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Abstract—This study addresses the valuation problem of an
equity-linked term life insurance in two mortality models - a
deterministic mortality and a stochastic mortality. For each
case, the Hamilton-Jacobi-Bellman (HJB) Partial Differential
Equation (PDE) for the corresponding utility function is derived
with a continuous time model, and the principle of equivalent
utility is applied to obtain a PDE for the indifferent price of
the premium when an exponential utility function is employed.
Numerical examples are performed with Gompertz’s law of
mortality for the deterministic model and with a mean-reverting
Brownian Gompertz (MRBG) process for the stochastic model.

Index Terms—Equity-Linked Life Insurance, indifference
pricing, stochastic mortality.

I. INTRODUCTION

THIS study focuses on the valuation problem of an
equity-linked term life insurance using the theory of

indifference pricing. In addition to a mortality risk like
any other life insurance product, an equity-linked term life
insurance has a market risk from the underlying asset.

In recent years, insurers have offered more flexible life
insurance products that combine the death benefit coverage
with an investment component, to compete with other forms
of the policy holder’s savings, for example, mutual funds
or banks. An equity-linked life insurance product can offer
a benefit from the performance of an underlying asset by
defining the death benefit to depend on the account value of
the underlying asset. The pricing and hedging problem of the
equity-linked life insurance has been investigated extensively,
and it is well summarized by Melnikov and Romanyuk [12].
As mentioned in their article, insurance firms do not consider
the mortality risk in valuation of the policies nor adopt
adequate mortality rates. This leads to an overpricing or
underpricing of the premiums and the burden falls on the
customers or the firm itself. Young [19] considered the same
problem using the theory of indifference pricing when the
mortality rate is computed using Gompertz’s law of mortality.
The purpose of this study is to extend their idea to include
a stochastic mortality rate.

Indifference pricing, also known as reservation pricing or
private valuation, is a method of pricing financial derivatives
with regard to a utility function. It is one of the pricing tools
in incomplete financial markets, and it uses the principle
of equivalent utility. Utility functions are widely used for
problems in pricing and hedging of financial derivatives,
see [8] and [15], for example. Utility indifference pricing
was first introduced by Hodges and Neuberger [6] when
they considered transaction costs in replicating contingent
claims. The main idea of indifference pricing is that by
comparing the maximal expected utilities with and without a
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contingent claim, one can find a value of the price function
which is indifferent to the existence of the contingent claim.
This idea was used to price insurance risks in a dynamic
financial market setting by Young and Zariphopoulou [20]
using an exponential utility. The same idea was extended
by Young [19] to study an equity-indexed life insurance,
and the derived PDE for premiums and reserves generalized
the Black-Scholes equation by including a nonlinear term
reflecting the nonhedgeable mortality risk. We will adopt
their model to study the indifference pricing of an equity-
indexed life insurance with two different mortality risk
models: a deterministic and a stochastic. Indifference pricing
is also used in pricing problems in an incomplete market.
The valuation of options in a stochastic volatility model for
stock price using indifference pricing was studied by Sircar
and Sturm [18] and Kumar [7].

Stochastic mortality became important especially for the
mortality contingent claim. In [14], Milevsky and Promislow
studied the pricing problem of an option to annuitize when
considering stochastic mortality rates and stochastic interest
rates. They also studied how to hedge an option to annuitize
using pure endowments, default free bonds, and life insur-
ance contracts. Variable annuities under stochastic mortality
were also considered by Ballotta and Haberman [1]. Pricing,
reserving and hedging of a guaranteed annuity option (GAO)
valuation problem was studied when mortality risk was
incorporated via a stochastic model of the underlying hazard
rates. Assuming a stochastic mortality that is independent
of the financial risk, a general pricing model was proposed,
and the Monte Carlo method was used for the estimation
of the value of GAO. Their stochastic mortality model was
also used by Piscopo and Haberman [16], who considered a
Guaranteed Lifelong Withdrawal Benefits (GLWB) contract
under the hypothesis of a predetermined withdrawal amount.
The valuation approach was based on the decomposition of
the product into living and death benefits, and a no arbitrage
model was used to derive the valuation formula, with a fixed
mortality and a stochastic mortality.

Indifference pricing of mortality contingent claims was in-
vestigated by Ludkovsky and Young [10] with both stochastic
hazard rates in the population mortality and the stochastic
interest rates. The resulting PDEs were linear for pure
endowments and temporary life annuities in a continuous
time model, and it was found that the price-per-risk increases
as more contracts are sold. A study of the indifference pricing
of a traditional life insurance and pension products portfolio
with stochastic mortality was presented by Delong [5], when
a financial market consists of a risk-free asset with a constant
rate of return and a risky asset whose price is driven by a
Levy process. He applied techniques from stochastic control
theory to solve the optimization problems.

In this paper, we consider the pricing problem of an equity-
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linked term life insurance using the theory of indifference
pricing, when the mortality of the insured is described by two
different mortality models: a deterministic mortality and a
stochastic mortality. The remainder of this paper is organized
as follows. In Section II, we present the pricing PDE of
an equity-indexed term life insurance using an exponential
utility in the continuous-time model with a deterministic
mortality function, as described in [19]. The numerical
solutions of the PDE with Gompertz’s law of mortality
and the sensitivities of the indifference prices with respect
to various parameters are also provided. The pricing PDE
and numerical examples with a stochastic mortality model
are given in Section III. We adopt the MRBG process to
model the mortality risk. Finally, Section IV summarizes our
findings and outlines future works to extend our model.

II. INDIFFERENCE PRICING OF AN EQUITY-INDEXED
LIFE INSURANCE WITH A DETERMINISTIC MORTALITY

A. The Financial Market: Merton’s Model

We present the classical model by Merton [13] which
investigates the optimal investment strategies of an individual
with an initial wealth, who seeks to maximize the expected
utility of the terminal wealth. The investor has the oppor-
tunity to trade between a risky asset (stock) and a risk-free
asset (U.S. treasury bond). The price of the risky asset Ss

for some time s > t, with a fixed time t, follows{
dSs = µSsds+ σSsdBs,
St = S > 0,

where Bs is a standard Brownian motion on a probability
space (Ω,F ,P) with a filtration F and a probability measure
P. The rate of return µ and the volatility σ are positive
constants.

The price of the risk-free bond P̄s for some time s > t
follows

dP̄s = rP̄sds,

where r is a constant rate of return (or force of return) of
the risk-free bond, and we assume µ > r > 0.

Let w be the initial wealth of the insurer at time t, and
Ws be the wealth of the insurer at time s in [t, T ], where T
is the terminal time. Suppose the insurer trades dynamically
between the stock and the bond. Let πs be the amount of
wealth invested in the stock at time s. Then the amount
invested in the bond is πb

s = Ws − πs, and the dynamics
of the wealth process becomes

dWs = πb
s

(
dP̄s

P̄s

)
+ πs

(
dSs

Ss

)
= (Ws − πs)rds+ πs(µds+ σdBs).

Hence we have{
dWs = (rWs + (µ− r)πs)ds+ σπsdBs, t ≤ s ≤ T,
Wt = w.

B. Expected Utility Without the insurance risk

Suppose the investor wants to maximize the expected
utility of the terminal wealth, and define the value function
V (t, w) as

V (t, w) = sup
πt∈A

E[u(WT )|Wt = w],

where A is the set of admissible policies, and u : R → R is
a utility function, which is increasing, concave, and smooth.
We will use an exponential utility function to derive a PDE
for the indifference price.

It has been shown in [2] that V satisfies the following HJB
equation:

{
Vt +maxπt [(µ− r)πtVw +

1

2
σ2π2

t Vww] + rwVw = 0,

V (T,w) = u(w).

Since the maximum function is quadratic in πt and the
concavity of the utility function u is inherited to the value
function, the maximum exists and we have the optimal
investment process

π∗
t = −µ− r

σ2
· Vw(w, t)

Vww(w, t)
.

This gives a closed form PDE for V : Vt + rwVw − (µ− r)2

2σ2
· V 2

w

Vww
= 0,

V (T,w) = u(w).
(1)

One of the advantages to considering an exponential utility
function is that we can find the closed form solution to (1).
Suppose u(w) = − 1

γ
e−γw, for some γ > 0, then we obtain

the solution V (t, w) to be

V (t, w) = − 1

γ
exp

[
−γwer(T−t) − (µ− r)2

2σ2
(T − t)

]
.

(2)
We also can find the corresponding optimal strategy

π∗
t (t, w) =

µ− r

σ2
· e

−r(T−t)

γ
,

which is not stochastic and independent of w. It is generally
observed when considering exponential utility. Since the
absolute risk aversion for the exponential utility function is
measured by a constant γ, (−u′′(w)/u′(w) = γ), one can
observe that as the investor’s risk aversion (γ) increases,
the amount of money invested in the risky asset (π∗

t ) de-
creases [20].

C. Expected Utility with the insurance risk

The insurer has an opportunity to insure a person whose
age is x+ t at time t. The death benefit of this life insurance
is defined to be G = max(A0, Aτ ), where τ < T is the
time of death of the policy holder, A0 is the initial account
value of the underlying mutual fund at the time when the
contract is made, and As is the account value at time s. This
insurance policy is an equity-indexed product since it is tied
to an account value through the function G. Suppose the
insurer charges an insurance fee to hedge the market risk,
and we assume that it is deducted from the account value as
an ongoing fraction, α1. The dynamics of As follow

dAs = (µ− α)Asds+ σAsdBs,

where Bs is a standard Brownian motion on (Ω,F ,P), and
µ (rate of return) and σ (volatility) are constants. Suppose

1For simplicity, we assume it is a fixed constant.
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the insurer wants to maximize the expected utility of the
terminal wealth, and define the value function

U(t, w,A) = sup
πt∈A

E{u(WT )|Wt = w,At = A},

where A is the set of admissible policies, and u : R → R is
a utility function, which is increasing, concave, and smooth.

The wealth process should follow dWs = [rWs + (µ− r)πs]ds+ σπsdBs,
Wt = w,

Wτ+ = Wτ− −Gτ , if τ < T.

The HJB equation for U can be obtained as follows (see
Appendix)

Ut + rwUw + (µ− α)AUA + 1
2σ

2A2UAA

+λx(t)[V (w −G, t)− U ]
+maxπt [(µ− r)πtUw + σ2πtAUwA

+1
2σ

2π2
tUww] = 0,

U(T,w,A) = u(w),

(3)

where λx(t) is the force of mortality of a person aged x at
time t.

The corresponding optimal strategy π∗
t is

π∗
t = −µ− r

σ2
· Uw

Uww
−A

UwA

Uww
.

Suppose we use the exponential utility u(w) = − 1

γ
e−γw,

for some γ > 0. Because of the nature of the exponential
utility, we propose the solution of (3) to be in the form of
U(t, w,A) = V (t, w)·ϕ(t, A) [19]. Then the optimal strategy
becomes

π∗
t = −µ− r

σ2
· Vw

Vww
−A

Vw

Vww
· ϕA

ϕ
.

Let U = V · ϕ in (3). From (2), we also have

V 2
w

Vww
= V,

and
V (t, w −G) = V (t, w) exp[γGer(T−t)].

Then we obtain the PDE for ϕ from (3):
ϕt + (r − α)AϕA + 1

2σ
2A2(ϕAA − ϕ2

A

ϕ )

+λx(t)(e
γGer(T−t) − ϕ) = 0,

ϕ(T,A) = 1.

(4)

By introducing η(t, A) as ϕ(t, A) = eη(t,A), we have
ηt + (r − α)AηA + 1

2σ
2A2ηAA

+λx(t)(e
γGer(T−t)−η − 1) = 0,

η(T,A) = 0.

(5)

Now let P (t, A) be the indifference price, that is, the
minimum premium the insurer should have in exchange for
insuring the person whose age is x+ t at time t for a term
life insurance which expires at time T . Then P (t, A) should
solve

V (t, w) = U(t, w + P,A) = V (t, w + P )ϕ(t, A),

and using the closed form of V in (2), we have a formula
for P (t, A) with respect to η as

P (t, A) =
1

γ
e−r(T−t) · η(t, A).

TABLE I
PARAMETER VALUES

Age at inception x 50
Risk free interest rate r 0.08

Volatility of the risky asset σ 0.2
Insurance fee α 0.001

Term of policy T 15 years

Using this relationship in (5), we can derive a PDE for
P (t, A)

−rP + Pt + (r − α)APA + 1
2σ

2A2PAA

=
1

γ
e−r(T−t)λx(t)[1− e−γer(T−t)·(P−G)],

P (T,A) = 0.

(6)

D. Numerical Example and Sensitivity Analysis
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Fig. 1. Price with respect to time and account value
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Fig. 2. The relationship between γ and P (0, A0)

In this section, we solve (6) assuming the mortality λx(t)
follows Gompertz’s law of mortality

λx(t) = B · Cx+t,

with B = 1.164 × 10−5 and C = 1.1096. These parameter
estimations were obtained in [11] using 1959-1999 mortality
data for Sweden. To solve (6) numerically, we use the finite
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Fig. 3. The relationship between insurance fee and P (0, A0)
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Fig. 4. The relationship between volaility and P (0, A0)

difference method, particularly, backward difference scheme
for the time t and the central difference scheme for the
account value A. We set the minimum account value to be
zero and the maximum account value to be 2, with the initial
account value (A0) of 1.

We assume the PDE holds on the boundary since the
domain is truncated. For the boundary condition when the
account value is maximum (A = 2), we assume the linearity
of the premium P in terms of the account value, namely, we
set PAA = 0, and solve

−rP+Pt+(r−α)APA =
1

γ
e−r(T−t)λ[1−e−γer(T−t)·(P−G)].

When the account value is minimum (A = 0), we solve

−rP + Pt =
1

γ
e−r(T−t)λ[1− e−γer(T−t)·(P−G)].

A typical solution for the premium function P is plotted
in Figure 1 with respect to the time and the account value,
using the parameters in Table I for the base case. From the
plot, we can observe that P increases as the account value
A increases, which is expected since the higher the account
value is, the higher the death benefit G = max(A0, Aτ )
will be. The insurer should receive more premium for a
higher death benefit. The premium P decreases as the time
t increases,which is a common trend for an equity linked
financial derivative (for example, the theta, the rate of change
of the derivative with respect to the time t, is negative for a
European call option).

Figure 2 shows the relationship between the risk aversion
γ and the premium P . As observed in other studies of
mortality contingent claims ( [10], [19]), when the risk

aversion increases, the indifference price of the premium also
increases. Figure 3 shows the impact of the insurance fee α
on the premium P . It is clear that they should have a negative
relationship, since if one has to pay more insurance fees, the
price of the product at time zero should decrease. A positive
relationship between the volatility σ of the risky asset and
the premium P is reflected in Figure 4, which is consistent
with a general financial theory that the financial product is
more expensive when the volatility is high. The premium P
is plotted against the age at inception x for various volatilities
in the same figure, and we can observe that if a person opted
to purchase the life insurance product at later dates (as x
increases), he should pay a higher price for the benefit. This
can be justified as follows: when x increases, the mortality
of the person increases, and, hence, the price of the life
insurance product should also increase.

III. INDIFFERENCE PRICING OF AN EQUITY-INDEXED
LIFE INSURANCE WITH A STOCHASTIC MORTALITY

A. Pricing PDE with stochastic mortality

Now we consider a stochastic model for the force of
mortality for an individual or a set of individuals of the
same age. We adopt the model proposed by Ludkovsky and
Young [10] and assume the force of mortality λ follows a
diffusion process as

dλs = µ(s, λs)ds+ σ(s)λsdB
λ
s , (7)

where Bλ
s is a Brownian motion on a probability space

(Ω,F ,P) which is independent of Bs in the previous section.
The volatility σ is a nonzero continuous function of time s
bounded below by a positive constant κ on [0, T ]. The drift
µ(s, λ) is a continuous function of s and λ which is positive
for all s in [0, T ]. We will use the mean-reverting Brownian
Gompertz model in [14] for the numerical examples.

Suppose the account value As and the wealth process Ws

are defined as in Section II. The insurer agrees to pay Gτ =
max(A0, Aτ ) upon death at τ < T given a person aged x
at t = 0 purchased the life insurance product. Suppose the
insurer wants to maximize the expected utility of the terminal
wealth, and define the value function

U(t, w,A, λ) = sup
πt∈A

{u(WT )|Wt = w,At = A, λt = λ},

where A is the set of admissible policies, and u : R → R is
a utility function, which is increasing, concave, and smooth.

The HJB equation for U can be obtained as follows (see
Appendix)


U t + rwUw + (µ− α)AUA + 1

2σ
2A2UAA

+λ[V (t, w −G)− U ] + µλUλ + 1
2σ

2λ2Uλλ
+maxπ[(µ− r)πUw + σ2πAUwA

+1
2σ

2π2Uww] = 0,
U(T,w,A) = u(w).

(8)

Since the optimized terms are the same as in (3), it will
assume the same optimal strategy

π∗
t = −µ− r

σ2
· Uw

Uww
−A

UwA

Uww
.
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Following the idea in Section II and using the same expo-
nential utility u(w) = − 1

γ e
−γw , we assume the solution of

(8) to be in the form of

U(t, w,A, λ) = V (t, w) · ϕ(t, A, λ).

Then the optimal strategy becomes

π∗
t = −µ− r

σ2
· Vw

Vww
−A

Vw

Vww
· ϕA

ϕ
.

Let U = V · ϕ in (8). After collecting V terms and ϕ terms,
(8) becomes

V [ϕs + (r − α)AϕA + 1
2σ

2A2ϕAA

+λ[exp(γGer(T−t))− ϕ]

+µλϕλ + 1
2σ

2λ2ϕλλ − 1
2σ

2A2 ϕ
2
A

ϕ
]

+ϕ[Vs + rwVw − (µ−r)2

2σ2 V ] = 0.

The multiple to ϕ in the last term is zero because of (1),
hence we obtain the PDE for ϕ


ϕt + (r − α)AϕA + 1

2σ
2A2(ϕAA − ϕ

2
A

ϕ
)

+µλϕλ + 1
2σ

2λ2ϕλλ + λ(eγGer(T−t) − ϕ) = 0,

ϕ(T,A, λ) = 1.

(9)

To eliminate the nonlinear term ϕ
2
A

ϕ
in (4), let us define

η(t, A, λ) by
ϕ(t, A, λ) = eη(t,A,λ).

Then we have a PDE for η(t, A, λ):
ηt + (r − α)AηA + 1

2σ
2A2ηAA + µληλ

+1
2σ

2λ2(η2λ + ηλλ) + λ(eγGer(T−t)−η − 1) = 0,
η(T,A, λ) = 0.

(10)
Now let P (t, A, λ) be the indifference price, that is, the

minimum premium the insurer should have in exchange for a
term life insurance which expires at time T . Then P (t, A, λ)
should solve

V (t, w) = U(t, w + P ,A, λ) = V (t, w + P )ϕ(t, A, λ),

and using the closed form of V in (2), we have a formula
for P (t, A, λ) with respect to η as

P (t, A, λ) =
1

γ
e−r(T−t) · η(t, A, λ).

Using this relationship in (10), we can derive a PDE for
P (t, A, λ)

−rP + P t + (r − α)APA + 1
2σ

2A2PAA

+µλPλ + 1
2σ

2λ2(γer(T−r)P
2

λ + Pλλ)

=
1

γ
e−r(T−t)λ[1− e−γer(T−t)·(P−G)],

P (T,A, λ) = 0.

(11)

B. Numerical Example

For numerical examples that solves (11), we use the
following MRBG process proposed in [14]:

dλs =

(
g +

1

2
σ2 + κ(gs+ lnλ0 − lnλs)

)
λsds+σλsdB

λ
s ,

with κ = 0.5. The process lnλs follows an Ornstein-
Uhlenbeck model with a linear drift g. The parameter values

TABLE II
PARAMETER VALUES

Risk free interest rate r 0.08
Volatility of the risky asset σ 0.2

Insurance fee α 0.001
Term of policy T 10 years

Volatility of the force of mortality σ 0.2
Force of mortality at inception λ 0.003

Gompertz parameter g 0.1
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Fig. 5. 3D plot of the solution P (0, A, λ)

in Table II are used to obtain the solutions unless noted
otherwise.

The PDE for the premium P (t, A, λ) is solved in the
domain [0, T ]×[0, 2]×[0, 0.025] with an initial account value
(A0) 1, using the backward in time finite difference method.
As in the previous section, we assume the PDE holds on
the boundary, and assuming linearity when A = Amax and
λ = λmax. The boundary conditions imposed are

1) A = 0:

−rP + P t ++µλPλ + 1
2σ

2λ2(γer(T−r)P
2

λ + Pλλ)

=
1

γ
e−r(T−t)λ[1− e−γer(T−t)·(P−G)]

2) A = Amax:

−rP + P t + (r − α)APA

+µλPλ + 1
2σ

2λ2(γer(T−r)P
2

λ + Pλλ)

=
1

γ
e−r(T−t)λ[1− e−γer(T−t)·(P−G)]

3) λ = 0:

−rP + P t + (r − α)APA +
1

2
σ2A2PAA = 0

4) λ = λmax:

−rP + P t + (r − α)APA + 1
2σ

2A2PAA

+µλPλ + 1
2σ

2λ2(γer(T−r)P
2

λ)

=
1

γ
e−r(T−t)λ[1− e−γer(T−t)·(P−G)]

A typical solution for the premium function P (0, A, λ)
is given in Figure 5 at the time of inception (t = 0). It
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Fig. 7. The relationship between λ and P (0, A, λ) for various values of A

shows that P is an increasing function in A and λ, which is
expected since the price of a life insurance product should
increase when the account value increases or the mortality
rate increases. We can observe this more clearly in Figures
6 and 7. The premium function P is plotted against A for
various λ in Figure 6. The premium P is an increasing
convex function in the account value A for various values of
λ; the rate of change is more significant with a higher value
of A. It is clearer with a higher force of mortality λ. The
premium function P is plotted against λ for various values
of A in Figure 7. The premium P is an increasing concave
function in λ; the rate of change is more significant with a
smaller value of λ. It is clearer with a higher value of A. As
in the deterministic mortality model, the premium function P
has a positive relationship with the time to expiration (T − t)
in Figure 8. Similar trends can be observed in other literature,
for example, in the description of the death benefit in the
study by Piscopo and Haberman [16].

To see the effect of the volatility of the force of mortality
in (7), the value of P (0, 1, 0.01) is plotted for different
values of σ. We observe that as the volatility increases,
the premium also increases in Figure 9, which reflects the
common phenomenon in the financial markets that the price
of a mortality contingent product increases when there is
more risk in mortality. The effects of the risk aversion rate γ
and the insurance fee α on the premium P is similar as in the
case with a deterministic mortality model in Section II. The
premium P (0, 1, 0.01) with respect to the risk aversion rates
γ is plotted in Figure 10, and we observe that the premium
increases as the risk aversion rate increases. The premium
P (0, 1, 0.01) with respect to the insurance fee α is plotted in
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Fig. 8. The relationship between time to expiration T − t and P (T −
t, 1.0, λ) for various values of λ
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Fig. 9. The plot of P (0, 1, 0.01) with respect to σ

Figure 11, which shows that the premium of a life insurance
product should decrease when the policy holder pays a higher
insurance fee α.

IV. CONCLUSION

We have considered the valuation problem of an equity-
indexed term life insurance with two different mortality
models, a deterministic mortality and a stochastic mortality.
For the financial market, we employ Merton’s model and
use an exponential utility to obtain HJB equations for the
utility functions with and without the life insurance risks.
By using the theory of equivalent utility, we derive the PDEs
for the indifference price of the premium for both mortality
models. The PDE with a deterministic mortality is solved
numerically using Gompertz’ law of mortality, while the
MRBG process is adopted for the stochastic mortality case.
The derived PDEs are not simple and closed form solutions
cannot be found, but straightforward applications of the finite
difference method with proper boundary conditions produce
solutions that are reasonable for a life insurance contract. The
sensitivity analysis shows that the models are appropriate
to explain the premiums of the equity-indexed term life
insurance.

Future research should consider the effect of stochastic
interest rates, since it is unreasonable to assume the risk-free
rate is constant for a long period of time. We can also apply
the indifference pricing theory to variable annuity products
exposed to similar risks, for example, with a Guaranteed
Minimum Death Benefit option or a Guaranteed Lifelong
Withdrawal Benefit option.
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APPENDIX A
HJB EQUATION FOR U WITH THE INSURANCE RISK

Here we derive the HJB equation for U . Assume that the
insurer follows an arbitrary investment policy {πs} between
t and t+ h, and after t+ h, the insurer follows the optimal
investment policy {π∗

s}. If the insured aged x + t survives
until time t + h, the contract goes on. If the insured aged
x+ t dies before t+h, the insurer pays Gt+h, and continues
under V , the value function without the claim. Thus

U(t, w,A) ≥
E[t+ h,U(Wt+h, At+h)|Wt = w,At = A] ·h px+t

+E[V (t+ h,Wt+h −Gt+h)|Wt = w] ·h qx+t,
(12)

where hpx+t is the probability of a person aged x+t survives
until x + t + h, and hqx+t = 1 −h px+t. This will have
an equality if and only if the investment policy is optimal
between t and t+h. Assuming U and V are smooth enough
to have all the derivatives, we have

U(t+ h,Wt+h, At+h) = U(t, w,A) +

∫ t+h

t

dU, (13)

where dU is the differential of U . Using Itô’s formula,

dU = [Us + Uw(rw + (µ− r)π) + (µ− α)AUA

+1
2σ

2π2Uww + 1
2σ

2A2UAA + σ2πAUwA]ds
+σπUwdB + σAUAdB.

The right hand side of (13) becomes
U(t, w,A) +

∫ t+h

t
L1Uds +

∫ t+h

t
σπUwdB +∫ t+h

t
σAUAdB,

where

L1U = Us + Uw(rw + (µ− r)π) + (µ− α)AUA+
1
2σ

2π2Uww + 1
2σ

2A2UAA + σ2πAUwA,

and taking expectations yields the last two integrals zero.
Similarly, for the value function without the claim V , we

have

V (t+h,wt+h) = V (t, w)+

∫ t+h

t

L2V +

∫ t+h

t

σπVwdBds,

where L2V = Vs + (rw + (µ− r)π)Vw + 1
2σ

2π2Vww.
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Now (12) becomes

U(t, w,A) ≥ Et,w,A[U(t, w,A) +
∫ t+h

t
L1Uds]hpx+t

+Ew,t[V (t, w −G) +
∫ t+h

t
L2V ds]hqx+t,

or

U(t, w,A) ·h qx+t ≥ Et,w,A[
∫ t+h

t
L1Uds] ·h px+t

+Ew,t[V (t, w −G) +
∫ t+h

t
L2V ds]hqx+h.

If we divide both sides by h and take limit h → 0, then

λx(t) · U ≥ L1U + V (w −G, t) · λx(t),

since hqx+t

h
→ λx(t), the force of mortality of a person

aged x at time t, and hqx+t → 0 as h → 0.
If the investment policy is optimal, we have an equality,

which gives the following HJB equation of U ;
Ut + rwUw + (µ− α)AUA + 1

2σ
2A2UAA

+λx(t)[V (w −G, t)− U ]
+maxπ[(µ− r)πUw + σ2πAUwA + 1

2σ
2π2Uww] = 0,

U(T,w,A) = u(w).
(14)

APPENDIX B
HJB EQUATION FOR U WITH THE INSURANCE RISK

The derivation of HJB equation for U is similar to the
process for U . With the same assumption in the previous
section, we have

U(t, w,A, λ) ≥
E[U(t+ h,Wt+h, At+h, λt+h)|Wt = w,At = A,
λt = λ] ·h px+t

+E[V (t+ h,Wt+h −Gt+h)|Wt = w] ·h qx+t.
(15)

This will have an equality if and only if the investment policy
is optimal between t and t + h. Assuming U and V are
smooth enough to have all the derivatives, we have

U(t+ h,Wt+h, At+h, λt+h) = U(t, w,A, λ) +

∫ t+h

t

dU,

(16)
where dU is the differential of U . Using Itô’s formula,

dU = [Us + Uw(rw + (µ− r)π) + (µ− α)AUA

+µλUλ + 1
2σ

2π2Uww

+1
2σ

2A2UAA + σ2πAUwA + 1
2σ

2λ2Uλλ]ds
+(σπUw + σAUA)dB + σλUλdB

λ.

The right hand side of (16) becomes

U(t, w,A, λ) +
∫ t+h

t
L3Uds+

∫ t+h

t
σπUwdB

+
∫ t+h

t
σAUAdB +

∫ t+h

t
σλUλdB

λ,

where

L3U = Us + Uw(rw + (µ− r)π) + (µ− α)AUA

+µλUλ + 1
2σ

2π2Uww

+1
2σ

2A2UAA + σ2πAUwA + 1
2σ

2λ2Uλλ,

and taking expectations yields the last three integrals zero.
Now (15) becomes

U(t, w,A, λ) ≥
Et,w,A,λ[U(t, w,A, λ) +

∫ t+h

t
L3Uds]hpx+t

+Et,w[V (t, w −G) +
∫ t+h

t
L2V ds]hqx+t,

or

U(t, w,A, λ) ·h qx+t ≥
Et,w,A,λ[

∫ t+h

t
L3Uds] ·h px+t

+Et,w[V (t, w −G) +
∫ t+h

t
L2V ds]hqx+h.

If we divide both sides by h and take limit h → 0, then

λ · U ≥ L3U + V (t, w −G) · λ.

If the investment policy is optimal, we have an equality,
which gives the following HJB equation of U ;

U t + rwUw + (µ− α)AUA + 1
2σ

2A2UAA

+λ[V (w −G, t)− U ] + µλUλ + 1
2σ

2λ2Uλλ
+maxπ[(µ− r)πUw + σ2πAUwA

+1
2σ

2π2Uww] = 0,
U(w,A, T ) = u(w).

(17)
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