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Abstract—In this paper, we mainly investigate the stability 

problem for a class of grey stochastic systems with time delays. 
The parameters of system are evaluated by grey numbers.  
Firstly, we construct a suitable Lyapunov-Krasovskii functional. 
Then, by using Itô’s differential formulation and decomposition 
technique, some sufficient conditions are derived to ensure the 
grey system in the mean-square exponential stability and almost 
surely exponential stability. Finally, an example to illustrative 
the effectiveness of main results is also given.  
 

Index Terms—Grey Stochastic Systems, Time Delays, 
Lyapunov-Krasovskii Functional, Decomposition Technique, 
Mean-Square Exponential Stability, Almost Surely Exponential 
Stability  

I. INTRODUCTION 
ow, it has been well recognized that, time delays  are 
unavoidably encountered in many physical systems, 

which are the main sources of oscillation, bifurcation, or 
performance degradation [1]. For example, on account of 
finite switching speed of neurons and amplifiers, time delays 
may lead to instability and oscillation in a neurons network. 
So, the stability problem of time-delay systems has attracted 
considerable attention over decades, many important results 
have been presented in the literature [2-11]. In [3], by using a 
Lyapunov-Krasovskii functional, the authors have provided 
novel delay-dependent conditions in terms of linear matrix 
inequalities for a class of neutral BAM neural networks with 
time-varying delays.  

In addition to time-delay effects, stochastic effects are 
another sources of instability and uncertainties in many 
systems. For instance, stochastic phenomenon frequently 
occurs in the electrical circuit design of neural networks, and 
the effects of stochastic phenomenon should be taken into 
account [12-13]. In recent years, the stability analysis of 
stochastic systems has been an attractive topic for many 
scholars, and a large amount of results have been reported 
[14-19]. In [17], by using the Razumikhin-type theorem, the 
authors have considered the stability problem of stochastic 
interval systems, and several sufficient conditions have been 
proposed.  

Also, due to slowly varying parameters, modeling errors, 
or unknown uncertainties, it is impossible to obtain some 
parameters of stochastic systems accurately. In [20], the 
authors have pointed out that, if the parameters are evaluated 
by grey numbers, the systems can become grey (uncertain)  
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systems. So, it is significant and important to discuss the 
stability problem for grey stochastic systems. However, to 
date, there have been very few works on this problem [20-24]. 
In [20], the authors have investigated the exponential stability 
for the grey stochastic systems with distributed delays and 
interval parameters, and the delay-dependent criteria have 
been obtained to ensure the systems in p-moment exponential 
robust stability. In [24], the authors have studied the robust 
stability problem for the grey stochastic nonlinear systems 
with distributed delays, and have proposed several novel 
conditions in terms of linear matrix inequalities. 

In this paper, the stability problem for a class of grey 
stochastic time-delay systems is studied. By constructing a 
suitable Lyapunov-Krasovskii functional and using Itô’s 
differential formulation, particularly, using decomposition 
technique of the continuous matrix-covered sets [20-24], we 
will obtain several novel exponential stability criteria, which 
ensure the grey system in mean-square exponential stability 
and almost surely exponential stability. Moreover, an 
example is given to illustrate the effectiveness of the stability 
criteria. 

The notations are standard. nR and nnR   denote, the 
n-dimensional Euclidean space and the set of real n×n 
matrices. The superscript ""T  denotes the transpose,  will 

refer to the Euclidean norm for vector or the spectral norm of 
matrices. For real symmetric matrices X andY , the notation 

YX  (respectively, YX   ) means that YX   is 
positive semi-definite (respectively, positive definite). While, 

  PFF tt ,,, 0  is a probability space with a filtration 

  0ttF , and  nRC ];0,[   denotes the family of all 

continuous nR -valued functions  on ]0,[  . Denote by 

)];0,([2
0

n
F RL   the family of all 0F -measurable bounded 

 nRC ];0,[  -valued random variables  0:)(   .  
  

II. PRELIMINARIES AND PROBLEM FORMULATION  
In this section, we consider the following grey stochastic 

time-delay system:  
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where )(A and )(B are grey (uncertain) n×n matrices. 

Let )()( a
ijA  , )()( b

ijB  , and a
ij , b

ij  are grey 

elements of )(A and )(B . 

},...2,1,,:)()ˆ({],[ njiaaaaAUL ijijijijaa 

},...2,1,,:)()ˆ({],[ njibbbbBUL ijijijijbb 
 

are the continuous matrix-covered sets of )(A and )(B .  

where )ˆ(A and )ˆ(B are whitened (deterministic) 

matrices of )(A and )(B , ],[ ijij aa  and ],[ ijij bb  are 

the number-covered sets of a
ij  and b

ij . 

 
For system (1), the following assumptions are given:  
(A1) nnnn RRRRH 

 : , and satisfies the local 
Lipschitz condition. 
(A2) Assume that there exist constants 0 , 0 , for 

arbitrary  RRRHtyx nn:),,( , the following 
inequality holds: 

    22],,,,[ yxtyxftyxfTrace T   

 

The following definitions and lemmas are introduced: 

Definition 2.1. [20] System (1) is said to be mean-square 

exponentially stability, if for all )];0,([2
0

n
F RL   and 

whitened matrices ],[)ˆ( aa ULA  , ],[)ˆ( bb ULB  , there 

exist constants 0r and 0C , such that  

0,)(sup);( 2

0

2




 tECetxE rt   

Definition 2.2. [20] System (1) is said to be almost surely 
exponential stability, if for all )];0,([2

0

n
F RL    and 

whitened matrices ],[)ˆ( aa ULA  , ],[)ˆ( bb ULB  , there 

exists constant 0ˆ r , such that 

..,
2
ˆ

);(ln1suplim sartx
tt




  

Lemma 2.1. [20] If nmijA  )()( is a grey matrix, 

],[ ijij aa is a number-covered sets of ij , then for arbitrary 

whitened matrix ],[)ˆ( aa ULA  , we have 

i) ALUA aa 
2

)ˆ(      

ii) 
2

0 aa LUA       

iii) 
22

)ˆ( aaaa LULUA 



  

where nmija aL  )( , nmija aU  )( , nmij
ijij

r
aa

A 


 )ˆ

2
( , 

and ijr̂  is a whitened number of ij , ]1,1[ˆ ijr , ]1,1[ is a 

number-covered sets of ij , and ij  is a unit grey number. 

Lemma 2.2. [25] Let nRyx , , nnRP  is a symmetric 

positive definite matrix, nnRNM , , constant 0 ,  
we have  

PNyNyPMxMxPNyMx TTTTTT 12    
Lemma 2.3. [26] (Schur complement). Given constant 

matrices 









2212

1211

SS
SS

S T , where TSS 1111  , TSS 2222  , 

the following conditions are equivalent: 
i) 0S  

ii) 022 S , 012
1

221211   TSSSS  
 

III. MAIN RESULTS AND PROOFS  
In this section, several sufficient conditions are proposed 

to guarantee system (1) in mean-square exponential stability 

and almost surely exponential stability. 

Theorem 3.1. System (1) is mean-square exponentially 

stability, if there exist symmetric matrices 0P , 0Q , 0R  

and constants 01  , 02  , such that  
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0
2min )(sup)( sGR
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where  

PLULUPRQ
T
a

T
aaa

221





   

n
a ILUP a ]
2
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n
b IPLUQ b ])(

2
[ max

2

12 


 ， 

)( PPM  ， )( 21 nn IIdiagJ  .                

Then, for all )];0,([2
0

n
F RL  , we have 

2),( txE   

rt
rr

e
P

RerQerP 






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)()()()()(

min

max
23

max
2

max

    
2

0
)(sup 


E ， 0t                                      (4) 

Here, r is the unique positive solution of the following 

equation 

)]()([)( maxmaxmax RQerPr rt   

0)(max                                                (5) 
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and 01  r . 

 

Proof  By Lemma 2.3, it follows that  
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is equivalent to 
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For convenience, let ),( tx = )(tx .  

Firstly, we construct a Lyapunov-Krasovskii functional: 
 )),(()),(()),(()),(( 321 ttxVttxVttxVttxV     (7) 
where 

)()()),((1 tPxtxttxV T  

dsstQxstxttxV T



02 )()()),((  

   
dsdsxRsxttxV

t

t

T )()([)),((
0

3  

 

By using Itô’s differential formula, we have 
)),(( ttxLV  

)())(( txRQtxT   

)()(  tQxtxT               





0

)()( dsstRxstxT  

)()ˆ()(2 txPAtxT   

)()ˆ()(2  txPBtxT  





0

)()()(2 dsstxsGPtxT  

   ]),(,),(,[ ttxxPfttxxfTrace T    (8) 
Obviously, we see 





0

)()( dsstRxstxT  





0

2
min )()( dsstxR                                   (9) 

By Lemma 2.1 and Lemma 2.2, we can get  

)()ˆ()(2 txPAtxT    

)()
22

)(( txPLULUPtx
T
a

T
aaaT 




  

)()(2 tAxPtxT   

)()
22

)(( txPLULUPtx
T
a

T
aaaT 




  

)()(
2

2)(max txtxLUP Ta a
                      (10) 

and 

)()ˆ()(2  txPBtxT   

)()
2

)(( 


 txLUPtx bbT  

)()
2

)(( txPLUtx
T
b

T
bT                     

)()( 21
1 txPtxT  

)()(
2

2

1 


 txtxLU Tb b                           (11) 

 and 





0

)()()(2 dsstxsGPtxT  

)()( 21
2 txPtxT  

))()(())()((
002 


 dsstxsGdsstxsG T        (12) 

and 

))()(())()((
00 
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By assumptions (A2), we have 
   ]),(),(),(),([ ttxtxPfttxtxfTrace T   

)]()()()()[(max  txtxtxtxP TT          (14) 

Combining with (8)-(14), if (2) and (3) hold, we can obtain 
)),(( ttxLV  












)(

)(
))(),((

tx
tx

txtx TT  

))()()(( 22
max  txtx    

2
max )()( tx                                                 (15) 

Now, let )),(( ttxVert  and by (15), we have  
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0)(/ rf , 0)()0( max f  and )(f ,  

equation (2) must have a uniquely positive solution r . 

From (16) and noting equation (5), we can get  
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Then, by (17) and (18), we get 
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On the other hand, 
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By (19) and (20), we can obtain that 
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which implies that system (1) is mean-square exponentially 

stability. This completes the proof of Theorem 3.1. 

 
Following a similar line as the proof of Theorem 3.1, and 

let )0(  kkIP n , n
s

IsGR 2

0
2 )(sup


 , we can obtain 

another criterion. 
 
Corollary 3.1. System (1) is mean-square exponentially 
stability, if there exist symmetric matrix 0Q , and 

constants 01  , 02  and 0k , such that the 
following LMI holds: 
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Remark 3.1. If AA )( , BB )( , system (1) can 
become a deterministic time-delay stochastic system: 
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Corollary 3.2.  System (25) is mean-square exponentially 
stability, if there exist symmetric matrix 0Q , and 
constants 0 , and 0k , such that the following LMI 
holds: 
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here, r is the unique positive solution of the following 

equation 
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and 01  r . 

 
Proof   Now, in the proof of Corollary 3.1, let 

01  , 2 , 

AUL aa  ,  BUL bb  ,  

nkIF  ， nIJ 1 . 
We follow a similar line as the proof of Corollary 3.1, it is 

easy to see that system (25) is mean-square exponentially 

stability. The remaining details are omitted.  

 

Theorem 3.2. Under the conditions of Theorem 3.1, system 

(1) is almost surely exponential stability, if for all 
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where r is the unique positive solution of equation (5).  
 
Proof   Firstly, we have 
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By Doob's martingale inequality and Cauchy inequality, for 
arbitrary integer 1k and ),0( r , we get 







  






 kr

s
eskxP )(2

0
)(sup:

 
2

0
)(sup 



 EeKe kr                                        

By Borel-Cantelli lemma, for almost all  and all but 
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finitely many k , we can obtain  
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
 kr
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Then, following a similar line as the proof of Theorem 2 in 
[21], we can complete the proof of Theorem 3.2, and the 
details are omitted. 
 

IV. Examples 
To illustrate the effectiveness of the obtained results, an 

example is provided as follows: 
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where 
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Here, aL 、 aU and bL 、 bU  are the lower bound and upper 

bound matrices of )(A and )(B . 
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By the programmed procedure of [20-22], we can calculate 
and optimize 1 , 2  satisfing (2) and (3). Then, it is easy to 
get r =1.4283. By Theorem 3.1, we can see that system (31) 
is mean-square exponential stability. 

V. Conclusion  
In this paper, we have studied the stability problem for a 

class of grey stochastic time-delay systems. By using the 
Lyapunov stability theory, Itô’s differential formula, and 

decomposition technique, we have proposed some novel 
sufficient conditions, which guarantee our considered grey 
system in the mean-square exponential stability and almost 
surely exponential stability. In addition, an example is 
provided to show the effectiveness of the obtained criteria. 
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