It characterizes the behavior of the function u at x ∈ Ω ⊂ U
in the direction V(x). Generally, for bounded Ck-domains,
if u(x) := u(0, x) ∈Wm,p(U), m ∈ [0, k], 1 ≤ p <∞ then
u ◦ Tt ∈ Wm,p(Ω) and if the limit (9) exists in Wm,p(Ω)
then u̇(x) ∈Wm,p(Ω).

Definition 2.7: Let u be defined in [0, tV ] × U . An
element u′ ∈ Hk(Ω) is called the shape derivative of u at Ω
in the direction V, if the following limit exists in Hk(Ω):

u′(x) := u′(0, x) := lim
t→0+

u(t, x)− u(0, x)

t
. (10)

Remark 2.8: The shape derivative of u is also defined
as follows:

u′(x) :=
∂

∂t
ut(x)

∣∣∣∣
t=0

.

We note that if u̇ and ∇u ·V exist in Hk(Ω) then the shape
derivative can be written as

u′(x) = u̇(x)− (∇u ·V)(x). (11)

In general, if u̇(x) and ∇u ·V(x) both exist in Wm,p(Ω),
then u′(x) also exists in that space.

Remark 2.9: The Definitions of material and shape
derivative of real-valued functions can be extended to vector-
valued functions. Analogous to Definition 2.5, assuming that
u : [0, tV ]×U → Rn belongs to Hk(Ω;Rn) then its material
derivative in the direction V can be written as

u̇(x) := u̇(Ω;V) = lim
t→0+

u(t, Tt(x))− u(0, x)

t

=
d

dt
u(t, x+ tV(x))

∣∣∣∣
t=0

(12)

if the limit exists in (Hk(Ω,Rn)). If its shape derivative also
exists then one can have the following relation:

u′(x) = u̇(x)− (DuV)(x). (13)

If u = (u1, u2) then its norm is given by |u|Hk(Ω,R2) =
|u1|Hk(Ω) + |u2|Hk(Ω) for k ≥ 0.

2) Domain and boundary transformations:
Lemma 2.10 (see [25], [32]):

1. Let ϕt ∈ L1(Ωt). Then ϕt ◦ Tt ∈ L1(Ω) and∫
Ωt

ϕt dxt =

∫
Ω

ϕt ◦ TtIt dx.

2. Let ϕt ∈ L1(∂Ωt). Then ϕt ◦ Tt ∈ L1(∂Ω) and∫
∂Ωt

ϕt dst =

∫
∂Ω

ϕt ◦ Ttwt ds,

where It and wt are defined in (7).

Some tangential Calculus: Here are some properties of
tangential differential operators which are used in this work
(cf. [11], [23], [32]). Let Γ be a boundary of a bounded
domain Ω ⊂ Rn.

Definition 2.11: The tangential gradient of f ∈ C1(Γ)
is given by

∇Γf := ∇F |Γ −
∂F

∂n
n ∈ C(Γ,Rn), (14)

where F is any C1 the extension of f into a neighborhood
of Γ.

Definition 2.12: The tangential Jacobian matrix of a
vector function v ∈ C1(Γ,Rn) is given by

DΓv = DV|Γ − (DVn)nT ∈ C(Γ,Rn×n), (15)

where V is any C1 the extension of v into a neighborhood
of Γ.

Definition 2.13: For a vector function v ∈ C1(Γ,Rn),
its tangential divergence on Γ is given by

divΓ v = divV|Γ −DVn · n ∈ C(Γ), (16)

where V is any C1 the extension of v into a neighborhood
of Γ.

Remark 2.14: The details of the existence of the exten-
sion F and V can be found in [11, pp.361 - 366]. We note
that the above Definitions do not depend on the choice of
the extension.

Lemma 2.15 (see [32]): Consider a C2 domain Ω with
boundary Γ := ∂Ω. Then for u ∈ H1(Γ) and V ∈
C1(Γ,Rn) the following identities hold:

(1) divΓ(uV) = ∇Γu ·V + udivΓ V (17)

(2)

∫
Γ

divΓ V ds =

∫
Γ

κV · n ds (18)

(3)

∫
Γ

(udivΓ V +∇Γu ·V) ds =

∫
Γ

κuV · n ds

(19)

(4)

∫
Γ

∇Γu ·V ds = −
∫

Γ

udivΓ V ds,

where V · n = 0 (20)

Remark 2.16: In Lemma 2.15, the first identity is called
tangential divergence formula, the second is commonly
known as tangential Stoke’s formula, and the third is referred
to as tangential Green’s formula. These formulas are also
valid for C1,1 domains.

3) Domain Differentiation Formula: The Theorem below
is valid for C0,1 domains. For proof, see [32].

Theorem 2.17: Let u ∈ C(IV ,W
1,1(U)) and suppose

u̇(0, ·) := d
dtu(t, Tt(·))

∣∣
t=0

exists in L1(U). Then

d

dt

∫
Ωt

u(t, x) dx
∣∣∣∣
t=0

=

∫
Ω

u′(0, x) dx

+

∫
Σ

u(0, s)V · n ds. (21)

4) The Eulerian derivatives: The Eulerian derivatives of a
shape functional are defined as follows (cf. [11], [20], [34]):

Definition 2.18: The first-order Eulerian derivative of a
shape functional J : Ω→ R at the domain Ω in the direction
of the deformation field V is given by

dJ(Ω;V) := lim
t→0+

J(Ωt)− J(Ω)

t
, (22)

IAENG International Journal of Applied Mathematics, 46:4, IJAM_46_4_04

(Advance online publication: 26 November 2016)

 
______________________________________________________________________________________ 



if the limit exists.
The second-order Eulerian derivative of J at the domain

Ω in the direction of the deformation fields V and W is
given by

d2J(Ω;V,W) = lim
s→0+

dJ(Ωs(W),V)− dJ(Ω;V)

s
(23)

if the limit exists.
Remark 2.19: J is said to be shape differentiable at Ω

if dJ(Ω;V) exists for all V and is linear and continuous
with respect to V. It is twice shape differentiable if for all
V and W, d2J(Ω;V,W) exists and if d2J(Ω;V,W) is
bilinear and continuous with respect to V and W.

B. Structure of the second-order Eulerian derivative

In [11, p.384], it was shown by using the perturbation
of identity that the expression d2J(Ω;V,W) can be de-
composed into a symmetric term plus a nonsymmetric part.
The nonsymmetric part is determined by gradient applied
to the deformation field DVW. This is further investigated
by Novruzi and Pierre [29]. Their approach is based on the
perturbation of identity technique presented in [28], [30]. The
structure of the shape derivative of functional J uses the fact
that any regular small perturbation Ωθ := (I + θ)(Ω) of a
smooth domain Ω (where θ is sufficiently smooth mapping
from Rn to Rn) can be uniquely represented up to a “shift”
on Γ by a normal deformation to Γ.

For any l ∈ N, 1 ≤ l ≤ k, we denote

Gk−l(Γ,Γ) =
{
g ∈ Ck−l(Γ,Rn) : g(Γ) ⊂ Γ

}
. (24)

Lemma 2.20: Let Ω denote a bounded domain with Ck

boundary Γ. Then for any 1 ≤ l ≤ k,
(i) there exists an open neighborhood Nk of 0 in

Θk =
{
V ∈ Ck(Rn,Rn) :

derivatives of V up to order k are bounded.}
(25)

and Cl functions Ψ : Nk → Ck−l(Γ) and Φ : Nk →
Gk−l(Γ,Γ) such that for any θ ∈ Nk,

(I + θ) ◦ Φ(θ) = I + Ψ(θ)n on Γ. (26)

(ii) Moreover, the values of the first- and second-order
(Fréchet) derivatives of Ψ at θ = 0 in the directions
V,W ∈ Θk are given by
(a) DθΨ(0)(V) := Ψ′(0)(V) = v · n for l ≥ 1,

and
(b) D2

θΨ(0)(V,W) := Ψ′′(0)(V,W) = −vΓ ·
DΓnwΓ − n ·DΓvwΓ − n ·DΓwvΓ

for l ≥ 2, where v = V|Γ and w = W|Γ.
The proof of the Lemma uses the implicit function Theorem
and is given in [29, p.372]. This Lemma is the fundamental
tool in proving the following result on the structure of the
shape derivatives. Here, Ok denotes the set of bounded Ck

domains.
Theorem 2.21 (see [29]): Consider the shape func-

tional J : Ok → R and the functional J : Θ̄k → R where

Θ̄k := {θ ∈ Θk : |θ|Ck < 1} , and J(θ) = J(Ωθ).
(27)

For k ≥ 1, the following statements hold.

(i) If Ω ∈ Ok+1 and J is differentiable at 0 in Θk, then
there is a continuous linear map l1 : Ck(Γ) → R such
that for any V ∈ Θk,

DθJ(0)(V) := J′(0)(V) = l1(v · n). (28)

(ii) If Ω ∈ Ok+1 and J is twice differentiable at 0 in Θk

then there exists a continuous bilinear symmetric map
l2 : Ck(Γ) × Ck(Γ) → R such that for any V,W ∈
Θk+1 we have

D2
θJ(0)(V,W) := J′′(0)(V,W)

= l2(v · n,w · n)

−l1(vΓ ·DΓnwΓ + n ·DΓvwΓ + n ·DΓwvΓ).

(29)

Here, v and w are restrictions of V and W on Γ, respec-
tively.

It is then shown that d2J(Ω;V,W) can be written as (cf.
[29]):

d2J(Ω;V,W) = J′′(0)(V,W) + J′(0)(DVW). (30)

where J ′′ and J ′ are the shape derivatives defined in (29)
and (28), respectively.

III. MAIN RESULTS

We now present the shape derivative methods that we
used in obtaining the second-order Eulerian derivative
d2J(Ω;V,W) of the Kohn-Vogelius functional J . Through-
out this section, we assume that the domains, deformation
vectors, the state variables and the the rest of the functions
involved to be regular enough. We first compute the material
and shape derivatives of n, τ and κ. Using these, together
with the material and shape derivatives of the states uD
and uN , the tools given in Section II and Steklov-Poincaré
operators, we derive the d2J(Ω;V,W).

In the discussion, we let v = V|Σ and v = vΣ+vnn. The
scalar vn := v · n is referred to as the normal component
of v while the vector vΣ is its tangential component. In
fact, vΣ = (v · τ)τ . Also, we Remark that for a given
scalar function f and vector function V defined on the
free boundary Σ, the gradient ∇f , the Jacobian DV and
divergence divV refer actually to the gradient, Jacobian,
and divergence of their respective extensions defined on a
neighborhood of Σ.

A. Material and shape derivatives of n, κ and τ

1) The material and shape derivative of n: Let Ts be
defined as in (6) but in the direction W, not necessarily the
same as V. On the set Σs, where Σs is the free boundary of
the perturbed domain Ωs, the unit outward normal vector is
denoted by ns and is given by the following expression (see
[11, p.358]):

ns =
(DTs)

−Tn

|(DTs)−Tn|
◦ T−1

s . (31)

Theorem 3.1: The material derivative ṅW and shape
derivative n′W of the outward unit normal vector n at the
boundary Σ in the direction of the deformation field W are
given by

(i) ṅW = (DWn · n)n− (DW)
T

n, (32)

(ii) n
′
W = (DWn · n)n− (DW)

T
n− (Dn)W. (33)
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Proof: Differentiating (31) at s = 0 we get the expres-
sion

ṅW :=
∂

∂s
(ns ◦ Ts)

∣∣∣∣
s=0

=

∂

∂s
((DTs)

−Tn)|(DTs)−Tn|

|(DTs)−Tn|2

∣∣∣∣
s=0

−

[
(DTs)

−Tn

|(DTs)−Tn|
· ∂
∂s

((DTs)
−Tn)

]
(DTs)

−Tn

|(DTs)−Tn|2

∣∣∣∣
s=0

.

Simplifying we have

ṅW =

[(−DW)Tn]|n| −
(

n

|n|
·
[
(−DW)Tn

])
n

|n|2

= −(DW)Tn + (n · (DW)Tn)n

= (DWn · n)n− (DW)Tn.

Applying (13) we get n′W = (DWn ·n)n− (DW)Tn−
(Dn)W.

2) The material and shape derivative of κ: The compu-
tation of the material derivative of the mean curvature of
Σ requires the concept of unitary extension of n. We say
that N is the unitary extension of n on Σ if N · N = 1
in a neighborhood of Σ. This extension has the following
property:

Lemma 3.2 (see [32]): If N ∈ C1(Rn,Rn) then
(DN)Tn = 0 on Σ.

Definition 3.3 (see [11]): The mean curvature κ of an
(n− 1)-dimensional manifold Γ is defined as

κ =
1

n− 1
divΓ n.

For n = 2, this is simply the curvature, and it is given by
κ = divΣ n.

The derivation for the expression κ̇W utilizes the trans-
ported divergence.

Lemma 3.4 (see [32]): Let v be a Ck vector field in
Rn and Tt : Ū ⊂ Rn → Rn be a Ck transformation. Then
(divv) ◦ Tt ∈ Ck−1(U,Rn) and is given by

(divv) ◦ Tt = Tr[D(v ◦ Tt)(DTt)−1].

So if Ns is a smooth extension of the normal field ns on a
neighborhood of Σs, then by applying Lemma 3.4 we have

(divNs) ◦ Ts = Tr[D(Ns ◦ Ts)(DTs)−1], (34)

and if N is a unitary extension of n on a neighborhood of
Σ, we get divN = Tr(DN), which can be justified to be
the curvature κ because

κ = divΣ n = (divN)− (DN)n · n

and nTDN = 0 on the boundary as supported by Lemma
3.2.

Theorem 3.5: The material derivative κ̇W and shape
derivative κ′W of the mean curvature κ of the boundary Σ in

the direction of the deformation field W are given by

(i) κ̇W = Tr

[
D

(
(DWn · n)n− (DW)Tn

)
−DnDW

]
(35)

(ii) κ′W = Tr

[
D

(
(DWn · n)n− (DW)Tn

)
−DnDW

]
−∇κ ·W.

(36)

Proof: The mean curvature κs of the manifold Σs is
given by

κs = divΣs ns = (divNs)− (DNs)ns · ns,

for any arbitrary smooth extension Ns of ns on the neigh-
borhood of Σs, and if Ns is a unitary extension of ns, then
by Lemma 3.2 we have

κs = divNs.

So for a unitary extension Ns we write κs ◦ Ts as

κs ◦ Ts = (divNs) ◦ Ts = Tr[D(Ns ◦ Ts)(DTs)−1].

Therefore, applying Lemma 2.4 and (32), the explicit form
of the material derivative of the mean curvature κ in the
direction W is obtained as follows:

κ̇W =
∂

∂s
(κs ◦ Ts)

∣∣∣∣
s=0

= Tr

[(
∂

∂s
D(Ns ◦ Ts)

)
(DTs)

−1

+ (DNs) ◦ Ts
(
∂

∂s
(DTs)

−1

)] ∣∣∣∣
s=0

= Tr[DṅW −DnDW]

= Tr

[
D

(
(DWn · n)n− (DW)Tn

)
−DnDW

]
.

(37)

Thus, the shape derivative of κ is given by (36).
3) The material and shape derivative of τ : The unit

tangent vector on Σ is represented by τ . It is oriented in such
a way that Σ is at the left of τ ; that is, if n = (n1, n2)T

then we represent τ = (−n2, n1)T .
Theorem 3.6: The material derivative τ̇W and shape

derivative τ ′W of the unit tangent vector τ on the boundary
Σ in the direction of the deformation field W are given by

(i) τ̇W = [(DW)Tn · τ ]n, (38)
(ii) τ ′W = [(DW)Tn · τ ]n− (Dτ)W. (39)

Proof: Since n and τ are orthogonal to each other, we
derive the material and shape derivatives of τ by determining
the material derivative of n ·τ = 0 in the direction W. First,
we get the identity ṅW · τ + n · τ̇W = 0. Applying (32) we
obtain (

(DWn · n)n− (DW)Tn
)
· τ + n · τ̇W = 0,

which can be simplified into

−(DW)Tn · τ + n · τ̇W = 0.

Therefore, we get (i) since τ̇ · τ = 0. By applying the
Definition of shape derivative, we obtain (ii).
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B. Differentiation Approach of Sokolowski and Zolesio

Let us recall the first-order Eulerian derivative of the
Kohn-Vogelius cost functional J (cf. [1], [4], [5]):

Theorem 3.7: For C1,1 bounded domain Ω, the first-
order shape derivative of the Kohn-Vogelius cost functional

J(Ω) =
1

2

∫
Ω

|∇(uD − uN )|2 dx

in the direction of a perturbation field V ∈ Θ, where Θ is
defined by (5) and the state functions uD and uN satisfy
the Dirichlet problem (3) and the Neumann problem (4),
respectively, is given by

dJ(Ω;V) =
1

2

∫
Σ

(λ2−(∇uD·n)2+2λκuN−(∇uN ·τ)2)V·n ds,

where n is the unit exterior normal vector to Σ, τ is a unit
tangent vector to Σ, and κ is the mean curvature of Σ.

Now we will be computing the second-order Eulerian
derivative of this functional by following the technique used
by Sokolowski and Zolesio [32]. This technique bypasses the
use of domain differentiation and boundary differentiation
formulas. It highly involves, however, material and shape
derivatives of states.

We first note that the derivative dJ(Ωs(W);V) exists for
all sufficiently small s. This follows from the result on the
first-order Eulerian derivative given in [4].

By Definition, we write the second-order Eulerian deriva-
tive as follows.

(40)

d2J(Ω;V,W) = lim
s→0+

dJ(Ωs(W),V)− dJ(Ω;V)

s

=
∂

∂s

{
∂

∂t
J(Ωt,s)

∣∣∣∣
t=0

} ∣∣∣∣
s=0

=
∂

∂s

(∫
Σs

FsV · ns dΣs

) ∣∣∣∣
s=0

,

where

Fs = λ2− (∇uD,s ·ns)2 + 2λκsuN,s− (∇uN,s · τs)2 (41)

and the deformation fields V and W are assumed to belong
in Θ defined by (5).

Remark 3.8: The expression for Fs has a coefficient of
1
2 . For the sake of simplicity we first disregard this coefficient
and affix it in the final result.
Using the boundary transformation formula given in Lemma
2.10, we write (40) as

d2J(Ω;V,W)

=
∂

∂s

(∫
Σ

(Fs ◦ Ts)[(V ◦ Ts) · (ns ◦ Ts)]ws dΣ

) ∣∣∣∣
s=0

,(42)

where ws is defined by

ws(x) = detDTs(x)|(DTs)−Tn(x)|, for any x ∈ Σ.
(43)

Clearly, (V ◦ Ts) · (ns ◦ Ts)|s=0 = V · n and (Fs ◦
Ts)ws|s=0 = F , where

F = λ2 − (∇uD · n)2 + 2λκuN − (∇uN · τ)2. (44)

Therefore, we write (42) as

d2J(Ω;V,W) (45)

=

∫
Σ

[
∂

∂s
((Fs ◦ Ts)ws)

] ∣∣∣∣
s=0

V · n dΣ

+

∫
Σ

F

[
∂

∂s
{(V ◦ Ts) · (ns ◦ Ts)}

] ∣∣∣∣
s=0

dΣ.

We first examine the expression
∂

∂s
{(V ◦ Ts) · (ns ◦ Ts)}

∣∣∣∣
s=0

. Applying Lemma 2.4

(property (7)), we can write this expressions as

∂

∂s
{(V ◦ Ts) · (ns ◦ Ts)}

∣∣∣∣
s=0

= (DV)W · n + V · ∂
∂s

(ns ◦ Ts)
∣∣∣∣
s=0

. (46)

Applying (32), one can write (46) as

∂

∂s
{(V ◦ Ts) · (ns ◦ Ts)}

∣∣∣∣
s=0

= (DV)W · n + V · [(DWn · n)n− (DW)Tn].(47)

Next we turn to the discussion of the derivative of (Fs ◦
Ts)ws.

∂

∂s

(
(Fs ◦ Ts)ws

)∣∣∣∣
s=0

=

{(
∂

∂s
(Fs ◦ Ts)

)
ws + (Fs ◦ Ts)

∂

∂s
ws

} ∣∣∣∣
s=0

.(48)

Since

Fs ◦ Ts = λ2 − ((∇uD,s ◦ Ts) · (ns ◦ Ts))2

+2λ(κs ◦ Ts)(uN,s ◦ Ts)− [(∇uN,s ◦ Ts) · (τs ◦ Ts)]2,

one finds

∂

∂s
(Fs ◦ Ts)

∣∣∣∣
s=0

= −2
∂uD
∂n

∂

∂s

[
(DTs)

−T∇(uD,s ◦ Ts) · (ns ◦ Ts)
] ∣∣∣∣
s=0

+2λ
∂

∂s
((κs ◦ Ts)(uN,s ◦ Ts))

∣∣∣∣
s=0

−2
∂uN
∂τ

∂

∂s

(
(DTs)

−T∇(uN,s ◦ Ts) · (τs ◦ Ts)
) ∣∣∣∣
s=0

=: Q1 +Q2 +Q3.

We simplify these three terms, starting off with the ex-
pression Q1. We use Property 10 of Lemma 2.4 and (32) to
obtain:

Q1 = −2
∂uD
∂n

{[
(−DW)T∇uD

+ ∇
[
∂

∂s
(uD,s ◦ Ts)

∣∣∣∣
s=0

]]
· n
}

− 2
∂uD
∂n

{
∇uD ·

[
(DWn · n)n− (DW)Tn

]}
Noting that uD = 0 on Σ, we have ∇uD =

∂uD
∂n

n on Σ.
Thus, the expression
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∇uD ·
[
(DWn · n)n− (DW)Tn

]
vanishes. Therefore, Q1

can be simplified to

Q1 = −2
∂uD
∂n

{
−(DW)T∇uD · n

+∇u̇D,W · n}

= −2
∂uD
∂n

{
−(DW)T∇uD · n +∇u′D,W · n

+∇(∇uD ·W) · n} , (49)

where the shape derivative u′D,W can be shown to satisfy the
following boundary value problem:

−∆u′D,W = 0 in Ω,

u′D,W = 0 on Γ,

u′D,W = −W · n∂uD
∂n

on Σ.

(50)

Next we simplify Q2 as follows.

Q2 = 2λ
∂

∂s

[
(κs ◦ Ts)(uN,s ◦ Ts)

]∣∣∣∣
s=0

= 2λ

[
κ̇WuN + κ(u′N,W +∇uN ·W)

]
(51)

where κ̇W is given by (35) and u′N,W may be shown to
satisfy the following boundary value problem:

−∆u′N,W = 0 in Ω,

u′N,W = 0 on Γ,

∂u′N,W
∂n

= divΣ(W · n∇ΣuN ) + W · nκλ on Σ.

(52)
Similar to what we did for the expression Q1, we simplify

Q3 as follows:

Q3 = −2
∂uN
∂τ

[
(−DW)T∇uN · τ +∇u′N,W · τ

+∇(∇uN ·W) · τ +∇uN · τ̇W
]
, (53)

where τ̇W is given by (39). Combining (49), (51), and (53),
we obtain the material derivative of F at Σ in the direction
W:

ḞW :=
∂

∂s
(Fs ◦ Ts)

∣∣∣∣
s=0

= −2
∂uD
∂n

{
−(DW)T∇uD · n +∇u′D,W · n

}
−2

∂uD
∂n
{∇(∇uD ·W) · n}

+2λ[κ̇WuN + κ(u′N,W +∇uN ·W)]

−2
∂uN
∂τ

[
(−DW)T∇uN · τ +∇u′N,W · τ

]
−2

∂uN
∂τ

[∇(∇uN ·W) · τ +∇uN · τ̇W ] , (54)

where κ̇W and τ̇W are given by (35) and (39), respectively.
Next we express ḞW in terms of the shape derivatives of

κ and τ , and of states uD and uN in the direction W by
using the identity:

−(DW)T∇uD ·n+∇(∇uD ·W)·n = (∇2uD)W·n. (55)

This identity is derived by expanding ∇(∇uD ·W) · n as
follows:

∇(∇uD ·W) · n
=
{

[D(∇uD)]TW + (DW)T∇uD
}
· n

= [D(∇uD)]TW · n + (DW)T∇uD · n,

and by replacing [D(∇uD)]T with the Hessian ∇2uD, which
is symmetric for uD ∈ H2(Ω). Similarly, the following
identity is valid.

−(DW)T∇uN ·τ+∇(∇uN ·W) ·τ = (∇2uN )W ·τ. (56)

Using the identity κ̇W = κ′W +∇κ ·W and the equations
(55) and (56) into (54), we can now write ḞW as

ḞW = −2
∂uD
∂n

(∇u′D.W · n + (∇2uD)W · n)

+2λ(κ′W +∇κ ·W)uN + κ(u′N,W +∇uN ·W)

− 2(∇uN · τ)(∇u′N,W · τ
+(∇2uN )W · τ +∇uN · (τ ′W + (Dτ)W)), (57)

where the shape derivatives u′D,W and u′N,W satisfy the
boundary value problems (50) and (52), respectively, τ ′W is
given by (39), and κ′W is given by (36).

Also, the following equation holds because of Lemma 2.4:

∂

∂s

(
(Fs ◦ Ts)ws

)∣∣∣∣
s=0

= ḞW + F divΣ W, (58)

where ḞW and F are given by (57) and (44), respectively.
By substituting equations (58) and (47) into (45), we can
write d2J(Ω;V;W) as d2J(Ω;V;W)

d2J(Ω;V;W) (59)

=

∫
Σ

[
ḞW + F divΣ W

]
V · n dΣ

+

∫
Σ

F

[
(DV)W · n + (DWn · n)V · n

− (DW)V · n
]

dΣ.

1) The symmetric and nonsymmetric parts of
d2J(Ω;V,W): We first rewrite (59) as follows:

d2J(Ω;V,W) =

∫
Σ

ḞWV · n dΣ

+

∫
Σ

F (divΣ W)V · n dΣ

+

∫
Σ

F [(DV)W · n + (DWn · n)V · n

−(DW)V · n] dΣ.

Using the relationship ḞW = F ′W +∇F ·W, the Definition
of tangential gradient and tangential divergence, we write the
second-order Eulerian derivative as follows:

d2J(Ω;V,W) =

∫
Σ

F ′W vn dΣ

+

∫
Σ

{[(∇ΣF + (∇F · n)n) ·W]vn dΣ

+ F (divΣ W +DWn · n)vn − F (DW)V · n} dΣ

+

∫
Σ

F (DV)W · n dΣ

=: I1 + I2 + I3.
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We skip I1 and I3 and proceed to simplify I2. First we
observe that

∇Σvn · n = 0, (60)

where vn is the normal component of V restricted to Σ.
Second, we also observe that

κvn = divΣ(vnn). (61)

This follows from divΣ(vnn) = ∇Σvn ·n+vn divΣ n, (60),
and the Definition of curvature.

Then we consider the following Lemma (cf. [11]):
Lemma 3.9: Let V and W be smooth deformation

fields on a neighborhood of Σ and v = V|Σ and w = W|Σ.
Then the following equalities hold:

(i) vΣ · ∇Σwn = n · (DΣw)vΣ + vΣ ·DnwΣ,(62)
(ii) (DV)W · n = wΣ · (∇Σvn − (Dn)vΣ)

+DVn · nwn.
(63)

Applying property (ii) of Lemma 3.9 we obtain

(DW)V·n = vΣ ·(∇Σwn−(Dn)wΣ)+DWn·nvn. (64)

Using (64), we write I2 as

I2 =

∫
Σ

[
∂F

∂n
wnvn + (∇ΣF ·W)vn + F (divΣ W)vn

−
(
vΣ · (∇Σwn − (Dn)wΣ)

)]
dΣ.

By adding and subtracting FwΣ · ∇Σvn, we have

I2 =

∫
Σ

∂F

∂n
wnvn + (∇ΣF ·W)vn + F (divΣ W)vn dΣ

+

∫
Σ

FwΣ · ∇Σvn dΣ

−
∫

Σ

F (vΣ · ∇Σwn − vΣ ·DnwΣ + wΣ · ∇Σvn) dΣ.

From Lemma 3.9, we obtain the following identities:

vΣ · ∇Σwn = n · (DΣw)vΣ + vΣ ·DnwΣ and
wΣ · ∇Σvn = n · (DΣv)wΣ + wΣ ·DnvΣ. (65)

Using these identities and because Dn = DΣn+((Dn)n)·
n = DΣn on Σ we can now write I2 as

I2 =

∫
Σ

{
∂F

∂n
vnwn + (∇ΣF ·W)vn + F (divΣ W)vn

+ FwΣ · ∇Σvn} dΣ

−
∫

Σ

F
(
vΣ ·DΣnwΣ + n ·DΣvwΣ

+n ·DΣwvΣ

)
dΣ

=: I21 + I22.

We retain I22 and simplify I21. Here we first decompose W
in terms of its tangential and normal components. Then we
use (61) to obtain the following:

I21 =

∫
Σ

(
∂F

∂n
vnwn + κFvnwn

)
dΣ

+

∫
Σ

{
(∇ΣF ·W)vn + F (divΣ wΣ)vn

+FwΣ · ∇Σvn

}
dΣ.

The second integral of I21 may be shown to vanish. Thus
I21 becomes

I21 =

∫
Σ

(
∂F

∂n
+ κF

)
vnwn. (66)

Consequently, we write I2 as

I2 =

∫
Σ

(
∂F

∂n
+ κF

)
vnwn dΣ (67)

−
∫

Σ

F

(
vΣ ·DΣnwΣ + n ·DΣvwΣ

+n ·DΣwvΣ

)
dΣ.

Therefore, by considering (67) and incorporating the con-
stant 1

2 that we have neglected at the start of derivation, we
obtain a nice structure for d2J(Ω;V,W):

d2J(Ω;V,W) (68)

=
1

2

∫
Σ

[
F ′W vn +

(
∂F

∂n
+ κF

)
vnwn

−F (vΣ ·DΣnwΣ + n ·DΣvwΣ + n ·DΣwvΣ)

]
dΣ

+
1

2

∫
Σ

F (DV)W · n dΣ,

where F is given by (44) and F ′W by

F ′W =
∂

∂s
Fs

∣∣∣∣
s=0

= −2
∂uD
∂n

[∇u′D,W · n +∇uD · n′W ]

+2λ(κ′WuN + κu′N,W )

−2
∂uN
∂τ

[∇u′N,W · τ +∇uN · τ ′W ]. (69)

The first and second integrals of (68) are the symmetric and
nonsymmetric parts of the second-order Eulerian derivative
of J , respectively. Our results satisfy the structure given by
Novruzi and Pierre (see subsection II-B).

C. The domain differentiation approach

To further validate our result, we present in this subsection
an alternative method to derive to the second-order Eulerian
derivative of J . This time we use a domain differentiation
approach. As before, we start with

d2J(Ω;V,W) =
1

2

∂

∂s

∫
Σs(W)

(FsV · ns dΣs)

∣∣∣∣
s=0

,

where Fs is given by (41). Here uD,s and uN,s satisfy
(50), and (52), respectively; κs = divΣs

ns; and ns and τs
refer to the unit outward normal and unit tangent vectors on
Σs, respectively. Using Stoke’s theorem we first transform
the boundary integral into a domain integral then apply the
domain differentiation formula (21) to get

2d2J(Ω;V,W) =
∂

∂s

∫
Σs(W)

(FsV · ns dΣs)

∣∣∣∣
s=0

=
∂

∂s

∫
Ωs(W)

div(FsV) dx
∣∣∣∣
s=0

=

∫
Ω

{
∂

∂s
div(FsV) + div [(div(FsV))W]

} ∣∣∣∣
s=0

dx
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Applying Stoke’s formula again, we find

2d2J(Ω;V,W) =

∫
Ω

div

[
F ′WV + [div(FV)]W

]
dx

=

∫
Σ

{
F ′WV · n + [div(FV)]W · n

}
dΣ,

where F ′W is given by (69).
As before, we write v in terms of its normal and tangential

components. Applying the divergence, tangential gradient
and tangential divergence formulas given in Lemma 2.15,
we can write

∫
Σ

[div(FV)]W · n dΣ as follows:∫
Σ

[div(FV)]W · n dΣ =

∫
Σ

[div(FV)]wn dΣ

=

∫
Σ

[(∇F ) · v + F divV]wn dΣ

=

∫
Σ

{(
∇ΣF + (∇F · n)n

)
· (vΣ + vnn)

+F (divΣ v +DVn · n)

}
wn dΣ

=

∫
Σ

{
(∇ΣF ) · vΣ + (∇ΣF ) · vnn + (∇F · n)n · vΣ

+(∇F · n)n · vnn
}
wn dΣ

+

∫
Σ

{
F

[
divΣ(vΣ + vnn) +DVn · n

]}
wn dΣ.

Since divΣ(vnn) = (∇Σvn) · n + vn divΣ n = vnκ, one
arrives at

∫
Σ

[div(FV)]W · n dΣ

=

∫
Σ

{
∇ΣF · vΣ + vn

∂F

∂n

+F (divΣ vΣ + vnκ+DVn · n)

}
wn dΣ

=

∫
Σ

{(
∂F

∂n
+ κF

)
vn + F (divΣ vΣ +DVn · n)

+∇ΣF · vΣ

}
wn dΣ

=

∫
Σ

{(
∂F

∂n
+ κF

)
vnwn + FDVn · nwn

+(divΣ(FvΣ))wn

}
dΣ.

(70)

Adding the vanishing term (−κFwnvΣ · n) in the integral
and applying the tangential Stoke’s formula (18), we obtain

∫
Σ

[div(FV)]W · n dΣ (71)

=

∫
Σ

{(
∂F

∂n
+ κF

)
vnwn + FDVn · nwn

− divΣ(FwnvΣ) + (divΣ(FvΣ))wn

}
dΣ.

Applying the tangential divergence formula (17), we can
express (71) as

∫
Σ

[div(FV)]W · n dΣ

=

∫
Σ

{(
∂F

∂n
+ κF

)
vnwn + FDVn · nwn

−∇Σ(Fwn) · vΣ − Fwn divΣ vΣ

}
dΣ

+

∫
Σ

{
(∇ΣF · vΣ)wn + (F divΣ vΣ)wn

}
dΣ.

Expanding the tangential gradient of Fwn and simplifying
the terms, we have

∫
Σ

[div(FV)]W · n dΣ =

∫
Σ

{(
∂F

∂n
+ κF

)
vnwn

+F (DVn · nwn − vΣ · ∇Σwn)

}
dΣ. (72)

In view of (63) and Dn = DΣn, we obtain

DVn ·nwn = (DV)W ·n−wΣ ·(∇Σvn−DΣnvΣ), (73)

and when we substitute this into (72) and rearrange the terms
we get

∫
Σ

[div(FV)]W · n dΣ =

∫
Σ

{(
∂F

∂n
+ κF

)
vnwn

+ F

(
(DΣnvΣ) ·wΣ − vΣ · ∇Σwn −wΣ · ∇Σvn

)
+F (DV)W · n

}
dΣ.

Using the identities in (65), this can be written as∫
Σ

[div(FV)]W · n dΣ =

∫
Σ

(
∂F

∂n
+ κF

)
vnwn dΣ

−
∫

Σ

F

(
vΣ · (DΣn)wΣ + n · (DΣv)wΣ

+ n · (DΣw)vΣ

)
dΣ

+

∫
Σ

F (DV)W · n dΣ.

Combining this with (82), we again obtain the same expres-
sion for the second-order Eulerian derivative of J , that is,

d2J(Ω;V,W) =
1

2

∫
Σ

F ′W vn dΣ

+
1

2

∫
Σ

{(
∂F

∂n
+ κF

)
vnwn − F

(
vΣ · (DΣn)wΣ

+n · (DΣv)wΣ + n · (DΣw)vΣ

)}
dΣ

+
1

2

∫
Σ

F (DV)W · n dΣ

D. The explicit form of d2J(Ω;V,W)

1) Computing
∫

Σ
F ′W vn: We turn to a discussion of the

term
∫

Σ
F ′W vn. We consider (69) and write the integral
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∫
Σ
F ′W vn as follows:∫

Σ

F ′W vn = −2

∫
Σ

∂uD
∂n

[∇u′D,W · n

+∇uD ·N′W ]vn dΣ

+ 2

∫
Σ

λ(κ′WuN + κu′N,W )vn dΣ

− 2

∫
Σ

∂uN
∂τ

[∇u′N,W · τ +∇uN · τ ′W ]vn dΣ

=: M1 +M2 +M3.

First we examine M1. Using (33), we write M1 as

M1 =

∫
Σ

−2
∂uD
∂n

[
∂u′D,W
∂n

+
∂uD
∂n

n · [(DWn · n)n

− (DW)Tn−DnW]
]
vn dΣ

= −2

∫
Σ

∂uD
∂n

[
∂u′D,W
∂n

+
∂uD
∂n

(DWn · n)

− ∂uD
∂n

(DWn · n)− ∂uD
∂n

n ·DnW

]
vn dΣ.

Because nTDn = 0 on Σ we further simplify M1 as

M1 = −2

∫
Σ

∂uD
∂n

∂u′D,W
∂n

vn dΣ. (74)

We introduce the bijective and symmetric Steklov-Poincaré
operator (Dirichlet-to-Neumann operator) S, defined by (cf.
[34], [36])

Su∗ =
∂w∗

∂n
(75)

where w∗ solves the mixed boundary condition
−∆w∗ = 0 in Ω,

w∗ = 0 on Γ,

w∗ = u∗ on Σ.

(76)

Hence, Su′D,W =
∂u′D,W
∂n

, where u′D,W satisfies (50). Since

u′D,W = −∂uD
∂n

wn on Σ one can rewrite M1 as

M1 = −2

∫
Σ

(Su′D,W )
∂uD
∂n

vn dΣ

= 2

∫
Σ

[
S

(
−∂uD
∂n

wn

)][
−∂uD
∂n

vn

]
dΣ. (77)

Similarly, by introducing another Steklov-Poincaré R
(Neumann-to-Dirichlet operator), defined by

R

(
∂w∗

∂n

)
= u∗ (78)

where u∗ satisfies
−∆u∗ = 0 in Ω,

u∗ = 0 on Γ,

∂u∗

∂n
=

∂w∗

∂n
on Σ,

(79)

we obtain

R

(
∂u′N,W
∂n

)
= u′N,W ,

where u′N,W satisfies (52). Hence, we write M2 as follows:

M2 = 2

∫
Σ

λ(κ′WuNvn) dΣ + 2

∫
Σ

λκu′N,W vn dΣ

= 2

∫
Σ

λ

{
Tr

[
D

(
(DWn · n)n− (DW)Tn

)
−DnDW

]
−∇κ ·W

}
uNvn dΣ

+ 2

∫
Σ

λκR

[
divΣ(wn∇ΣuN ) + wnκλ)

]
vn dΣ.

(80)

Finally, we simplify M3 using R and (39):

M3 = −2

∫
Σ

∂uN
∂τ

[
∂u′N,W
∂τ ′W

+∇uN · τ ′W
]
vn dΣ

= −2

∫
Σ

∂uN
∂τ

{
∇
[
R

(
divΣ(wn∇ΣuN )

+ wnκλ

)]
· τ
}
vn

−2

∫
Σ

∂uN
∂τ

{
∇uN ·

[(
(DW)Tn · τ

)
n

−(Dτ)W

]}
vn dΣ.

(81)

Combining (74), (80), and (81) we obtain an explicit expres-
sion for

∫
Σ
F ′W vn:∫

Σ

F ′W vn = 2

∫
Σ

[
S

(
−∂uD
∂n

wn

)][
−∂uD
∂n

vn

]
dΣ

+ 2

∫
Σ

λ

{
Tr

[
D

(
(DWn · n)n− (DW)Tn

)
−DnDW

]
− ∇κ ·W}uNvn dΣ

+ 2

∫
Σ

λκR

[
divΣ(wn∇ΣuN ) + wnκλ

]
vn dΣ

− 2

∫
Σ

∂uN
∂τ

{
∇
[
R

(
divΣ(wn∇ΣuN )

+ wnκλ

)]
· τ
}
vn dΣ

−2

∫
Σ

∂uN
∂τ

{
∇uN ·

[(
(DW)Tn · τ

)
n

−(Dτ)W

]}
vn dΣ.

(82)

2) Analyzing
∫

Σ
∂F
∂n vnwn: Inserting the definition of F

(44), we obtain∫
Σ

∂F

∂n
vnwn =

∫
Σ

∂

∂n

(
λ2 −

(
∂uD
∂n

)2
)
vnwn dΣ

+ 2

∫
Σ

∂

∂n
(λκuN )vnwn dΣ

−
∫

Σ

∂

∂n

(
∂uN
∂τ

)2

vnwn dΣ

=: N1 +N2 +N3. (83)
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At first, we write N1 as

N1 =

∫
Σ

−2
∂uD
∂n

∂2uD
∂n2

vnwn.

To simplify this we use the Laplace-Beltrami operator ∆Σ

(cf. [32]) defined by

∆Σu = divΣ(∇Σu),

which is related to the usual Laplace operator as

∆u = ∆Σu+ κ
∂u

∂n
+
∂2u

∂n2
, (84)

where κ represents the mean curvature of Σ. Note that the

term
∂2u

∂n2
can be written as ((∇2u)n) ·n, where ∇2u is the

Hessian of u.
Using (84) we decompose ∆uD as

∆uD = ∆ΣuD + κ
∂uD
∂n

+
∂2uD
∂n2

.

We know from (3) that the Laplacian of uD vanishes. Since

uD = 0 on Σ, ∆ΣuD also vanishes. Hence we have
∂2uD
∂n2

=

−κ∂uD
∂n

. Therefore,

N1 =

∫
Σ

2κ

(
∂uD
∂n

)2

vnwn. (85)

We write N2 as

N2 = 2

∫
Σ

∂

∂n
(λκuN )vnwn dΣ = 2

∫
Σ

(λuN
∂κ

∂n
+ κλ2).

(86)
Next, we observe that N3 does not contribute at all because
it can be written as

N3 = −
∫

Σ

2
∂uN
∂τ

∂2uN
∂n∂τ

vnwn,

but
∂2uN
∂n∂τ

=
∂

∂τ

(
∂uN
∂n

)
=

∂

∂τ
(λ) = 0.

Combining (85) and (86) we obtain an expression for∫
Σ

∂F

∂n
vnwn:

∫
Σ

∂F

∂n
vnwn dΣ = 2

∫
Σ

κ

(
∂uD
∂n

)2

vnwn dΣ

+2

∫
Σ

(λuN
∂κ

∂n
+ κλ2) dΣ. (87)

∫
Σ

∂F

∂n
vnwn dΣ = 2

∫
Σ

κ

(
∂uD
∂n

)2

vnwn dΣ

+2

∫
Σ

(λuN
∂κ

∂n
+ κλ2) dΣ. (88)

Finally, we insert (88) and (82) into (68) to obtain the ex-
plicit representation of the second-order Eulerian derivative
of J associated with the exterior Bernoulli free boundary

problem:

d2J(Ω;V,W) =

∫
Σ

[
S

(
−∂uD
∂n

wn

)][
−∂uD
∂n

vn

]
dΣ

+

∫
Σ

λ

{
Tr

[
D

(
(DWn · n)n− (DW)Tn

)
−DnDW

]
−∇κ ·W

}
uNvn dΣ

+

∫
Σ

λκR

[
divΣ(wn∇ΣuN ) + wnκλ

]
vn dΣ

−
∫

Σ

∂uN
∂τ

{
∇
[
R

(
divΣ(wn∇ΣuN )

+ wnκλ

)]
· τ
}
vn dΣ

−
∫

Σ

∂uN
∂τ

{
∇uN ·

[(
(DW)Tn · τ

)
n

−(Dτ)W

]}
vn dΣ

+

∫
Σ

κ

(
∂uD
∂n

)2

vnwn dΣ +

∫
Σ

(λuN
∂κ

∂n
+ κλ2) dΣ

+
1

2

∫
Σ

{[
λ2 − (

∂uD
∂n

)2 + 2λκuN − (
∂uN
∂τ

)2

]
[
κvnwn −

(
vΣ ·DΣnwΣ + n · (DΣv)wΣ

+ n · (DΣw)vΣ

)]}
dΣ

+
1

2

∫
Σ

{[
λ2 − (

∂uD
∂n

)2 + 2λκuN − (
∂uN
∂τ

)2

]
[(DV)W · n]} dΣ.

(89)
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