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Abstract—In this paper, we consider the controllability
problems for a class of impulsive fractional partial neutral
quasilinear functional differential inclusions with infinite delay
and (α, x)-resolvent family. In particular, a set of sufficient
conditions are derived for the approximate controllability of
nonlinear impulsive fractional dynamical systems by assuming
the associated linear system is approximately controllable. The
results are established by using the concept of resolvent family,
fractional calculations and fixed point techniques. Finally, an
example is provided to illustrate the obtained theory.

Index Terms—approximate controllability, impulsive frac-
tional partial neutral quasilinear functional differential inclu-
sions, (α, x)-resolvent family, infinite delay, fixed-point theorem.

I. INTRODUCTION

THE study of impulsive differential systems is linked
to their utility in simulating processes and phenomena

subject to short-time perturbations during their evolution.
The perturbations are performed discretely and their duration
is negligible in comparison with the total duration of the
processes and phenomena. For the basic theory of impulsive
differential equations the reader can refer to [1], [2], [3]. The
theory of impulsive partial neutral differential equations, as
well as inclusions, has become an active area of investigation
due to their applications in fields such as mechanics, electri-
cal engineering, medicine biology, ecology and so on. One
can refer to [1] and the references therein. Fractional order
models of real systems are often more adequate than the
usually used integer order models, since the description of
some systems is more accurate when the fractional derivative
is used. Also, fractional differential equations have recently
proved to be valuable tools in modeling of many physical
phenomena in various fields of science and engineering,
such as physics, mechanics, chemistry, engineering, etc. For
details, see [4], [5], [6], [7] and the papers [8], [9], [10]. In
recent years, the existence, uniqueness and other quantitative
and qualitative properties of solutions to various semilinear
fractional differential systems have been extensively studied
in Banach spaces; see [11], [12], [13]. Moreover, much atten-
tion has been paid to several interesting results for impulsive
fractional partial differential and integrodifferential systems;
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see [14], [15], [16], [17], [18], [19] and the references
therein.

Controllability is one of the fundamental concepts in
mathematical control theory and plays an important role in
control systems. The problem of the exact controllability for
some fractional differential and integrodifferential systems in
abstract spaces have generated considerable interest among
researchers [20], [21] and so on. Especially, Debbouchea and
Baleanu [22] investigated the exact controllability result of
a class of fractional evolution nonlocal impulsive quasilinear
delay integro-differential systems in a Banach space by using
fixed point techniques and the concept of (α, x)-resolvent
family. As proved by Triggiani [23], the concept of exact
controllability is very limited for many parabolic partial
differential equations, the approximate controllability is more
appropriate for these control systems instead of exact control-
lability. For semilinear functional differential and evolution
control systems including delay systems in Banach spaces,
there are several papers devoted to the approximate controlla-
bility; see [24], [25], [26]. The authors in [27], [28], [29] also
established the approximate controllability for various kinds
of nonlinear impulsive differential deterministic and stochas-
tic systems. Moreover, by using fixed point strategy, Sak-
thivel et al. [30] discussed the approximate controllability of
semilinear fractional differential systems without delay. The
approximate controllability problem for nonlinear fractional
stochastic system in Hilbert spaces has been investigated
[31]. Kumar and Sukavanam [32] proved some sufficient
conditions for the approximate controllability of fractional
order semilinear systems with bounded delay. Sukavanam
and Kumar [33] obtained the approximate controllability
of a fractional order system in which the nonlinear term
depends on both state and control variables. Yan [34] studied
the approximate controllability of partial neutral functional
differential systems of fractional order with state-dependent
delay. The approximate controllability for some fractional
impulsive semilinear differential systems have been studied
in several papers. For example, Ge et al. [35] concerned
with the Approximate controllability of semilinear evolution
equations of fractional order with nonlocal and impulsive
conditions. Balasubramaniam et al. [36] derived sufficient
conditions for the approximate controllability of impulsive
fractional integro-differential systems with nonlocal condi-
tions in Hilbert space. Chalishajar et al. [37] discussed the
approximate controllability of abstract impulsive fractional
neutral evolution equations with infinite delay in Banach
spaces.
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However, many systems arising from realistic models can
be described as partial fractional differential or integro-
differential inclusions (see [38], [39], [40] and references
therein), so it is natural to extend the concept of approximate
controllability to dynamical systems represented by fractional
differential or integro-differential inclusions. Yan and Jia
[41] established the approximate controllability of nonlinear
fractional partial neutral integrodifferential inclusions with
infinite delay and impulsive effects. In this paper, we con-
sider the approximate controllability of a class of impulsive
fractional partial neutral quasilinear functional differential
inclusions with infinite delay and (α, x)-resolvent family in
Hilbert spaces of the form

dα

dtα
D(t, xt) ∈ A(t, x(t))D(t, xt) + Bu(t)

+F (t, x(t), xt), (1)
t ∈ J = [0, b], t 6= tk, k = 1, . . . , m,

x0 = ϕ ∈ B, (2)

∆x(tk) = Ik(xtk
), k = 1, . . . , m, (3)

where the state x(·) takes values in a separable real Hilbert
space H with inner product (·, ·) and norm ‖ · ‖, 0 < α ≤ 1,
A(t, ·) is a closed linear operator defined on a dense domain
D(A) in H into H such that D(A) is independent of t. It
is assumed also that A(t, ·) generates an evolution operator
in the Hilbert space H, the control function u ∈ L2(J, U),
a Hilbert space of admissible control functions. Further, B
is a bounded linear operator from U to H; the time history
xt : (−∞, 0] → H, defined by xt(s) := x(t + s) belongs
to an abstract phase space B defined axiomatically; and F :
J×H×B → P(H) is a bounded closed convex-valued multi-
valued map, P(H) is the family of all nonempty subsets of
H, G : J × B → H, D(t, ψ) = ψ(0) − G(t, ψ), ψ ∈ B
Ik : B → H(k = 1, . . . , m), are functions subject to some
additional conditions. Moreover, let 0 < t1 < · · · < tm < b,
are prefixed points and the symbol ∆x(tk) = x(t+k )−x(t−k ),
where x(t−k ) and x(t+k ) represent the right and left limits of
x(t) at t = tk, respectively.

To the best of our knowledge, there is no work reported
on the approximate controllability of impulsive fractional
partial neutral quasilinear infinite delay differential inclusions
in Hilbert spaces, which is expressed in the form (1)-(3).
The papers [41] studied the approximate controllability of
fractional impulsive integrodifferential inclusions, besides
the fact that [41] applies to the approximate controllabil-
ity of systems with the α-resolvent operator, the class of
impulsive systems is also different from the one studied
here. Further, many control systems arising from realistic
models can be described as fractional impulsive partial
differential inclusions with (α, x)-resolvent family. So it is
natural to extend the concept of approximate controllability
to dynamical systems represented by these impulsive sys-
tems. Motivated by the previously mentioned papers, we
will study this interesting problem. Sufficient conditions for
the approximate controllability are given by means of the
nonlinear alternative of Leray-Schauder type for multivalued
maps due to D. O’Regan [42] with the concept of (α, x)-
resolvent family combined with approximation techniques.
Especially, the known results appeared in [35], [36], [37],
[41] are generalized to the fractional multi-valued settings

with (α, x)-resolvent family and the case of infinite delay.
Further, the operators Ik(k = 1, . . . , m) are continuous
but without imposing completely continuous and Lipschitz
condition. Therefore, the obtained results can be seen as a
contribution to this emerging field.

The rest of this paper is organized as follows. In Section
2, we introduce some notations and necessary preliminaries.
Section 3 verifies the existence of mild solutions for impul-
sive fractional control system (1)-(3). Section 4 we establish
the approximate controllability of impulsive fractional con-
trol system (1)-(3). Finally in Section 5, an example is given
to illustrate our results.

II. PRELIMINARIES

In this section, we introduce some basic definitions, nota-
tions and lemmas which are used throughout this paper.

Let (H, ‖ · ‖) be a Hilbert space. C(J,H) is the Hilbert
space of all continuous functions from J into H with the
norm ‖ x ‖∞= sup{‖ x(t) ‖: t ∈ J} and L(H) denotes
the Hilbert space of bounded linear operators from H to H.
A measurable function x : J → H is Bochner integrable if
and only if ‖ x ‖ is Lebesgue integrable. For properties of
the Bochner integral see Yosida [43]. L1(J,H) denotes the
Hilbert space of measurable functions x : J → H which
are Bochner integrable normed by ‖ x ‖L1=

∫ b

0
‖ x(t) ‖ dt

for all x ∈ L1(J,H). Furthermore, the notation, Br(x,H)
stands for the closed ball with center at x and radius r > 0
in H.

Let P(H) denotes the class of all nonempty sub-
sets of H. Let Pbd,cl(H), Pcp,cv(H), Pbd,cl,cv(H) and
Pcd(H) denote respectively the family of all nonempty
bounded-closed, compact-convex, bounded-closed-convex
and compact-acyclic (see [44]) subsets of H. For x ∈ H
and Y, Z ∈ Pbd,cl(H), we denote by D(x, Y ) = inf{‖
x − y ‖: y ∈ Y } and ρ̃(Y, Z) = supa∈Y D(a, Z), and the
Hausdorff metric Hd : Pbd,cl(H) × Pbd,cl(H) → R+ by
Hd(A,B) = max{ρ̃(A,B), ρ̃(B,A)}.

G is called upper semicontinuous (u.s.c.) on H if, for each
x0 ∈ H, the set G(x0) is a nonempty, closed subset of H
and if, for each open set S of H containing G(x0), there
exists an open neighborhood S of x0 such that G(S) ⊆ V.
F is said to be completely continuous if G(V ) is relatively
compact, for every bounded subset V ⊆ H.

If the multivalued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if F
has a closed graph, i.e. xn → x∗, yn → y∗, yn ∈ G(xn)
imply y∗ ∈ G(x∗).

A multivalued map G : J → Pbd,cl,cv(H) is said to be
measurable if for each x ∈ H , the function t 7→ D(x,G(t))
is a measurable function on J.
Definition 1. Let G : H → Pbd,cl(H) be a multivalued map.
Then G is called a multivalued contraction if there exists a
constant κ ∈ (0, 1) such that for each x, y ∈ H we have

Hd(G(x)−G(y)) ≤ κ ‖ x− y ‖ .

The constant κ is called a contraction constant of G.
Definition 2 ([6], [7]). The fractional integral of order µ > 0
is defined by

Iµ
a f(t) =

1
Γ(µ)

∫ t

b

f(s)
(t− s)1−µ

ds, (4)
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where Γ is the gamma function and f ∈ L1([a, b], R+).
If a = 0, we can write Iµ

a f(t) = (gµ ∗ f)(t), where

gµ(t) :=
{ 1

Γ(µ) t > 0,

0 t ≤ 0,

as usual, ∗ denotes the convolution of functions, also we have
limµ→0 gµ(t) = δ(t), which is the delta function.
Definition 3 ([6], [7]). The Riemann-Liouville fractional
derivative of order n− 1 < α < n is defined by

aDµ
t f(t) =

1
Γ(n− µ)

dn

dtn

∫ t

b

(t− s)n−µ−1ds,

where f is an abstract continuous function on the interval
[a, b] and n ∈ N.
Definition 4 ([6], [7]). The Caputo fractional derivative of
order n− 1 < α < n is defined by

c
aDµ

t f(t) =
1

Γ(n− µ)

∫ t

a

(t− s)n−µ−1fn(s)ds.

Definition 5 ([45]). A two parameter family of bounded
linear operators U(t, s), 0 ≤ s ≤ t ≤ b, on H is called an
evolution system if the following two conditions are satisfied
(i) U(t, t) = I, U(t, τ)U(τ, s) = U(t, s) for 0 ≤ s, τ ≤

t ≤ b,
(ii) (t, s) → U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤

b.

Let E be the Banach space formed from D(A) with the
graph norm. Since A(t) is a closed operator, it follows that
A(t) is in the set of bounded operators from E to H .
Definition 6. Let A(t, x) be a closed and linear operator with
domain D(A) defined on a Hilbert space H and α > 0. Let
ρ[A(t, x)] be the resolvent set of A(t, x). We call A(t, x) the
generator of an (α, x)-resolvent family if there exist ω ≥ 0
and a strongly continuous function R(α,x) : R+ × R+ →
L(H) such that R(α,x)(s, s) = I, 0 ≤ s ≤ b, and {λα :
Re(λ) > ω} ⊂ ρ(A), for 0 ≤ s ≤ t < ∞,

(λαI −A(s, x))−1y =
∫ ∞

0

eλ(t−s)R(α,x)(t, s)vdt,

Re(λ) > ω, (x, y) ∈ H2. (5)

In this case, R(α,x)(t, s) is called the (α, x)-resolvent family
generated by A(t, x).
Remark 1.
(i) In the deleting case of s and x, (5) will be reduced to

the introduced concept by [46].
(ii) We can deduce that (1)-(3) is well posed if and only if,

A(t, x) is the generator of (α, x)-resolvent family.
(iii) Here, R(α,x)(t, s) can be extracted from the evolution

operator of the generator A(t, x).
(iv) The (α, x)-resolvent family is similar to the evolution

operator for nonautonomous differential equations in a
Banach space.

In this paper, we assume that the phase space (B, ‖ · ‖B)
is a seminormed linear space of functions mapping (−∞, 0]
into H, and satisfying the following fundamental axioms due
to Hale and Kato (see e.g., in [47]).
(A) If x : (−∞, θ + b] → H, b > 0, is such that x|[θ,θ+b] ∈

PC([θ, θ+b],H) and xθ ∈ B, then for every t ∈ [θ, θ+
b] the following conditions hold:
(i) xt is in B;

(ii) ‖ x(t) ‖≤ H̃ ‖ xt ‖B;
(iii) ‖ xt ‖B≤ K(t − θ) sup{‖ x(s) ‖: θ ≤ s ≤ t} +

M(t − θ) ‖ xθ ‖B, where H̃ ≥ 0 is a constant;
K, M : [0,∞) → [1,∞), K is continuous and M
is locally bounded; H̃,K, M are independent of
x(·).

(B) For the function x(·) in (A), the function t → xt is
continuous from [θ, θ + b] into B.

(C) The space B is complete.
Example 1. The phase space PCr ×Lp(h,H). Let 1 ≤ p <
∞, 0 ≤ r < ∞ and let h : (−∞,−r] → R be a nonnegative
measurable function which satisfies the conditions (h-5),
(h-6) in the terminology of Hino et al. [48]. Briefly, this
means that h is locally integrable and there is a non-
negative, locally bounded function γ on (−∞, 0] such that
h(ξ + τ) ≤ γ(ξ)h(τ) for all ξ ≤ 0 and θ ∈ (−∞,−r) \Nξ,
where Nξ ⊆ (−∞,−r) is a set whose Lebesgue measure
zero. We denote by PCr × Lp(h,H) the set consists of
all classes of functions ϕ : (−∞, 0] → H such that ϕ is
continuous on [−r, 0], Lebesgue-measurable, and h ‖ ϕ ‖p

is Lebesgue integrable on (−∞,−r). The seminorm is given
by

‖ ϕ ‖B= sup
−r≤τ≤0

‖ ϕ(τ) ‖ +
( ∫ −r

−∞
h(τ) ‖ ϕ ‖p dτ

)1/p

.

The space B = PCr × Lp(h,H) satisfies axioms (A)-(C).
Moreover, when r = 0 and p = 2, we can take H̃ = 1,
M(t) = γ(−t)1/2 and K(t) = 1+(

∫ 0

−t
h(τ)dτ)1/2 for t ≥ 0

(see [48], Theorem 1.3.8 for details).
Remark 2. Let ϕ ∈ B and t ≤ 0. The notation ϕt represents
the function defined by ϕt(τ) = ϕ(t + θ). Consequently, if
the function x(·) in axiom (A) is such that x0 = ϕ, then
xt = ϕt. We observe that ϕt is well-defined for t < 0 since
the domain of ϕ is (−∞, 0]. We also note that, in general,
ϕt /∈ B; consider, for instance, a discontinuous function in
PCr × Lp(h,H) for r > 0.
Remark 3. In the rest of this paper Mb and Kb are
the constants defined by Mb = supt∈J M(t) and Kb =
supt∈J K(t).

To describe appropriately our problems we say that a
function x : [µ, τ ] → H is a normalized piecewise con-
tinuous function on [µ, τ ] if x is piecewise continuous and
continuous on [µ, τ ]. We denote by PC([µ, τ ],H) the space
formed by the normalized piecewise continuous from [µ, τ ]
into H . In particular, we introduce the space PC formed by
all functions x : [0, b] → H such that x is continuous at
t 6= tk, x(tk) = x(t−k ) and x(t+k ) exists for k = 1, 2, . . . , m.
In this paper, we always assume that PC is endowed with
the norm ‖ x ‖PC= supt∈[0,b] ‖ x(t) ‖ . Then (PC, ‖ · ‖PC)
is a Banach space.

To simplify the notations, we put t0 = 0, tm+1 = b and
for x ∈ PC, we denote by x̂k ∈ C([tk, tk+1];H), k =
0, 1, . . . , m, the function given by

x̂k(t) :=
{

x(t) for t ∈ (tk, tk+1],
x(t+k ) for t = tk.

Moreover, for B̃ ⊆ PC we denote by B̂k, k = 0, 1, . . . , m,
the set B̂k = {x̂k : x ∈ B̃}.

Let xb(x0;u) be the state value of system (1)-(3) at
terminal time b corresponding to the control u and the initial
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value x0 = ϕ(t) ∈ B. Introduce the set

B(b, x0) = {xb(x0;u)(0) : u(·) ∈ L2(J, U)},
which is called the reachable set of system (1)-(3) at terminal
time b, its closure in H is denoted by B(b, x0).
Definition 7. The system (1)-(3) is said to be approximately
controllable on the interval J if B(b, x0) = H.

It is convenient at this point to define operators

Γb
0 =

∫ b

0

R(α,x)(b, s)BB∗R∗(α,x)(b, s)ds,

S(a,Γb
0) = (aI + Γb

0)
−1 for a > 0,

where B∗ denotes the adjoint of B and R∗(α,x)(t, s) is the
adjoint of R(α,x)(t, s). It is straightforward that the operator
Γb

0 is a linear bounded operator.
(S1) aS(a,Γb

0) → 0 as a → 0+ in the strong operator
topology.

Definition 8. A function x : (−∞, b] → H is called a
mild solution of the system (1)-(3) if x0 = ϕ ∈ B and
∆x(tk) = Ik(xtk

), k = 1, . . . , m, such that the following
integral equation holds

x(t) = R(α,0)(t, 0)[ϕ(0)−G(0, ϕ)] + G(t, xt)

+
∫ t

0

R(α,x)(t, s)[Bu(s) + f(s)]ds

+
∑

0<tk<t

R(α,x)(t, tk)Ik(xtk
), t ∈ J,

where f ∈ SF,x = {f ∈ L1(J,H) : f(t) ∈ F (t, x(t), xt)
a.e. t ∈ J}.

Consider the following linear fractional differential system

dα

dtα
x(t) = A(t, x(t))x(t) + Bu(t), t ∈ J = [0, b], (6)

x = ϕ ∈ B. (7)

From [24] and [25], we have the following lemma:
Lemma 1. The assumption (S1) holds if and only if the linear
fractional differential control system (6)-(7) is approximately
controllable on J.

The proof of Lemma 1 can be performed along the
direction of the proof of Theorem 2 in [25].
Lemma 2. A set B̃ ⊆ PC is relatively compact in PC if, and
only if, the set B̂k is relatively compact in C([tk, tk+1];H),
for every k = 0, 1, . . . , m.
Lemma 3. Let R(α,x)(t, s) be the R(α,x)-resolvent family
for the fractional problem (1)-(3). There exists a constant
K > 0 such that

‖ R(α,x)(t, s)ω −R(α,y)(t, s)ω ‖

≤ K ‖ ω ‖
∫ t

s

‖ x(τ)− y(τ) ‖ dτ,

for every x, y ∈ PC(J,H) and every ω ∈ H.
The proof is similar to the proof of Lemma 3.1 in [22],

and we omit the details here.
Lemma 4 ([42] Nonlinear alternative of Leray-Schauder type
for multivalued maps due to D. O’Regan). Let H be a Hilbert
space with V an open,convex subset of H and y ∈ H.
Suppose
(a) Φ : V → Pcd(H) has closed graph, and

(b) Φ : V → Pcd(H) is a condensing map with Φ(V ) a
subset of a bounded set in H hold. Then either

(i) Φ has a fixed point in V ; or
(ii) There exist y ∈ ∂V and λ ∈ (0, 1) with y ∈ λΦ(y) +

(1− λ){y0}.

III. EXISTENCE OF SOLUTIONS FOR IMPULSIVE
FRACTIONAL CONTROL SYSTEM

In this section, we prove the existence of solutions for
impulsive fractional control system (1)-(3). We make the
following hypotheses:

(H1) The operator A(t, x) generates an (α, x)-resolvent fam-
ilies R(α,x)(t, s) is compact for all t− s > 0.

(H2) There exist constants M, σ such that ‖ R(α,x)(t, s) ‖≤
Meσ(t−s) for every s, t ∈ J.

(H3) The multi-valued map F : J ×H ×B → Pbd,cl,cv(H);
for each t ∈ J, the function F (t, ·, ·) : B →
Pbd,cl,cv(H) is u.s.c. and for each (x, ψ) ∈ H × B,
the function F (·, x, ψ) is measurable; for each fixed
(x, ψ) ∈ B, the set

SF,x,ψ = {f ∈ L1(J,H) : f(t) ∈ F (t, x, ψ)
for a.e t ∈ J}

is nonempty.
(H4) There exist continuous function m : J → [0,∞) and

a continuous nondecreasing function Θ : [0,∞) →
(0,∞) such that

‖ F (t, x, ψ) ‖= sup{‖ f ‖: f ∈ F (t, x, ψ)
≤ m(t)Θ(‖ x ‖ + ‖ ψ ‖B),

t ∈ J, ψ ∈ B
with ∫ ∞

1

1
s + Θ(2s)

ds = ∞.

(H5) The function G : J × B → H is continuous and there
exists L > 0 such that

‖ G(t, ψ1)−G(t, ψ2) ‖≤ L ‖ ψ1 − ψ2 ‖B,

t ∈ J, ψ1, ψ2 ∈ B,

and

‖ G(t, ψ) ‖≤ L(‖ ψ ‖B +1), t ∈ J, ψ ∈ B.

(H6) The functions Ik : B → H are continuous and there
exist constants ck such that

lim sup
‖ψ‖B→∞

‖ Ik(ψ) ‖
‖ ψ ‖B = ck

for every ψ ∈ B, k = 1, . . . , m.

Lemma 5 ([49]). Let J be a compact interval and H be a
Hilbert space. Let F be a multi-valued map satisfying (H3)
and let P be a linear continuous operator from L1(J,H) to
C(J,H). Then, the operator

P ◦ SF : C(J,H) → Pcp,cv(H),

x → (P ◦ SF )(x) := P (SF , x)

is a closed graph in C(J,H)× C(J,H).
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Theorem 1. If the assumptions (H1)-(H6) are satisfied.
Further, suppose that for all a > 0, then the system (1)-
(3) has at least one mild solution on J, provided that
[Kb(‖ ϕ ‖B +1) + 1]MLKb < 1 and

KbML + KbM
2N∗

[
1
a
(M∗M1N∗)2 + 1

] m∑

k=1

ck < 1, (8)

where M∗ = M max{1, eσb}, N∗ = max{1, e−σb},M1 =‖
B ‖ .
Proof. Consider the space Y = {x : (−∞, b] → H;x(0) =
ϕ(0), x|J ∈ PC(J,H)} endowed with the uniform conver-
gence topology and define the multi-valued map Φ : Y →
P(Y) by Φx the set of h ∈ Y such that

h(t) =





0, t ∈ (−∞, 0],
R(α,x̄)(t, 0)[ϕ(0)−G(0, ϕ)] + G(t, x̄t)

+
∫ t

0
R(α,x̄)(t, s)Bua

x̄(s)ds

+
∫ t

0
R(α,x̄)(t, s)f(s)ds

+
∑

0<tk<t
R(α,x̄)(t, tk)Ik(xtk

), t ∈ J,

where f ∈ SF,x̄ = {f ∈ L1(J,H) : f(t) ∈ F (t, x̄, x̄t)
a.e. t ∈ J}, and x̄ : (−∞, 0] → H is such that x̄0 = ϕ and
x̄ = x on J, and

ua
x̄(s) = B∗R∗(α,x̄)(b, s)S(a,Γb

0)
[
xb −R(α,x̄)(b, 0)[ϕ(0)

−G(0, ϕ)]−G(b, x̄b)−
∫ b

0

R(α,x̄)(b, η)f(η)dη

−
m∑

k=1

R(α,x̄)(b, tk)Ik(xtk
)
]
,

where f ∈ SF,x̄ and x̄ : (−∞, 0] → H is such that x̄0 = ϕ
and x̄ = x on J. In what follows, we aim to show that
the operator Φ has a fixed point, which is a solution of the
problem (1)-(3).

Let {δn : n ∈ N} be a decreasing sequence in (0, t1) ⊂
(0, b) such that limn→∞ δn = 0. To prove the above theorem,
we consider the following problem:

dα

dtα
D̃(t, xt) ∈ A(t, x(t))D̃(t, xt) + Bu(t)

+F (t, x(t), xt), (9)
t ∈ J = [0, b], t 6= tk, k = 1, . . . , m,

x0 = ϕ ∈ B, (10)

∆x(tk) = R(α,x)(δn, 0)Ik(xtk
), k = 1, . . . , m, (11)

where D̃(t, xt) = ϕ(0) − R(α,x)(δn, 0)G(t, xt). We shall
show that the problem has at least one mild solution xn ∈ Y.

For fixed n ∈ N, set the multi-valued map Φn : Y →
P(Y) by Φnx the set of hn ∈ Y such that

hn(t) =





0, t ∈ (−∞, 0],
R(α,x̄)(t, 0)[ϕ(0)−R(α,x̄)(δn, 0)G(0, ϕ)]

+R(α,x̄)(δn, 0)G(t, x̄t)
+

∫ t

0
R(α,x̄)(t, s)Bua

n,x̄(s)ds

+
∫ t

0
R(α,x̄)(t, s)f(s)ds

+
∑

0<tk<t
R(α,x̄)(t, tk)

×R(α,x̄)(δn, 0)Ik(xtk
), t ∈ J,

where

ua
n,x̄(s) = B∗R∗(α,x̄)(b, s)S(a,Γb

0)
[
xb −R(α,x̄)(b, 0)[ϕ(0)

−R(α,x̄)(δn, 0)G(0, ϕ)]−R(α,x̄)(δn, 0)G(b, x̄b)

−
∫ b

0

R(α,x̄)(b, η)f(η)dη

−
m∑

k=1

R(α,x̄)(b, tk)R(α,x̄)(δn, 0)Ik(xtk
)
]
,

and f ∈ SF,x̄. It is easy to see that the fixed point of Φn is
a mild solution of the Cauchy problem (9)-(11).

Let ϕ̄ : (−∞, 0) → H be the extension of (−∞, 0] such
that ϕ̄(θ) = ϕ(0) on J. We now show that Φn satisfies all the
conditions of Lemma 4. The proof will be given in several
steps.

Step 1. We shall show there exists an open set V ⊆ Y
with x ∈ λΦnx for λ ∈ (0, 1) and x /∈ ∂V.

Let λ ∈ (0, 1) and let x ∈ λΦnx, then there exists an
f ∈ SF,x̄ such that

x(t) = λR(α,x̄)(t, 0)[ϕ(0)−R(α,x̄)(δn, 0)G(0, ϕ)]
+λR(α,x̄)(δn, 0)G(t, x̄t)

+λ

∫ t

0

R(α,x̄)(t, s)BB∗R∗(α,x̄)(b, s)S(a,Γb
0)

×
[
xb −R(α,x̄)(b, 0)[ϕ(0)−R(α,x̄)(δn, 0)G(0, ϕ)]

−R(α,x̄)(δn, 0)G(b, x̄b)−
∫ b

0

R(α,x̄)(b, η)f(η)dη

−
m∑

k=1

R(α,x̄)(b, tk)R(α,x̄)(δn, 0)Ik(xtk
)
]
(s)ds

+λ

∫ t

0

R(α,x̄)(t, s)f(s)ds + λ
∑

0<tk<t

R(α,x̄)(t, tk)

×R(α,x̄)(δn, 0)Ik(xtk
), t ∈ J, (12)

for some λ ∈ (0, 1). However, on the other hand, from
the condition (H6), we conclude that there exist positive
constants εk(k = 1, . . . , m), γ1 such that, for all ‖ ψ ‖B> γ1,

‖ Ik(ψ) ‖≤ (ck + εk) ‖ ψ ‖B,

KbML + KbM
2N∗

[
1
a
(M∗M1N∗)2 + 1

]

×
m∑

k=1

(ck + εk) < 1. (13)

Let

F1 = {ψ :‖ ψ ‖B≤ γ1}, F2 = {ψ :‖ ψ ‖B> γ1},

C1 = max{‖ Ik(ψ) ‖, x ∈ F1}.

Therefore,

‖ Ik(ψ) ‖≤ C1 + (ck + εk) ‖ ψ ‖B . (14)
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Then, by (H2), (H4), (H5) and (14), from (12) we have for
t ∈ J,

‖ x(t) ‖
≤ Meσt[H̃ ‖ ϕ ‖B +MeσδnL(‖ ϕ ‖B +1)]

+MeσδnL(‖ x̄t ‖B +1) + Meσt 1
a
MeσbM2

1

×
∫ t

0

e−2σs

[
‖ xb ‖ +Meσb[‖ ϕ(0) ‖

+MeσδnL(‖ ϕ ‖B +1)] + MeσδnL(‖ x̄b ‖B +1)

+Meσb

∫ b

0

e−σηm(η)Θ(‖ x̄(η) ‖ + ‖ x̄η ‖B)dη

+
m∑

k=1

Meσ(b−tk)Meσδn

×[C1 + (ck + εk) ‖ x̄tk
‖B]

]
ds

+Meσt

∫ t

0

e−σsm(s)Θ(‖ x̄(s) ‖ + ‖ x̄s ‖B)ds

+
m∑

k=1

Meσ(t−tk)Meσδn [C1 + (ck + εk) ‖ x̄tk
‖B].

It is easy to see that

‖ x̄t ‖B≤ Mb ‖ ϕ ‖B +Kb ‖ x ‖t, t ∈ [0, b],

where ‖ x ‖t= sup0≤s≤t ‖ x(s) ‖ . If ζ(t) = Mb ‖ ϕ ‖B
+Kb ‖ x ‖t, we obtain that

ζ(t) ≤ Mb ‖ ϕ ‖B +KbMeσt[H̃ ‖ ϕ ‖B
+MeσδnL(‖ ϕ ‖B +1)] + KbMeσδnL(ζ(t) + 1)

+eσtM̃ + KbMeσt 1
a
MeσbM2

1 N2
∗MeσbN∗

×Meσδn

m∑

k=1

(ck + εk)ζ(s)

+KbMeσt

∫ t

0

e−σsm(s)Θ(2ζ(s))ds

+KbMeσtN∗Meσδn

m∑

k=1

(ck + εk)ζ(s),

where

M̃ = KbM
1
a
MeδbM2

1 N2
∗

[
‖ xb ‖ +Meδb[‖ ϕ(0) ‖

+eσδnL(‖ ϕ ‖B +1)] + eσδnL(‖ x̄b ‖B +1)

+Meσb

∫ b

0

e−σηm(η)Θ(2ζ(η))dη

+MeσbN∗MeσδnmC1

]
,

M∗ = M max{1, eδb}, N∗ = max{1, e−δb},M1 =‖ B ‖ .

Since limn→∞ δn = 0, it follows that

ζ(t) ≤ Mb ‖ ϕ ‖B +KbMeσt[H̃ ‖ ϕ ‖B
+ML(‖ ϕ ‖B +1)] + KbML(ζ(t) + 1)

+eσtM̃ + KbMeσt 1
a
MeσbM2

1 N2
∗MeσbN∗

×M

m∑

k=1

(ck + εk)ζ(s)

+KbMeσt

∫ t

0

e−σsm(s)Θ(2ζ(s))ds

+KbMeσtN∗M
m∑

k=1

(ck + εk)ζ(s),

By L̃ = KbML+KbM
2N∗[ 1a (M∗M1N∗)2 +1]

∑m
k=1(ck +

εk) < 1, we obtain

e−σtζ(t) ≤ 1

1− L̃

[
N∗Mb ‖ ϕ ‖B +KbM [H̃ ‖ ϕ ‖B

+ML(‖ ϕ ‖B +1)] + N∗KbML + M̃

+KbM

∫ t

0

e−σsm(s)Θ(2ζ(s))ds

]
.

Denoting by w(t) the right-hand side of the above inequality,
we have

v(t) ≤ eσtw(t) for all t ∈ J,

and

w(0) =
1

1− L̃

[
N∗Mb ‖ ϕ ‖B +KbM [H̃ ‖ ϕ ‖B

+ML(‖ ϕ ‖B +1)] + N∗KbML + M̃

]
,

w′(t) =
1

1−KbL1
KbMe−σtm(t)Θ(v(t))

≤ 1

1− L̃
KbMe−σtm(t)Θ(2eσtw(t)), t ∈ J.

Then for each t ∈ J we have

(eσtw(t))′

= σeσtw(t) + w′(t)eσt

≤ δeσtw(t) +
1

1− L̃
KbMm(t)Θ(2eσtw(t))

≤ max
{

σ,
1

1− L̃
KbMm(t)

}

×[eσtw(t) + Θ(2eσtw(t))], t ∈ J.

This implies that

∫ eσtw(t)

w(0)

dς

ς + Θ(2ς)

≤
∫ b

0

max
{

σ,
1

1− L̃
KbMm(s)

}
ds < ∞.

This inequality shows that there is a constant K̃ such that
eσtw(t) ≤ K̃, t ∈ J, and hence ‖ x ‖PC≤ eσtw(t) ≤ K̃,
where K̃ depends only on M, σ, b and on the functions m(·)
and Θ(·). Then, there exists r∗ such that ‖ x ‖PC 6= r∗. Set

V = {x ∈ Y :‖ x ‖PC< r∗}.

From the choice of V, there is no x ∈ ∂V such that x ∈ λΦx
for λ ∈ (0, 1).

Step 2. Φn has a closed graph.
Let x(j) → x∗, h(j)

n ∈ Φnx(j), x(j) ∈ V and h
(j)
n → h∗n.

From Axiom (A), it is easy to see that (x(j))s → x∗s

uniformly for s ∈ (−∞, b] as n → ∞. We prove that
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h∗ ∈ Φnx∗. Now h
(j)
n ∈ Φnx(j) means that there exists

f (j) ∈ S
F,x(j) such that, for each t ∈ J,

h(j)
n (t)

= R
(α,x(j))

(t, 0)[ϕ(0)−R
(α,x(j))

(δn, 0)G(0, ϕ)]

+R
(α,x(j))

(δn, 0)G(t, (x(j))t)

+
∫ t

0

R
(α,x(j))

(t, s)BB∗R∗
(α,x(j))

(b, s)S(a,Γb
0)

×
[
xb −R

(α,x(j))
(b, 0)[ϕ(0)

−R
(α,x(j))

(δn, 0)G(0, ϕ)]

−R
(α,x(j))

(δn, 0)G(b, (x(j))b)

−
∫ b

0

R
(α,x(j))

(b, η)f(η)dη

−
m∑

k=1

R
(α,x(j))

(b, tk)R
(α,x(j))

(δn, 0)

×Ik((x(j))tk
)
]
(s)ds +

∫ t

0

R
(α,x(j))

(t, s)f(s)ds

+
∑

0<tk<t

R
(α,x(j))

(t, tk)R
(α,x(j))

(δn, 0)

×Ik((x(j))tk
), t ∈ J.

We must prove that there exists f∗ ∈ SF,x∗ such that, for
each t ∈ J,

h∗n(t)
= R(α,x∗)(t, 0)[ϕ(0)−R(α,x∗)(δn, 0)G(0, ϕ)]

+R(α,x∗)(δn, 0)G(t, (x∗)t)

+
∫ t

0

R(α,x∗)(t, s)BB∗R∗
(α,x∗)(b, s)S(a,Γb

0)

×
[
xb −R(α,x∗)(b, 0)[ϕ(0)

−R(α,x∗)(δn, 0)G(0, ϕ)]

−R(α,x∗)(δn, 0)G(b, (x∗)b)

−
∫ b

0

R(α,x∗)(b, η)f(η)dη

−
m∑

k=1

R(α,x∗)(b, tk)R(α,x∗)(δn, 0)Ik((x∗)tk
)
]
(s)ds

+
∫ t

0

R(α,x∗)(t, s)f(s)ds

+
∑

0<tk<t

R(α,x∗)(t, tk)R(α,x∗)(δn, 0)

×Ik((x∗)tk
), t ∈ J.

Now, for every t ∈ J, we have
wwww

(
h(j)

n (t)−R
(α,x(j))

(t, 0)[ϕ(0)−R
(α,x(j))

(δn, 0)g(0, ϕ)]

−R
(α,x(j))

(δn, 0)g(t, (x(j))t)

−
∫ t

0

R
(α,x(j))

(t, s)BB∗R∗
(α,x(j))

(b, s)S(a,Γb
0)

×
[
xb −R

(α,x(j))
(b, 0)[ϕ(0)−R

(α,x(j))
(δn, 0)G(0, ϕ)]

−R
(α,x(j))

(δn, 0)G(b, (x(j))b)

−
m∑

k=1

R
(α,x(j))

(b, tk)R
(α,x(j))

(δn, 0)Ik((x(j))tk
)
]
(s)ds

−
∑

0<tk<t

R
(α,x(j))

(t, tk)R
(α,x(j))

(δn, 0)Ik((x(j))tk
)
)

−
(

h∗n(t)−R(α,x∗)(t, 0)[ϕ(0)−R(α,x∗)(δn, 0)G(0, ϕ)]

−R(α,x∗)(δn, 0)G(t, (x∗)t)

−
∫ t

0

R(α,x∗)(t, s)BB∗R∗
(α,x∗)(b, s)S(a,Γb

0)

×
[
xb −R(α,x∗)(b, 0)[ϕ(0)

−R(α,x∗)(δn, 0)G(0, ϕ)]−R(α,x∗)(δn, 0)G(b, (x∗)b)

−
m∑

k=1

R(α,x∗)(b, tk)R(α,x∗)(δn, 0)Ik((x∗)tk
)
]
(s)ds

−
∑

0<tk<t

R(α,x∗)(t, tk)R(α,x∗)(δn, 0)Ik((x∗)tk
)
)wwww

PC
→ 0 as j →∞.

Consider the linear continuous operator Ψ : L1(J,H) →
C(J,H),

Ψ(f)(t)

=
∫ t

0

R(α,x̄)(t, s)
[
f(s) + BB∗R∗(α,x̄)(b, s)S(a,Γb

0)

×
( ∫ b

0

R(α,x̄)(b, η)f(η)dη

)
(s)

]
ds.

From Lemma 5, It follows that Ψ ◦ SF is a closed graph
operator. Also, from the definition of Ψ, we have that, for
every t ∈ J,

h(j)
n (t)−R

(α,x(j))
(t, 0)[ϕ(0)−R

(α,x(j))
(δn, 0)G(0, ϕ)]

−R
(α,x(j))

(δn, 0)G(t, (x(j))t)

−
∫ t

0

R
(α,x(j))

(t, s)BB∗R∗
(α,x(j))

(b, s)S(a,Γb
0)

×
[
xb −R

(α,x(j))
(b, 0)[ϕ(0)−R

(α,x(j))
(δn, 0)G(0, ϕ)]

−R
(α,x(j))

(δn, 0)G(b, (x(j))b)

−
m∑

k=1

R
(α,x(j))

(b, tk)R
(α,x(j))

(δn, 0)Ik((x(j))tk
)
]
(s)ds

−
∑

0<tk<t

R
(α,x(j))

(t, tk)R
(α,x(j))

(δn, 0)Ik((x(j))tk
)

∈ Ψ(S
F,x(j)).

Since x(j) → x∗, for some f∗ ∈ SF,x∗ it follows that, for
every t ∈ J, we have

h∗n(t)−R(α,x∗)(t, 0)[ϕ(0)−R(α,x∗)(δn, 0)G(0, ϕ)]

−R(α,x∗)(δn, 0)G(t, (x∗)t)

−
∫ t

0

R(α,x∗)(t, s)BB∗R∗
(α,x∗)(b, s)S(a,Γb

0)

×
[
xb −R(α,x∗)(b, 0)[ϕ(0)
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−R(α,x∗)(δn, 0)G(0, ϕ)]−R(α,x∗)(δn, 0)G(b, (x∗)b)

−
∫ b

0

R(α,x∗)(b, η)f(η)dη

−
m∑

k=1

R(α,x∗)(b, tk)R(α,x∗)(δn, 0)Ik((x∗)tk
)
]
(s)ds

−
∫ t

0

R(α,x∗)(t, s)f(s)ds

−
∑

0<tk<t

R(α,x∗)(t, tk)R(α,x∗)(δn, 0)Ik((x∗)tk
)

=
∫ t

0

R(α,x∗)(t, s)
[
f(s) + BB∗R∗

(α,x∗)(b, s)S(a,Γb
0)

×
( ∫ b

0

R(α,x∗)(b, η)f(η)dη

)
(s)

]
ds.

Therefore, Φn has a closed graph.
Step 3. We show that the operator Φn condensing.
For this purpose, we decompose Φn as Λn + Γn, where

the map Λn : V → Y be defined by Λnx, the set ρn ∈ Y
such that

ρn(t) =





0, t ∈ (−∞, 0],
−R(α,x̄)(t, 0)R(α,x̄)(δn, 0)G(0, ϕ)

+R(α,x̄)(δn, 0)G(t, x̄t) t ∈ J,

and the map Γn : V → Y be defined by Γnx, the set ϑn ∈ Y
such that

ϑn(t) =





0, t ∈ (−∞, 0],
R(α,x̄)(t, 0)ϕ(0) +

∫ t

0
R(α,x̄)(t, s)ua

n,x̄(s)ds

+
∫ t

0
R(α,x̄)(t, s)f(s)ds

+
∑

0<tk<t
R(α,x̄)(t, tk)R(α,x̄)(δn, 0)

×Ik(xtk
) t ∈ J.

We first show that Λn is a contraction while Γn is a
completely continuous operator.

Claim 1. Λn is a contraction on V .
Let t ∈ J and x∗, x∗∗ ∈ Y. If x ∈ V , it follows that

‖ x̄s ‖B≤ Mb ‖ ϕ ‖B +Kbr
∗ := r′.

From (H5) and Lemma 3, we have

‖ (Λnx∗)(t)− (Λnx∗∗)(t) ‖
≤‖ [R(α,x∗)(t, 0)R(α,x∗)(δn, 0)−R(α,x∗∗)(t, 0)
×R(α,x∗∗)(δn, 0)]G(0, ϕ) ‖
+ ‖ R(α,x∗)(δn, 0)G(t, x∗t)−R(α,x∗∗)(δn, 0)

×G(t, x∗∗t) ‖
≤‖ [R(α,x∗)(t, 0)−R(α,x∗∗)(t, 0)]
×R(α,x∗)(δn, 0)G(0, ϕ) ‖
+ ‖ [R(α,x∗)(δn, 0)−R(α,x∗∗)(δn, 0)]
×R(α,x∗∗)(t, 0)G(0, ϕ) ‖
+ ‖ [R(α,x∗)(δn, 0)−R(α,x∗∗)(δn, 0)]

×G(t, x∗t) ‖
+ ‖ R(α,x∗∗)(δn, 0)[G(t, x∗t)−G(t, x∗∗t) ‖

≤ KbMeσδnL(‖ ϕ ‖B +1) ‖ x∗t − x∗∗t ‖B
+KδnMeσtL(‖ ϕ ‖B +1) ‖ x∗t − x∗∗t ‖B
+KδnL(‖ xt ‖B +1) ‖ x∗t − x∗∗t ‖B
+MeσδnL ‖ x∗t − x∗∗t ‖B

≤ [KbMeσδnL(‖ ϕ ‖B +1) + KδnMeσtL(‖ ϕ ‖B +1)
+KδnL(r′ + 1) + MeσδnL]Kb

× sup
s∈[0,b]

‖ x∗(s)− x∗∗(s) ‖

= [KbMeσδnL(‖ ϕ ‖B +1) + KδnMeσtL(‖ ϕ ‖B +1)
+KδnL(r′ + 1) + MeσδnL]Kb

× sup
s∈[0,b]

‖ x∗(s)− x∗∗(s) ‖ (since x̄ = x on J)

= [KbMeσδnL(‖ ϕ ‖B +1) + KδnMeσtL(‖ ϕ ‖B +1)
+KδnL(r′ + 1) + MeσδnL]Kb

× ‖ x∗ − x∗∗ ‖PC .

Since limn→∞ σn = 0, it follows that

‖ (Λnx∗)(t)− (Λnx∗∗)(t) ‖
≤ [Kb(‖ ϕ ‖B +1) + 1]MLKb ‖ x∗ − x∗∗ ‖PC .

Taking supremum over t,

‖ Λnx∗ − Λnx∗∗ ‖PC≤ L0 ‖ x∗ − x∗∗ ‖PC ,
where L0 = [Kb(‖ ϕ ‖B +1) + 1]MLKb < 1. Thus Λn is
a contraction on V .

Claim 2. Γn is convex for each x ∈ V .
In fact, if ϑ1

n, ϑ2
n belong to Γnx, then there exist f1, f2 ∈

SF,x̄ such that

ϑi
n(t)

= R(α,x̄)(t, 0)ϕ(0) +
∫ t

0

R(α,x̄)(t, s)BB∗

×R∗(α,x̄)(b, s)S(a,Γb
0)

[
xb −R(α,x̄)(b, 0)[ϕ(0)

−R(α,x̄)(δn, 0)G(0, ϕ)]−R(α,x̄)(δn, 0)G(b, x̄b)

−
∫ b

0

R(α,x̄)(b, η)fi(η)dη

−
m∑

k=1

R(α,x̄)(b, tk)R(α,x̄)(δn, 0)Ik(xtk
)
]
(s)ds

+
∫ t

0

R(α,x̄)(t, s)fi(s)ds

+
∑

0<tk<t

R(α,x̄)(t, tk)R(α,x̄)(δn, 0)Ik(xtk
),

t ∈ J, i = 1, 2.

Let 0 ≤ λ ≤ 1. For each t ∈ J we have

(λϑ1
n + (1− λ)ϑ2

n)(t)

= R(α,x̄)(t, 0)ϕ(0) +
∫ t

0

R(α,x̄)(t, s)BB∗R∗(α,x̄)(b, s)

×S(a,Γb
0)

[
xb −R(α,x̄)(b, 0)[ϕ(0)

−R(α,x̄)(δn, 0)G(0, ϕ)]−R(α,x̄)(δn, 0)G(b, x̄b)

−
∫ b

0

R(α,x̄)(b, η)[λf1(η) + (1− λ)f2(η)]dη

−
m∑

k=1

R(α,x̄)(b, tk)R(α,x̄)(δn, 0)Ik(xtk
)
]
(s)ds

+
∫ t

0

R(α,x̄)(t, s)[λf1(s) + (1− λ)f2(s)]fi(s)ds

+
∑

0<tk<t

R(α,x̄)(t, tk)R(α,x̄)(δn, 0)Ik(xtk
).
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Since SF,x̄ is convex (because F has convex values) we have
(λϑ1

n + (1− λ)ϑ2
n) ∈ Γnx.

Claim 3. Γn(V ) is completely continuous.
To this end, we consider the decomposition Γn by Γn =

Γ1
n + Γ2

n, where the map Γ1
n : V → P(Y) be defined by

Γ1
nx, the set γ̃1

n ∈ Y such that

γ̃1
n(t)

= R(α,x̄)(t, 0)ϕ(0) +
∫ t

0

R(α,x̄)(t, s)Bua
n,x̄(s)ds

+
∫ t

0

R(α,x̄)(t, s)f(s)ds,

and the map Γ2
n : V → P(V) be defined by Γ2

nx, the set
γ̃2

n ∈ Y such that

γ̃2
n(t) =

∑
0<tk<t

R(α,x̄)(t, tk)R(α,x̄)(δn, 0)Ik(xtk
)

(1) Γ1
n(V ) is completely continuous.

We begin by showing Γ1
n(V ) is equicontinuous. Let 0 <

τ1 < τ2 ≤ b. For each x ∈ V , we have

‖ γ̃1
n(τ2)− γ̃1

n(τ1) ‖
≤‖ [R(α,x̄)(τ2, 0)−R(α,x̄)(τ1, 0)]ϕ(0) ‖

+
wwww

∫ t1−ε

0

[R(α,x̄)(τ2, s)−R(α,x̄)(τ1, s)]

×Bua
n,x̄(s)ds

wwww

+
wwww

∫ τ1

τ1−ε

[R(α,x̄)(τ2, s)−R(α,x̄)(τ1, s)]

×Bua
n,x̄(s)ds

wwww

+
wwww

∫ τ2

τ1

R(α,x̄)(τ2, s)Bua
n,x̄(s)ds

wwww

+
wwww

∫ τ1−ε

0

[R(α,x̄)(τ2, s)−R(α,x̄)(τ1, s)]f(s)ds

wwww

+
wwww

∫ τ1

τ1−ε

[R(α,x̄)(τ2, s)−R(α,x̄)(τ1, s)]f(s)ds

wwww

+
wwww

∫ τ2

τ1

R(α,x̄)(τ2, s)f(s)ds

wwww
≤‖ [R(α,x̄)(τ2, 0)−R(α,x̄)(τ1, 0)]ϕ(0) ‖

+
∫ τ1−ε

0

‖ R(α,x̄)(τ2, s)−R(α,x̄)(τ1, s) ‖

×M1M2ds + 2M∗

∫ τ1

τ1−ε

e−σsM1M2ds

+Meστ2

∫ τ2

τ1

e−σsM1M2ds + Θ(r∗ + r′)

×
∫ τ1−ε

0

‖ R(α,x̄)(τ2, s)−R(α,x̄)(τ1, s) ‖ m(s)ds

+2M∗Θ(r∗ + r′)
∫ τ1

τ1−ε

e−σsm(s)ds

+Meσt2Θ(r′)
∫ τ2

τ1

e−σsm(s)ds,

where

‖ ua
n,x̄(s) ‖

= M∗
1
a
M1N∗

[
‖ xb ‖ +M∗[H̃ ‖ ϕ ‖B

+L(‖ ϕ ‖B +1)] + L(r∗ + 1)

+MeσbΘ(r∗ + r′)
∫ b

0

e−σsm(s)ds

]
:= M2.

From the above inequalities, we see that the right-hand side
of ‖ γ̃1

n(τ2)− γ̃1
n(τ1) ‖ tends to zero independent of x ∈ V

as τ2 − τ1 → 0 with ε sufficiently small, since R(α,x̄)(t, s)
is a strongly continuous operator and the compactness of
R(α,x̄)(t, s) for t − s > 0 implies the continuity in the
uniform operator topology. Thus the set {Γ1

nx : x ∈ V }
is equicontinuous. The equicontinuities for the other cases
τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ b are very simple.

Now we prove that Γ1
n(V )(t) = {γ̃1

n(t) : γ̃1
n(t) ∈ Γ1

n(V )}
is relatively compact for every t ∈ [0, b].

Let 0 < t ≤ s ≤ b be fixed and let ε be a real number
satisfying 0 < ε < t. For x ∈ V , we define

γ̃1,ε
n (t)

= R(α,x̄)(t, 0)ϕ(0) +
∫ t−ε

0

R(α,x̄)(t, s)Bua
n,x̄(s)ds

+
∫ t−ε

0

R(α,x̄)(t, s)f(s)ds,

where f ∈ SF,x̄. Using the compactness of R(α,x̄)(t, s) for
t− s > 0, we deduce that the set Uε(t) = {γ̃1,ε

n (t) : x ∈ V }
is relatively compact in H for every ε, 0 < ε < t. Moreover,
for every x ∈ V we have

‖ γ̃1
n(t)− γ̃1,ε

n (t) ‖
≤

wwww
∫ t

t−ε

R(α,x̄)(t, s)Bua
n,x̄(s)ds

wwww

+
wwww

∫ t

t−ε

R(α,x̄)(t, s)f(s)ds

wwww

≤ 2M∗

∫ t

t−ε

e−σsM1M2ds

+2M∗Θ(r∗ + r′)
∫ t

t−ε

e−σsm(s)ds.

The right hand side of the above inequality tends to zero
as ε → 0. Since there are relatively compact sets arbitrarily
close to the set U(t) = {γ̃1

n(t) : x ∈ V }. Hence the set U(t)
is relatively compact in H. By Arzelá-Ascoli theorem, we
conclude that Γ1

n : V → P(Y) is completely continuous.
(2) Γ2

n(V ) is completely continuous.
We begin by showing Γ2

n(V ) is equicontinuous. For each
x ∈ V , t ∈ (0, b) be fixed, t ∈ [ti, ti+1], γ̃2

n(t) ∈ Γ2
n(x),

such that

γ̃2
n(t) =

∑
0<tk<t

R(α,x̄)(t, tk)R(α,x̄)(δn, 0)Ik(xtk
). (15)
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Next, for τ1 ≤ s < t ≤ τ2, ε > 0, we have, using the
semigroup property,

‖ [̂̃γ2
n]i(τ2)− [̂̃γ2

n]i(τ1) ‖
≤

wwww
∑

0<tk<t

[R(α,x̄)(τ2, tk)−R(α,x̄)(τ1, tk)]

×R(α,x̄)(δn, 0)Ik(xtk
)
wwww

≤ m
m∑

k=1

‖ [R(α,x̄)(τ2, tk)−R(α,x̄)(τ1, tk)]

×R(α,x̄)(δn, 0)Ik(xtk
) ‖ .

As τ2 − τ1 → 0, the right-hand side of the above in-
equality tends to zero independently of x due to the set
{R(α,x̄)(δn, 0)Ik(xtk

) : x ∈ V } is relatively compact in
H and the strong continuity of R(α,x̄)(·, ·). So [̂̃γ2

n]i, i =
1, 2, . . . , m, are equicontinuous.

Next, we show that Γ2
n(V )(t) = {γ̃2

n(t) : γ̃2
n(t) ∈ Γ2(V )}

is relatively compact for every t ∈ [0, b].
For t ∈ [0, b] and x ∈ V , we have that

[̂̃γ2
n]i(t)

=
∑

0<tk<t

R(α,x̄)(t, tk)R(α,x̄)(δn, 0)Ik(xtk
)

∈
m∑

k=1

R(α,x̄)(t, tk)R(α,x̄)(δn, 0)Ik(V (0,H)).

From (14), we obtain that Ik(x̄tk
) bounded in H.

By the compactness of (R(α,x̄)(t, s))t−s>0, we see
{R(α,x̄)(δn, 0)Ik(x̄tk

) : x ∈ V , k = 1, 2, . . . , m} are
relatively compact in H. Also, it follows that [̂̃γ2

n]k(t) is
relatively compact in H , for all t ∈ [tk, tk+1], k = 1, . . . , m.
By Lemma 2, we infer that Γ2

n(V ) is relatively compact.
Now an application of the Arzelá-Ascoli theorem justifies
the relatively compactness of Γ2

n(V ). Therefore, Γ2
n(V )

is completely continuous, and hence Φ2
n(V ) is completely

continuous.
As a consequence of Steps 3, we conclude that Φn =

Λn+Γn is a condensing map. All of the conditions of Lemma
4 are satisfied, we deduce that Λn + Γn has a fixed point
x ∈ Y, which is a mild solution of the problem (9)-(11).
Then, we have

xn(t)
= R(α,x̄n)(t, 0)[ϕ(0)−R(α,x̄n)(δn, 0)G(0, ϕ)]

+R(α,x̄n)(δn, 0)G(t, x̄n,t)

+
∫ t

0

R(α,x̄n)(t, s)Bua
n,x̄n

(s)ds

+
∫ t

0

R(α,x̄n)(t, s)fn(s)ds

+
∑

0<tk<t

R(α,x̄n)(t, tk)R(α,x̄)(δn, 0)

×Ik(x̄n,tk
), t ∈ [0, b], (16)

where

ua
n,x̄n

(s)

= B∗R∗(α,x̄n)(b, s)S(a,Γb
0)

[
xb −R(α,x̄n)(b, 0)[ϕ(0)

−R(α,x̄n)(δn, 0)G(0, ϕ)]
−R(α,x̄n)(δn, 0)G(b, x̄n,b)

−
∫ b

0

R(α,x̄n)(b, η)fn(η)dη

−
m∑

k=1

R(α,x̄n)(b, tk)R(α,x̄n)(δn, 0)Ik(x̄n,tk
)
]
,

and fn ∈ SF,x̄n
.

Next we will show that the set {xn : n ∈ N} is relatively
compact in Y. We consider the decomposition xn = x1

n +x2
n

where

x1
n(t)

= R(α,x̄n)(t, 0)[ϕ(0)−R(α,x̄n)(δn, 0)G(0, ϕ)]
+R(α,x̄n)(δn, 0)G(t, x̄n,t)

+
∫ t

0

R(α,x̄n)(t, s)Bua
n,x̄n

(s)ds

+
∫ t

0

R(α,x̄n)(t, s)fn(s)ds (17)

for some fn ∈ SF,x̄n
, and

x2
n(t)

=
∑

0<tk<t

R(α,x̄n)(t, tk)R(α,x̄n)(δn, 0)Ik(xn,tk
).(18)

Step 4. {x1
n(t) : n ∈ N} is relatively compact in Y .

Claim 1. {x1
n : n ∈ N} is equicontinuous on J.

For ε > 0, xn ∈ V , there exists a constant 0 < η < ε such
that for all t ∈ (0, b] and ξ ∈ (0, η) with t+ ξ ≤ b, we have,

‖ x1
n(t + ξ)− x1

n(t) ‖
≤‖ [R(α,x̄n)(t + ξ, 0)−R(α,x̄n)(t, 0)]
×R(α,x̄n)(δn, 0)G(0, ϕ) ‖
+ ‖ R(α,x̄n)(δn, 0)[G(t + ξ, x̄n,t+ξ)−G(t, x̄n,t)] ‖

+
wwww

∫ t+ξ

t

R(α,x̄n)(t + ξ, s)Bua
n,x̄n

(s)ds

wwww

+
wwww

∫ t

0

[R(α,x̄n)(t + ξ, s)−R(α,x̄n)(t, s)]

×Bua
n,x̄n

(s)ds

wwww

+
wwww

∫ t+ξ

t

R(α,x̄n)(t + ξ, s)fn(s)ds

wwww

+
wwww

∫ t

0

[R(α,x̄n)(t + ξ, s)−R(α,x̄n)(t, s)]fn(s)ds

wwww
≤‖ [R(α,x̄n)(t + ξ, 0)−R(α,x̄n)(t, 0)]
×R(α,x̄n)(δn, 0)G(0, ϕ) ‖
+MeσδnL[ξ+ ‖ x̄n,t+ξ − x̄n,t ‖B]

+M∗

∫ t+ξ

t

e−σsM1M2ds

+
∫ t

0

‖ R(α,x̄n)(t + ξ, s)−R(α,x̄n)(t, s) ‖ M1M2ds

+M∗Θ(r∗ + r′)
∫ t+ξ

t

e−σsm(s)ds + Θ(r∗ + r′)

×
∫ t

0

‖ R(α,x̄n)(t + ξ, s)−R(α,x̄n)(t, s) ‖ m(s)ds.
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Using the compact operator property, we can choose ξ ∈
(0, t) such that

‖ [R(α,xn)(t + ξ, 0)−R(α,x̄n)(t, 0)]

×R(α,x̄n)(δn, 0)G(0, ϕ) ‖< ε

4
, (19)

and
MeδσnL[ξ+ ‖ x̄n,t+ξ − x̄n,t ‖B] <

ε

4
, (20)

M∗

∫ t+ξ

t

e−δs[Θ(r∗ + r′)m(s) + M1M2]ds <
ε

4
, (21)

∫ t

0

‖ R(α,x̄n)(t + ξ, s)−R(α,x̄n)(t, s) ‖

×[Θ(r∗ + r′)m(s) + M1M2]ds <
ε

4
. (22)

By (19)-(22) one has

‖ x1
n(t + ξ)− x1

n(t) ‖< ε.

Therefore, {x1
n(t) : n ∈ N} is equicontinuous for t ∈ (0, b].

Clearly {x1
n(0) : n ∈ N} is equicontinuous.

Claim 2. {x1
n(t) : n ∈ N} is relatively compact in H.

Let t ∈ (0, b], ε > 0, xn ∈ V , there exists ξ ∈ (0, t) such
that

‖ x1
n(t)− xξ

n(t) ‖
≤

∫ t

t−ξ

‖ R(α,x̄n)(t, s)Bua
n,x̄n

(s) ‖ ds

+
∫ t

t−ξ

‖ R(α,x̄n)(t, s)fn(s) ‖ ds

≤ M∗

∫ t

t−ξ

e−σsM1M2ds

+M∗Θ(r∗ + r′)
∫ t

t−ξ

e−σsm(s)ds < ε,

where

xξ
n(t)

= R(α,xn)(t, 0)[ϕ(0)−R(α,x̄n)(δn, 0)G(0, ϕ)]
+R(α,x̄n)(δn, 0)G(t, x̄n,t)

+
∫ t−ξ

0

R(α,x̄n)(t, s)Bua
n,x̄n

(s)ds

+
∫ t−ξ

0

R(α,x̄n)(t, s)fn(s)ds

for some fn ∈ SF,x̄n
. From (H5), we obtain that G(t, x̄n,t)

are bounded in H. By the compactness of R(α,x̄)(t, s) for
t, s > 0, we see that the set {xξ

n(t) : n ∈ N} is relatively
compact in H. Combining the above inequality, one has
{x1

n(t) : n ∈ N} is relatively compact in H .
Step 5. {x2

n(t) : n ∈ N} is relatively compact in Y.
Claim 1. {x2

n : n ∈ N} is equicontinuous on J.
For any ε > 0 and 0 < t < b. Since R(α,x̄n)(δn, 0)

is a compact operator, we find that the set W =
{R(α,x̄n)(δn, 0)Ik(xn,tk

) : xn ∈ V } is relatively compact
in H. From the strong continuity of (R(α,x̄n)(t, s))t≥s, for
ε > 0, we can choose 0 < η < b− t such that

‖ [R(α,x̄n)(t + ξ, s)−R(α,x̄n)(t, s)]ν ‖<
ε

m
, ν ∈ W,

when |ξ| < η. For each xn ∈ V , t ∈ (0, b) be fixed, t ∈
[ti, ti+1], such that

‖ [x̂2
n]i(t + ξ)− [x̂2

n]i(t) ‖
≤

wwww
∑

0<tk<t

[R(α,x̄n)(t, ξ − tk)−R(α,x̄n)(t, tk)]

×R(α,x̄n)(δn, 0)Ik(xn,tk
)
wwww

≤
m∑

k=1

‖ [R(α,x̄n)(t, ξ − tk)−R(α,x̄n)(t, tk)]

×R(α,x̄n)(δn, 0)Ik(xn,tk
) ‖< ε.

As ξ → 0 and ε sufficiently small, the right-hand side of
the above inequality tends to zero independently of xn, so
[x̂2

n]i, i = 1, 2, . . . , m, are equicontinuous.
Claim 2. {x2

n(t) : n ∈ N} is relatively compact in H.

Let t ∈ (0, b], ε > 0, xn ∈ V . Using the similar arguments
as that in Step 3, we have

[x̂2
n]i(t)

=
∑

0<tk<t

R(α,x̄n)(t, tk)R(α,x̄n)(δn, 0)Ik(xtk
)

∈
m∑

k=1

R(α,x̄n)(t, tk)R(α,x̄n)(δn, 0)Ik(V (0,H))

for all n ∈ N. One has [x̂2
n]i(t), i = 1, 2, . . . , m, is relatively

compact for every t ∈ [ti, ti+1], and {x2
n(t) : n ∈ N} is

relatively compact in H.

Thus, we obtain that the set {xn : n ∈ N} is relatively
compact in Y . We may suppose that

xn → x∗ ∈ Y as n →∞.

Obviously, x∗ ∈ Y , taking limits in (16) one has

x∗(t)
= R(α,x̄∗)(t, 0)[ϕ(0)−G(0, ϕ)] + G(t, x̄∗,t)

+
∫ t

0

R(α,x̄∗)(t, s)Bua
x̄∗(s)ds

+
∫ t

0

R(α,x̄∗)(t, s)f∗(s)ds

+
∑

0<tk<t

R(α,x̄∗)(t, tk)Ik(x∗,tk
), t ∈ J (23)

where

ua
x̄∗(s)

= B∗R∗(α,x̄∗)(b, s)S(a,Γb
0)

[
xb −R(α,x̄∗)(b, 0)[ϕ(0)

−G(0, ϕ)]−G(b, x̄∗,b)

−
∫ b

0

R(α,x̄∗)(b, η)f∗(η)dη

−
m∑

k=1

R(α,x̄∗)(b, tk)Ik(x∗,tk
)
]
,

and some f∗ ∈ SF,x̄∗ . which implies that x∗ is a mild
solution of the problem (1)-(3) and the proof of Theorem
1 is complete.
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IV. APPROXIMATE CONTROLLABILITY OF FRACTIONAL
CONTROL SYSTEMS

In this section, we present our main result on approximate
controllability of system (1)-(3). To do this, we also need the
following assumptions:

(B1) The function G : J × B → H is continuous, and there
exists a constant C̃1 > 0 such that

‖ G(t, ψ) ‖≤ C̃1

for 0 ≤ t ≤ b, ψ ∈ B.
(B2) There exists a constant C̃2 > 0 such that

‖ F (t, x, ψ) ‖≤ C̃2, (t, ψ) ∈ J × B,

where

‖ F (t, x, ψ) ‖= sup{‖ f ‖: f ∈ F (t, x, ψ)}.

(B3) The functions Ik : B → H are continuous and there
exist constants ck such that

‖ Ik(ψ) ‖≤ ck

for every ψ ∈ B, k = 1, . . . , m.

Theorem 2. Assume that assumptions of Theorem 1
hold and, in addition, hypotheses (B1)-(B3) are satisfied
and the linear system corresponding to system (1)-(3) is
approximately controllable on J. Then the system (1)-(3) is
approximately controllable on J.

Proof. Let xa(·) be a fixed point of Φ in Y . By Theorem
1, any fixed point of Φ is a mild solution of the system (1)-
(3). This means that there is xa ∈ Φ(xa), that is, there is
f ∈ SF,x̄a such that

xa(t)
= R(α,x̄a)(t, 0)[ϕ(0)−G(0, ϕ)]

+R(α,x̄a)(δn, 0)G(t, x̄a
t )

+
∫ t

0

R(α,x̄a)(t, s)Bua
x̄(s)ds

+
∫ t

0

R(α,x̄a)(t, s)f(s)ds

+
∑

0<tk<t

R(α,x̄a)(t, tk)Ik(xa
tk

), t ∈ J,

where

ua
x̄(s)

= B∗R∗(α,x̄a)(b, s)S(a,Γb
0)

[
xb −R(α,x̄a)(b, 0)[ϕ(0)

−G(0, ϕ)]−G(b, x̄a
b )

−
∫ b

0

R(α,x̄a)(b, η)f(η)dη

−
m∑

k=1

R(α,x̄a)(b, tk)Ik(xa
tk

)
]
,

and satisfies

xa(b)

= xb + aS(a,Γb
0)

{
xb −R(α,x̄a)(b, 0)[ϕ(0)

−G(0, ϕ)]−G(b, x̄a
b )

−
∫ b

0

R(α,x̄a)(t, s)f(s)ds

−
m∑

k=1

R(α,x̄a)(b, tk)Ik(xa
tk

)
}

.

By the conditions (B1) and (B3), we see that G(b, x̄a
b ) and

m∑
k=1

R(α,x̄a)(b, tk)Ik(xa
tk

) are relatively compact in H, so

there exist xG and xΣ ∈ H such that (by passing to a
subsequence)

G(b, x̄a
b ) → xG,

m∑

k=1

R(α,x̄a)(b, tk)Ik(xa
tk

) → xΣ

in ‖ · ‖, respectively, as a → 0+. On the other hand, by the
conditions (B2), we get

∫ b

0

‖ f(s) ‖2 ds ≤ C̃2
2b.

Consequently, the sequences {f(s)} is bounded in L2(J,H).
Thus there are subsequences, still denoted by {f(s)} that
converge weakly to say f∗∗(s) in L2(J,H). The operator

l(t) →
∫ t

0

R(α,x̄a)(t, s)l(s)ds

is also compact on L2(J,H), so one has that
∫ b

0

R(α,x̄a)(b, s)[f(s)− f∗∗(s)]ds → 0 as a → 0.

Define

p(xa(·))
= xb −R(α,x̄a)(b, 0)[ϕ(0)−G(0, ϕ)]

−G(b, x̄a
b )−

∫ b

0

R(α,x̄a)(b, s)f(s)ds

−
m∑

k=1

R(α,x̄a)(b, tk)Ik(xa
tk

),

q = xb −R(α,x̄a)(b, 0)[ϕ(0)−G(0, ϕ)]

−xG −
∫ b

0

R(α,x̄a)(b, s)f∗∗(s)ds− xΣ.

It follows that

‖ p(xa)− q ‖
≤‖ G(b, x̄a

b )− xG ‖

+
wwww

m∑

k=1

R(α,x̄a)(b, tk)Ik(xa
tk

)− xΣ

wwww

+
wwww

∫ b

0

R(α,x̄a)(b, s)[f(s)− f∗∗(s)]ds

wwww
→ 0 as a → 0+. (24)
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Then from (24) and Lemma 1, we obtain

‖ xa(b)− xb ‖
=‖ aR(a,Γb

0)p(xa) ‖
≤‖ aR(a,Γb

0)q ‖ + ‖ aR(a,Γb
0)[p(xa)− q] ‖

≤‖ aR(a,Γb
0)q ‖ + ‖ p(xa)− q ‖

→ 0 as a → 0+.

This proves the approximate controllability of system (1)-(3).
The proof is completed.

V. EXAMPLE

Consider the following impulsive fractional partial neutral
quasilinear infinite delay differential inclusions of the form

∂α

∂tα

[
z(t, x)−

∫ t

−∞
a1(t)a2(s− t)z(t, x)

]

∈ a(x, t, z(t, x))
∂2

∂x2

[
z(t, x)

−
∫ t

−∞
a1(t)a2(s− t)z(t, x)

]
+ µ̃(t, x)

+$(t, z(t, x))

+
∫ t

−∞
a3(t, s− t, x, z(s, x))ds, (25)

0 ≤ t ≤ b, 0 ≤ x ≤ π,

z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ b, (26)

z(τ, x) = ϕ(τ, x), τ ≤ 0, 0 ≤ x ≤ π, (27)

4z(tk, x) =
∫ tk

−∞
ηk(s− tk)z(s, x)ds, (28)

k = 1, 2, . . . , m,

where 0 < α ≤ 1, 0 < t1 < · · · < tm < b, and ϕ is
continuous. Let H = L2([0, π]) with the norm ‖ · ‖ and
define the operator A(t, ·) : H → H by (A(t, ·)ω)(x) =
a(x, t, ·)ω′′ with the domain

D(A(t, ω)) := {ω ∈ H : ω′′ ∈ H, ω(0) = ω(π) = 0}
is dense in the Banach space H and independent of t. Then

Aω =
∞∑

n=1

n2〈ω, ωn〉ωn, ω ∈ D(A),

where (·, ·) is the inner product in L2[0, π] and ωn = Zn ◦
ω is the orthogonal set of eigenvectors in A(t, ω), where
Zn(t, s) =

√
2
π sinn(t − s)n, 0 < α ≤ 1, 0 ≤ s ≤ t ≤

b, n = 1, 2, . . . . Assume that
(a) The operator [A(t, ·) + λαI]−1 exists in L(H) for any

λ with Reλ ≤ 0 and Mα

‖ [A(t, ·) + λαI]−1 ‖≤ Mα

|λ|+ 1
, t ∈ [0, b].

(b) There exist constants κ ∈ (0, 1] and Mα such that

‖ [A(t1, ·)−A(t2, ·)]A−1(s, ·) ‖
≤ Mα|t1 − t2|κ, t1, t2 ∈ [0, b].

Then, the operator A(s, ·), s ∈ [0, b] generates an evolution
operator exp(−tαA(s, ·)), t > 0, which is compact, analytic
and self-adjoint and there exists a constant Mα such that

‖ Aκ(s, ·)exp(−tαA(s, ·)) ‖
≤ Mα

tα
, t > 0, s ∈ [0, b],

where n = 0, 1. In particular, we conclude that the evolution
operator in fact is an (α, u)-resolvent family has the form:

R(α, v)(t, s)ω =
∞∑

n=1

exp[−n2(t− s)α](ω, ωn)ωn, ω ∈ H.

In the next applications, the phase space B = PC0 ×
L2(h,H) is the space introduced in Example 1.

Additionally, we will assume that
(i) The functions ai : R → R, i = 1, 2, are continuous

functions with

LG =‖ a1 ‖∞
( ∫ 0

−∞

(a2(s))2

h(s)

) 1
2

< ∞.

(ii) The functions $ : R2 → R is continuous and that there
exists a continuous function l1 : R → R such that

|$(t, y)| ≤ l1(t)|y|, (t, y) ∈ R2.

(iii) The function a3 : R4 → R is continuous and there exist
continuous functions b1, b2 : R → R such that

|a3(t, s, x, y)| ≤ b1(t)b2(s)|y|, (t, s, x, y) ∈ R4

with LF = (
∫ 0

−∞
(b2(s))

2

h(s) ds)
1
2 < ∞.

(iv) The functions ηk : R → R, k = 1, 2, . . . , m, are
continuous, and Lk = (

∫ 0

−∞
(ηk(s))2

h(s) ds)
1
2 < ∞ for

every k = 1, 2, . . . , m,
(v) The function µ̃ : [0, b]× [0, π] → [0, π] is continuous.

For the phase space B, we have identified ϕ(θ)(x) =
ϕ(θ, x) ∈ B, defining the maps G : [0, b] × B → H, F :
[0, b]×H × B → P(H) by

G(t, ϕ)(x) =
∫ 0

−∞
a1(t)a2(s)ϕ(s, x)ds,

D(t, ϕ)(x) = ϕ(0)x + G(t, ϕ)(x),

F (t, y, ϕ)(x)

= $(t, y(t, x)) +
∫ 0

−∞
a3(t, s, x, ϕ(s, x))ds,

Ik(ϕ)(x) =
∫ 0

−∞
ηk(s)ϕ(s, x)ds.

and
Bu(t)(x) = µ̃(t, x).

Using these definitions, we can represent the system (25)-
(28) in the abstract form (1)-(3). Moreover, F, G, Ik are
bounded linear operators on B with ‖ F ‖≤ LF , ‖
G ‖≤ LG, ‖ Ik ‖≤ Lk, k = 1, 2, . . . , m, where LF =
max0≤t≤b{H̃l1(t) + lF b1(t)}. Thus, the assumptions (H1)-
(H6) and (B1)-(B3) all hold, the associated linear system of
(25)-(28) is not exactly controllable but it is approximately
controllable. Hence by Theorems 1, 2, the system (25)-(28)
is approximately controllable on [0, b].
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