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Dynamical Behavior and Bifurcation Analysis of
SEIR Epidemic Model and its Discretization

Wen-ju Du, Shuang Qin, Jian-gang Zhang and Jian-ning Yu

Abstract—The dynamical behaviors of a SEIR epidemic
model are investigated in this paper. More precisely, we
presented a new discrete-time SEIR epidemic model by using
the Forward-Euler difference method. And the existence,
stability and direction of Hopf bifurcation of the SEIR epidemic
model and its discretization model are also studied. In addition,
the numerical simulations were presented to illustrate the
theoretical analysis. Finally, some comparisons of bifurcation
between the continuous-time epidemic system and its
discrete-time system are given.

Index Terms—Stability, Discretization, Hopf bifurcation,
Center manifold theorem, Forward Euler scheme

I. INTRODUCTION

he dynamical system refers to the dynamic system of

change over time, which includes continuous dynamical
systems and discrete dynamical systems. Despite the
simplicity of dynamical systems, these systems have a rich
dynamical behavior, ranging from stable equilibrium points
to periodic and even chaotic oscillations. And Hopf
bifurcation is an important dynamic bifurcation which
closely related to some self-excited vibration phenomenon
and has a high theoretical value in dynamic bifurcation and
limited cycle research. Moreover, the research and
application on bifurcation of autonomous systems has
become a very popular topic [1-9]. But compared with the
continuous systems, the discrete systems possess its unique
dynamic characteristics. In the real life, many practical
problems can be depicted by the discrete systems, and we can
also to discretize the continuous systems. Therefore, the
study of discrete system is very important and achieved great
development in the field of mathematics, physics and
engineering [10-13]. Hu et al. [14] presented a new epidemic
model by using the Euler difference method, and discussed
the Neimark-Sacker bifurcation of the system based on the
center manifold theorem and the bifurcation theory. Elabbasy
et al. [15] studied the Pitchfork bifurcation, Flip bifurcation
and Neimark-Sacker bifurcation of a two-dimensional
discrete Lorenz system. He et al. [16] focus on a third-order
rational difference equation with positive parameters, and the
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existence and direction of the Neimark-Sacker bifurcation of
the system are investigated in detail.

Epidemic is caused by the pathogen, which can be spread
from human to human, human to animals and animals to
animals. And the epidemic can makes a range of biological
reduce or lose labor, death and spread rapidly in a certain
period of time. Therefore, it has caused great attention of
scientists and mathematicians. As early as 1927, Kermark
and Mckendrick were established the mathematical model of
infectious diseases by using the method of dynamics, and
constructed the famous SIR bin model [17]. After the middle
of the 20th century, the dynamics of infectious disease has
been obtained rapid development, and the epidemic
dynamical models have been widely investigated [18, 19]. At
present, the bifurcation researches of discrete systems are
mostly concentrated in the two-dimensional systems, and
there are few studies focusing on the three dimensional
discrete system. But compared with the two-dimensional
model of infectious diseases, three-dimensional model can
better reflect the mechanism of the spread of disease [20].

Wang [21] investigated an SEIR epidemic model with
infectious force in latent period as follows:

S'=A-BES-BIS—(u+p)S,
E'= BES +4,1S —(u+V)E,
I"'=VE—(u+a+5+y)l,
R'=pS+(5+y)l —uR,

@

where S,E, I,R and N denote the numbers of susceptible,

lurker, infective, recovered individuals and total numbers of
the individuals, respectively. Assume that the susceptible
crowd has a constant input rate A, and p is the effective

vaccination rate. The proportional coefficient of Lurker
become infected isVv, and the lurker crowd possess bilinear
incidence rate SES . The infected people have bilinear
incidence rate ,1S , and « is the diseased death rate, & is the
cure rate, y is the natural recovery rate, and x>0 is the
natural mortality rate. Here N =S+E+1+R, and all the

coefficients are positive.
Due to the first three equations of model (1) is

about (S, E, | ) not including R , and the fourth equation is the
linear equation of R . Therefore, the dynamical behavior of

model (1) is equivalent to the dynamical behaviors of the
following model:

S'= A= BES-B,IS —(pu+p)S
E'= BES+A,1S —(u+V)E @)
I"'=VE—(u+a+5+y)l

Applying the Forward-Euler difference method to model
(2), we obtained the following three-dimensional
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discrete-time SEIR epidemic model with infectious force in
latent period:

Syu=S,+h[A-BE,S, - B,1,S, —(1+p)S, ]
E,.=E,+h[BE,S, + 51,5, —(u+V)E,] (3)
Ly = 1, +h[VE, —(u+a+5+7)1,]

where h(0 < h <1)is the step size.

The paper is organized as follows. In section 2, we discuss
the stability of fixed points and the Hopf bifurcation by
choosing « as the bifurcation parameter in model (2). The
stability of fixed points and the existence, direction and
stability of the Hopf bifurcation of the discretized system are
investigated in section 3. In section 4, we present the
numerical simulations illustrate our results with the
theoretical analysis. We have given some comparisons of
bifurcation between the continuous-time epidemic system
and its discrete-time system in section 5. In section 6,
conclusion of the paper is given.

Il. DYNAMICAL BEHAVIORS OF THE SEIR EPIDEMIC MODEL

A. Linear Analysis of the Fixed Points and Existence of
Hopf Bifurcation

Through a simple calculation, we can easily get the
following two fixed points of model (2):

P1:[ A ,Oyoj, Pz:(S()’Eo’Io)v (4)
HEP

where
(u+Vv)(u+a+5+y)
B(u+a+8+y)+BV
Aﬂzv—(,u+a+5+}/)(,uz+Vp+,uv+,up+Aﬂl)
(u+V)[ B (u+a+5+y)+ByV]
_V[Aﬂzv—(y+a+§+y)(y2+Vp+,uv+/1p+Aﬁ1ﬂ
(V) (ura+s+y) [ B(uratSy)+py]
The Jacobian matrix of model (2) at the fixed point B, is
given by_

0

0

.V Y}
ptp Htp
Jl: 0 A—ﬂl_(,u_i_v) A_ﬂz , (5)
u+p H+p
0 v —(u+a+s+y)

and its characteristic polynomial is

p(A) =(/7.+,u+p){22+(2/1+V+a+5+7—ﬂ)/1
u+p
’ (6)
+[,u+v——A’Bl ](,u+oc+5+;/)——Aﬂ2 }
u+p u+p
So, we can get the eigenvalues of J, as follows
%=—ﬂ—p,ﬂg=J@HN—J%i}—A@VL
utp) p+p
“u+p) u+p

According to Routh-Hurwitz criterion, it is easy to obtain
the following proposition.

Proposition 1. If (,u-i-a+5+;/)[,u+v—ﬂj—ﬂ>0

u+p) u+p
AB,
“+p
fixed point P, is asymptotically stable.
2

ALY
H+p) p+p
characteristic polynomial (6) has a pair of purely imaginary
eigenvalues 4, , = +iw, andRe(4, (a,))= 0, then the Hopf

u+p>0, and a=¢q, = —v—8—-y—-2u , then the

Proposition 2. Assume that [/1 +V-—

bifurcation occurs at the fixed point B, when the bifurcation
parameter ¢ pass through the critical value ¢, .

Proof. Suppose that A = iw, (@ > 0) is a root of the equation
(6), so we have

A . A
-’ +{2y+v+a+5+7—ija}|-i{,u-i-v—ij
u+p u+p

ABV 0
u+p
then separating the real and imaginary parts of above
equation, and we get

(u+a+5+y)-

—a)2+(y+v——Aﬂ1 ](y+a+5+y)——Aﬂ2V =0,
u+p u+p
A
(2y+v+a+5+y—i)a):0,
u+p

Through simple calculation, we have

A A

AB,

=qy=—"--V-0—-y—-2u,
u+p
Take the derivative of both sides of Eq. (6) with respect

to « , we obtain

da (u+p)2? +[(2y+p+v)(y+p)—Aﬁ1]/1

da )y
() (rv)(pp) - AS ]
> ,
and
dRe dma|
da |, " da ey ’
where

Y =3(u+p)A+2(u+p) A-AB+

(u+y+a+8)(u+v)(u+p)-AB ],
According to the explicit criterion of Hopf bifurcation [22],
we can get ¢, is the critical value of bifurcation, suppose that

2
u+p) ptp

critical value ¢, , the model (2) occurs Hopf bifurcation at the
fixed point P, .

>0, when « pass through the

(Advance online publication: 23 February 2017)
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B. Direction and Stability of the Hopf Bifurcations

In this section, we study the direction and stability of Hopf
bifurcation by using the normal form method and center
manifold theory [23]. First, the model (2) can be written as

X = Ky + 2B, X,) +2C(X,0 X, X,)+0X, ), (1)

where J is the Jacobin matrix at the fixed point B, O(X,*) is
the 4 order indefinite small of X . And fori=1,2,3, we have

3 X(0)
BN 2 Tares |,
©
Ci(xy,2)= 1212;(52&6;) Xi Y2y

Let p,q e C*be vectors such that:

3
p:Q>:Zﬁiqi =1 ©)
i=1
where J 7 is the transpose of the J . For model (2), we can get
B(Xv y) = (_ﬂ1(x1y2 +X, y1) _ﬁz (X1y3 + Xsyl)lﬂl(x1y2 (10)
X Y1) + 5, (X Y5 + %3 Y1), O)T ,C (X, Y Z) = (OyO,O)T )

q :(gl+52i,g3 +54i,1)T, p=(0,¢& +&i & +&i),

Jg=im,q,3" p =—iw,p,(

11)
where
_AB[ AR —(+v) (et p) + AR+ ]
V()| () + ey’ |
ABa, [(u+p)2 -A3 +(,U+V)(ﬂ+p)_AﬂzVJ
V(o) (w4 p) +a ]

_AB—(u+v)(u+p)
V(u+tp)

A= (ue ) ()T — AR (k)
. V(u+p)
(A8~ ~vs-pu—vi) +(w o) e
Q
: [Aﬁ —(ﬂ+V)(/1+p)][2%(y+p)54+Aﬁz]
o ,

(AB,— 4> —vu—pu-vp) &,
& = o -

(1+p) w’e, - ABo,(u+p)
Q 1
Ap, (Aﬂ1 - —V,U—,Dﬂ—VP)gz,
& = O
JLan(utp)e + AB |AB,
Q

o Ap, [(Aﬂl—ﬂz —Vu-pu-vp)e, +co0(y+p)g3]
8 Q y

& =

&3

& =

Q=[(Aﬂ1—u2 —Vu-pu-vp)e, +wo(u+p)83]2 +

[(Aﬂl_,uz —V,u—p,u—vp)53 + @, (ﬂ+p)54 + Aﬂ2:|2'

Thus, we can obtain
B( a, CI) :(_2[:4(‘9153 _5254) +ﬁ2‘5‘1:|_2[ﬂ(8154 +5253)+16251:|i!

; (12)

2[@(5153_5254)+ﬂ251]+2[1q(€1€4+5253)+16251]i!0) !
B(q,C_])2(—2[)’1(6‘183+82€4)—2ﬂ28i, (13)

28, (8,8, +£,6,)+2/,6,0)

h, =-A"B(q.q)" = (€r61008a) (14)

hy, = (2iw,l, — A)B(q,q)" = (k1 +K,i, K, + K0 K + |(Gi)T ,

H,, =C(9,9,9)+B(T, hy) +2B(q,h;,)

r (15)

=(6,+26,+(6,+26,)i,
where
& :_2(ﬂ+p)[:31(‘§153+5254)+51ﬁz]_
2A[@V—ﬂ(y+a+5+;/)][,@(£lgs+5284)+51ﬂ2J
(124 )] (u+a+8+7)( AR~ ~vu—pu-vp)+ ABV |
Z[ﬁl(ela‘B +52£4)+51ﬁ2}(,u+p)(y+a+5+y)

-6, -26,—(6,+26,)i,0)

8 T L
10 (#+a+5+7)(Aﬁl_ﬂ2_Vﬂ—p,u—Vp)+Aﬂ2v
. 2v[ﬁ1(5153+52,94)+glﬁ2](#+p)
1 (’u+a+5+y)(Aﬂ1_ﬂ2_V#—,O,LI—V,O)+AI[32V,
Ap, 2k
=2 Pt S B 6’
k [ﬁl(gl‘%+8284)+51ﬂ2](ﬂ+p+ﬂ+p] v
(-2 b )
vV Htp
k3:_2600k6 _ﬁ LAV — AB; ’
v Htp
k,=—— [ ] 26"0
Cptp

ks = _Zv[ﬂl & &3 _5254)+51ﬂz]
ks =—2V[ B, (&8, +£,6,) + &, |,
6 =-p5 (‘91510 +&38, ) -5, (

0, =-p (52‘910 +54€9)_ﬁ252511’
0, =P, (ek; + &K, + ek + £,k )= B, (eks + &,k +k,),
A :_ﬂl(gl 54k1) B, (‘91 5_52k5+k2)'
Through direct calculation, we also has

Gy =(p.Hy)=¢65(26,+6,)+,(20,+86,)i, (16)

Theorem 1. Consider model (2), the first Lyapunov
coefficient associated to the fixed point B, is given by

1
I1 :EREGZJ_ =

£E,+E),

—&,k; + &k,

1
—56‘5(291+l93), @an

If |1 is different from zero, then model (2) has a transversal
Hopf point at P, . More precisely, if I, <0 , the Hopf
bifurcation at the fixed point P, is supercritical and there

exists a stable periodic orbit near the asymptotically stable
fixed point B, ; ifl, >0, the Hopf bifurcation at the fixed

point P, is subcritical.
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I1l. DYNAMICAL BEHAVIORS OF THE DISCRETIZED
SEIR EPIDEMIC MODEL

A. Stability of the Fixed Points of the Discretized Model

Next, we study the asymptotic stability of model (3). The
fixed points of model (3) satisfy:

Sn = Sn +h|:A_ﬁlEnSn _ﬁzlnsn _(/u+p)sn]

E,=E, +h[ BE,S, +B,1,S, —(u+V)E, ] (18)
I, =1 +h[vE (H+a+5+y)l ]
The Jacobian matrix J° of model (3) at the fixed
point P* = (S",E", 1”) is given by
1-hBE ~hB,I" —=h(u+p) -hgs” -hp,s”
hBE" +hg,I” 1+hBS" —h(pu+v) hg,s”
0 hv I-h(pg+a+5+y)

(19)
For simplification, we only consider the fixed point P, .

And the characteristic equation of model (3) at the fixed
point P, has the form

p(D) =[A-1+h(u+p) |4 +al+a,), (20)
where
a=hQu+v+a+o+y)-2- As
pu+p’
2
a, —{1+ AB, —h(u+v) }[1 h(u+a+d+y)]- ARV
u+p u+p

From the local stability theory of fixed point, it is easy to
obtain the following Proposition:
Proposition 3. (1) P, is local asymptotically stable if one of

the following conditions holds:

(a)a —48,>0, O<h(u+p)<2, -1-a <a,<min{l+a,1-a};
(b) a,—4a, <0, O<h(u+p)<2, a, <l

(2) B isunstable if one of the following conditions holds:
(a) a—4a,>0, h(u+p)>2 a<min{-1-a,8-1 or a,>
max{-1-a,,a —1} ;

(b) a,—4a, <0, h(u+p)>2, a,>1.

(3) P, is non-hyperbolic point if one of the following
conditions holds:

(a) a,—4a,>0, h(u+p)=2, a,=-1-gora, =a —1;

(b) a,—4a, <0, h(u+p)=2, a, =1

B. Existence of Hopf Bifurcation
When a, —4a, <0, the eigenvalues of model (3) at fixed
point P, = (A/u+ p,0,0) can be written as

h=t-h(utp), dp =

Assume that
_ AB—(u+v)(utp)-ABM
p+p+ABh=h(u+v)(u+p)
and h(u+p)#0,2, u+p+ABh=h(u+v)(u+p), we
can get:

|4 (a)| == (z+ )|, |As(a0) =2, =1,

—(u+S+y),

(22)

d([Zs))| _ h[n(u+v)(setp)~(u+p+ ABN)]
da | H+p

a=aq

#0,(23)

4_3a2
ﬁi(%)zl_h(”+p)’ﬂz,3(ao):_%i za1 i.

and by calculation we can get 4, ," () #1,2,3,4. According

(24)

to bifurcation theory [24], the Hopf bifurcation occurs at the
fixed point P, = (A/u+ p,0,0).

C. Direction and Stability of the Hopf Bifurcation

Next, we investigate the stability and direction of the Hopf
bifurcation by using the Kuznetsov’s normal form method
and center manifold theory [25]. First, the model (3) can be
written as

X, =X, +%B(Xn,Xn)+%C(Xn,Xn, X )+0(X.*), (25)

where J is the Jacobin matrix at the fixed point B, O(X,*) is
the 4 order indefinite small of X, and fori=1,2,3, we can
get:

B(xy)= Zaa)g(‘(@i‘O) X Yico
" < oo (26)

3. 08X 0
Ci(x.y,2) = Jz,lag 62585?

Let p,q e C®be vectors such that:
3
Jq9=20, 3'p=4p, (p.a)=> P =1
i=1

where J"is the transpose of the J, and 4,,4, is a pair of
complex conjugate eigenvalues at the fixed point B . For the
model (3), we can get

B(X,Y) = (=A(XY2 + % %1) = B (X Ys + X Y1), A (%Y,

X Y) +5, (%Y +%,%,).0)", C(x,y,2)=(0,0,0)",
and

q= ((01 +¢’2iv¢3 +(P4iv1)T v P= (0’¢75 +¢6i’¢7 +(p8i)T,
where

_(ABhg, + ABR)[2-20(u+ p)+a, ]~ Afhp,4 -3

. 2+2a,+2h(u+p)[2h(u+p)-2-a ]

2ABhp, +./4-a°

Jykzl’

(27)

(28)

(29)

Y v 2a v oh(ut p)[2h(utp)-2-2,]
2-2h(u+a+s+y)+a J4-a?
(03 = 1 (04 =TT
2hv H+p
/1+p [Zh y+a+5+7 -2- aJ;07+ ,Ll+p)§03«/4 a1
2AB,h
(utp)[2h(u+a+d+y)-2-a]p,—(u+p)o4-a’
P = ,
2AB,h
:ZAﬂ’zh(,u+p)[2h(y+0[+5+;/)—2—31}(/13
A
AR BINT—2nBh e+ p)pfa—a
A :

(Advance online publication: 23 February 2017)
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o - 2A,82h(,u+p)[2h(y+a+5+7/)—2—a1]¢)3
=
A

N (P4V4_a12 ZAﬂzh(/H'p)
A ,

A:{(u+p)[2h(#+a+5+7)—2—31}"4 “"3\'4_&‘12}2 *

{[Zh(#+a+5+7)—2—81]¢3(#+p)¢4\/4—af +2Aﬂzh}2~

So the coefficients of the normal of model (3) can be
computed by the following formulas:

U2 =(P.B(0.0)) = ¢ + @i, 9y, =(p.B(q,7))
= P+ Pl O = (P.B(0.0)) = @y + @,
where
@ = 20 (0,0, — 210, (95 — 5 ) = Boh
Do = 280 (0,0, — 0.0, (9s — 05 )~ Boh (9,05 + 9,05,
o, = 2ho, | B (00 +0,0,)+ Bopy |,
0, =200 | B, (005 + 0,0.) + Boy |,
@13 = 280 (00, + 0,0, ) (05 + 05 )+ 28,0 (0,05 + 0,05 ),
@ = 28,0 (00, + 0,0, ) (05 — 05 )+ 28,0 (005 — 0,05 ),
and

9., =(P.C(a.0.3))+2(p.B(a(1,-3) " B(a.7)))

+(p.B(a(21,-9) (0.
+/13(1—2/12)
1-4,
=2M, + N, + Ny + Ng +(2Mg + N, + N, + N )i,
where

(30)

(205 + 9,05 ),

(31)

|2

Ul +—2 |9 Iz+ilg
20911 1_2‘2 11 223_1 02

o (+a+S+y) AB +(u+V)(u+p)-2ABV]

gosh(,u+p)[(,u+v)(,u+p)(,u+a+5+7)—Aﬂzv]’

M, = golz(,u-i-p)(,u+a+5+)/) |
oh[(u+V)(u+p)(u+a+5+y)-ABV]

_ PV (1 +p)
¢6h[(y+v)(y+p)(,u+a+5+7/)—Aﬁzv}’
M, =h[BM, =B, (M, =M,) (00 + 0,0~ LML,
My =h[ B,M, =B, (M, =M, ) |(2,0 — 15 ) - B,hM, 5,

N, = —@.h[ B, (071 + @110 + @371 + 04115 ) + By (00 + 0017 |

— @[ B.(0mo — @210 + 0511 — 0ty )+ By (@171, —0m1 ) |,

N, = @[ B (@t + @ottio + 0311, + @utt )+ By (0 + 0211, |

+ [ B (91o = @o710 + 0311 = 00 ) + By (070, = 0711 |,

(a'l +1)(a1 + 2)((010(012 _%(Pu)
4+2a,

n (3"" 2a1) VA4- a'12 ((plo(pn + (09(012)

4+ 23,

M, =

3

N, =

(3+ 26\1) v 4- 312 (¢10¢12 - ¢9¢’11)

4+ 2a,

(a1 +1)(a1 + 2)(@0(?11 + %%z)
4+2a ’

(83 +2a° ~32a” ~8a, +16)(¢,” +0,°)
a’(4a’ —a,+20)-4(a -2y’
o
_2a.\4-a7 (4’ +a,-4)(0,’ + ")
a’(4a’ —a, +20)-4(a -2y’

N ((0112 + 9, )\/4_a12

a+2

4

Ng

1
m=§af—2+h(ﬂ+p)l

m =laf—2—ilh+h(#+V),
2 H+p
1 J4-a’
1, =Ea12—2+h(,u+05+5+}/),774 =¥,

ns = (u+ ) (s =7 ) =i (m, + ) |- mAB?,

Mo = a1+ ) (s =12 )+, (m, + ) | AV,

(fon— ) (et p) (s + s ) + A, |
’752'”762

(2 + 2, [ (12+ P) (s — 105 ) — AW, |
T

(3, + f, ) (we+ o) (s +mrss ) + ABI |
1

(T2, — f) [ (224 2) (12 =705 ) — ABIV, |
1y

(22+ ) (£, = )| (=" ) 1+ )~ AB I |

’ [(772773 _7742)(/1"'/0)_ A:Bthz:r +7742 (772 +773)2 (,U"'p)z

8

7 (fom+ ) (. + ) (+ )’
[(mm=n2)(1a+ p)~ A | 402 (m, 41, (s )
7, (£ = 1) ( +10,) (14 )’
[(mm=12)(1a+ p)~ A | 452 (1, (s )
(22+p) (£ + T, )| (moms —ni” ) (1+ p) ~ AB I |
[(m ) (1 0)~ABWE | 02 () (a4 )
(,u+p)vh[ f AB,Vh? — f, (772773 —7742)(,u+p):|

’
2

The =

i = ) )12 R 2 2
(717 ) (s p) = ABN | 417 (7, 5 (14 p)

vhin, (1+ p) (1, +115)
> )
|:(772773—7]42)(,u+p)—Aﬂ2Vh2:| +7742 (772 +773)2 (ﬂ+p)2
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(u+ PV f, (7, +1,) (u+ o)+ f,ABVN |

Tha = 5 )72 9 2 2
(7= )1+ )= BN | 0 (1, +1, ) (w4 p)

fZVh(772773 _7742)(/“"',0)2
|:(772773 _7742 )(,U +,0) - Aﬁz\/hz :|2 + 7742 (772 +17; )2 (ﬂ+p)z
f,= h[2ﬂ1 (¢2§04 _¢1¢3)_ﬁ2¢1:|!

f,= _h[2ﬂ1(¢1¢3 _(02(/74)_:82%]'
Then, by Balculate one has

|1(a0) = Re(ﬂggmj_ RE(M gzognj_agnr _%|goz|2

2 )2
1
=—Z[a1(2M4 +N, +2N, + N5)+2((p112 +(p122)

—J4-a%(2My +N, +2N, +N; ) +@,” +(p142i|,

(32)
Theorem 2. The direction and stability of Hopf bifurcation
at the fixed point P, is determined by I (o) . If

l,(a,)<0(>0) , the Hopf bifurcation of model (3) at

__AB—(uv)(p+p) - ABVD
p+p+ABh—h(+v)(p+p)
(subcritical), and the wunique closed invariant curve
bifurcating from P, is asymptotically stable (unstable).
10 T T T T

—(u+8+y) is supercritical

x y
Fig. 1. Time history and phase diagram of model (2) with ¢ = 0.5

IV. NUMERICAL SIMULATIONS

A. Hop bifurcation simulation of continuous Model

First, we give a numerical example of model (2).
Let A=10,#=0.2,p=056=0.1, 4 =0.05 4, =0.014, =0.03,

v=0.13, and through compute we get the critical value
o, =0.543. The fixed point B, is stable when o =0.5< ¢,
and unstable when a =0.6 > ¢, as show in Fig. 1 and 2,
respectively. From the formulas in previous section, we can
get I («,)=0.3164>0 . Thus, the periodic solutions
bifurcating from the fixed point B are subcritical and

unstable.
100

Z -
80| / 1

60| |

40

20

,,,,,

0 50 100 150 200 250

y 0 o
Fig. 2. Time history and phase diagram of model (2) with &z = 0.6

X

B. Hop bifurcation simulation of discrete Model

Next, we choose one group parameters: A=10, 2 =0.4,
p=012,6=02,4=014=01y=03v=0Lh=0.1 and
by compute we get the critical value &, =0.329 . The fixed
point B is stable when o =0.31<¢,, and unstable when
o =0.34> ¢, as shown in Fig. 3 and Fig. 4, respectively.
Based on the previous conclusions and through complex
calculations, we have |, («,)=0.0764 >0 . Therefore the
Hopf bifurcation of model (3) at the fixed point B, is

subcritical, and the unique invariant curve which is resulting
from the bifurcation at fixed point is unstable.
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V. COMPARISONS
For the continuous-time model (2) at the fixed point B

2
with [g +vV —A—ﬂlJ +M > 0, we know that the critical

HEp H+p
value of Hopf bifurcation as follows:
A
aizi—v—ﬁ—y—Zy, (33)
H+p

For the discrete-time model (3) at the fixed point B with
a, —4a, <0, leth=0.4, 4, =0.5, we obtain the critical value
of Hopf bifurcation as follows:

o = Ap, —(,u-i-v)(,u+p)—0.2AV

° y+p+0.4[Aﬁ1—(,u+v)(,u+p)

By simple calculation, we can get the following

conclusions.
Proposition 4. Hopf bifurcations of continuous-time model

:|—(,u+5+}/),(34)

(2) and discrete-time model (3) occur simultaneously when

0.4A° B +(u+ p)[ (1+V)(+p—0.4AB)—0.2Av |
(u+p)[ +p+0AAB —04(+V)(u+p)]

=V+ 4,
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Fig. 4. Time history and phase diagram of model (3) with ¢ = 0.34

Proposition 5. The continuous-time model (2) undergoes
Hopf bifurcation earlier than the discrete-time model (3)
when

04N B2 +(pu+p)[ (u+V)(u+p—04AB)—0.2AV ]
(,u+p)[,u+p+0.4Aﬂ1—O.4(,u+v)(y+p)]

<V+u,

(Advance online publication: 23 February 2017)
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Proposition 6. The discrete-time model (3) undergoes Hopf
bifurcation earlier than the continuous-time model (2) when

0.4R°BE +(u+p)| (1+V)(u+p—04AB)—0.2AV |
(p+p)[ 1+ p+04AB —0.4(u+V)(u+p)]

>V+ L.

VI. CONCLUSIONS

In this paper, we introduced a SEIR epidemic model and
obtained a new discrete-time epidemic model by using the
Forward-Euler difference method. A necessary and sufficient
condition for existence of the solution of the SEIR epidemic
model are obtained, and we also investigated the local
stability of the fixed point of the epidemic model and its
discretized counterpart. Besides, the stability and direction of
Hopf bifurcation are proved by using the Kuznetsov’s normal
form method and center manifold theory. And the numerical
simulations were presented to illustrate the above main
results. Finally we give some comparisons of bifurcation
between the discrete-time epidemic model and its
continuous-time model..
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