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Abstract—In this paper, we introduce the concept of Orlicz
intersection body which is a extension of intersection body.
Some basic properties are proved for the Orlicz intersection
body. We also establish an Orlicz Busemann-Petty intersection
inequality by using Steiner symmetrization.

Index Terms—Convex bodies, Lp-intersection bodies, Orlicz
intersection bodies, Busemann-Petty intersection inequality.

I. INTRODUCTION

INTERSECTION bodies [8] played a crucial role for the
solution of the celebrated Busemann-Petty problem. Many

applications has been found in geometric tomography [2],
affine isoperimetric inequalities [16] and the geometry of
Banach spaces [7], [17].

Let K be a star body with respect to the origin in Rn,
the intersection body of K, IK, is the star body with radial
function

ρ(IK;u) = vol(K ∩ u⊥), u ∈ Sn−1,

where vol(·) denotes (n− 1)-dimensional volume and u⊥ is
the hyperplane orthogonal to u.

Let K be a star body with respect to the origin in Rn

and 0 < p < 1. The Lp-intersection body of K, IpK, was
introduced by Gardner and Giannopoulos [1] as well as Yuan
[18]:

ρ(IpK;u)p =

∫
K

|x · u|−pdx, u ∈ Sn−1, (1)

where x · u is the usual inner product of x, u ∈ Rn.
Haberl and Ludwig [6] gave the following definition of Lp-

intersection body for convex polytopes. They also established
a characterization for the new concept. There is a different
constant between the Lp-intersection body of (1) and the
following p-intersection body in [5]: Let K be a star body
with respect to the origin in Rn and 0 < p < 1, then the
p-intersection body was defined by

ρ(IpK;u)p =
1

Γ(1− p)

∫
K

|x · u|−pdx, u ∈ Sn−1. (2)

Since

vol(K ∩ u⊥) = lim
ε→0+

ε

2

∫
K

|x · u|−1+εdx

(cf. [7], p.9), it follows from (1) that

ρ(IK;u) = lim
p→1−

1− p

2
ρ(IpK;u)p,
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namely, the intersection body of K is given by a limit of
Lp-intersection bodies of K.

The Orlicz-Brunn-Minkowski theory for convex bodies
was made by Lutwak, Yang and Zhang [9], [10]. This theory
is far more general than the Lp-Brunn-Minkowski theory
(We refer readers to [12], [13] for the recent development of
research.). In this paper, we introduce the concept of Orlicz
intersection body, and some basic properties are established.
More importantly, we establish the Orlicz Busemann-Petty
intersection inequality for the Orlicz intersection bodies.
The technique we will use is that of the standard Steiner
symmetrization argument developed by Lutwak, Yang and
Zhang [9], [10].

Consider convex function ϕ : R\{o} → (0,∞) such that
lim

t→−∞
ϕ(t) = lim

t→+∞
ϕ(t) = 0 and lim

t→0−
ϕ(t) = lim

t→0+
ϕ(t) =

+∞. This means that ϕ must be increasing on (−∞, 0)
and decreasing on (0,∞). We will assume that ϕ is either
strictly increasing on (−∞, 0) or strictly decreasing on
(0,∞) throughout this paper. Let Φ denote the class of all
such convex functions ϕ.

Assume K is a star body with respect to the origin in
Rn with volume |K|. If ϕ ∈ Φ, then we define the Orlicz
intersection body IϕK of K whose radial function at x ∈
Rn\{o} is given by

ρ−1
IϕK

(x) = sup

{
λ > 0 :

1

|K|

∫
K

ϕ

(
x · y
λ

)
dy ≤ 1

}
. (3)

When ϕ(t) = |t|−p, with 0 < p < 1, then

IϕK =
1

|K|
IpK.

We will establish the following affine isoperimetric inequality
for the Orlicz intersection bodies.

Theorem 1.1. Suppose K is a convex body in Rn that
contains the origin in its interior. If ϕ ∈ Φ, then the volume
ratio

|I∗ϕK|/|K|

is minimized if and only if K is an ellipsoid centered at the
origin.

II. NOTATION AND PRELIMINARIES

The setting is Euclidean n-space Rn. We write e1, · · · , en
for the standard orthonormal basis of Rn and when we write
Rn = Rn−1×R we always assume that en is associated with
the last factor. We will attempt to use x, y for vectors in Rn

and x′, y′ for vectors in Rn−1. Throughout, B = {x ∈ Rn :
x · x ≤ 1} denotes the unit ball centered at the origin, and
Sn−1 denotes the surface of of B, and ωn = |B| denotes n-
dimensional volume of B. If Q is a Borel subset of Rn and
Q is contained in an i-dimensional affine subspace of Rn but
in no affine subspace of lower dimension, then |Q| denotes
the i-dimensional Lebesgue measure of Q. If x ∈ Rn then
by abuse of notation we will write |x| for the norm of x.
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For T ∈ GL(n) write T t for the transpose of T and T−t

for the inverse of the transpose (contra gradient) of T . Write
|detT | for the absolute value of the determinant of T .

We say that a sequence {ϕi}, of ϕi ∈ Φ , is such that
ϕi → ϕ0 ∈ Φ provided

|ϕi − ϕ0|I := max
t∈I

|ϕi(t)− ϕ0(t)| → 0,

for every compact interval I ⊂ R.
For ϕ ∈ Φ define ϕ⋆ ∈ Φ by

ϕ⋆(t) =

∫ 1

0

ϕ(ts)dsn, (4)

where dsn = nsn−1ds. Obviously, ϕi → ϕ0 ∈ Φ implies
ϕ⋆
i → ϕ⋆

0.
Associated with each ϕ ∈ Φ is cϕ ∈ (0,∞) defined by

cϕ = min{c > 0 : max{ϕ(c), ϕ(−c)} ≤ 1}.

A set K in Rn is star-shaped at o in o ∈ K and for each
x ∈ Rn\{o}, the intersection K∩{cx : c ≥ 0} is a (possibly
degenerate) compact line segment. If K is star-shaped at o,
we define its radial function ρK for x ∈ Rn\{o} by

ρK(x) = max{c ≥ 0 : cx ∈ K}.

This definition is a slight modification of [2]; as defined here,
the domain of ρK is always Rn\{o}. Radial functions are
homogeneous of degree −1, that is,

ρK(rx) = r−1ρK(x), (5)

for all x ∈ Rn\{o} and r > 0, and are therefore often
regarded as functions on the unit sphere Sn−1 in Rn.
Conversely, any nonnegative and homogeneous of degree −1
function on Rn\{o} is the radial function of a unique subset
of Rn that is star-shaped at o. A star set in Rn is a bounded
Borel set that is star-shaped at o. If a set K in Rn is star-
shaped at o, then K is a star set if and only if ρK , restricted
to Sn−1, is a bounded Borel-measurable function. If a star
sets K in Rn has a positive continuous radial function ρK ,
then a set K is called a star body. Let Sn

o denote the set of
star bodies in Rn.

If K ∈ Sn
o and c > 0, then obviously for the dilate cK =

{cx : x ∈ K} we have

ρcK(x) = cρK(x), (6)

for all x ∈ Rn\{o}. Obviously, for K,L ∈ Sn
o ,

K ⊆ L if and only if ρK ≤ ρL.

More generally, from the definition of the radial function it
follows immediately that for T ∈ GL(n) the radial function
of the image TK = {Ty : y ∈ K} of K is given by

ρTK(x) = ρK(T−1x). (7)

The radial distance δ̃(K,L) between K,L ∈ Sn
o is

δ̃(K,L) = ||ρK − ρL||∞ = max
u∈Sn−1

|ρK(u)− ρL(u)|.

For K ∈ Sn
o , define the real numbers RK and rK by

RK = max
u∈Sn−1

ρK(u), rK = min
u∈Sn−1

ρK(u). (8)

Note that the definition of Sn
o is such that 0 < rK ≤ RK <

∞, for all K ∈ Sn
o .

Let hK = h(K; ·) : Rn → R denote the support function
of the convex body (compact convex subset) K in Rn; i.e.,

h(K;x) = max{x · y : y ∈ K}.

The Hausdorff distance δ(K,L) between the convex bodies
K and L is

δ(K,L) = ||hK − hL||∞ = max
u∈Sn−1

|hK(u)− hL(u)|.

We write Kn for the space of convex bodies of Rn. We
write Kn

o for the set of convex bodies that contain the origin
in their interiors. On Kn

o the Haudorff metric and the radial
metric induce the same topology.

For convex body containing the origin in their interiors,
K, let K∗ denote the polar of the body K; i.e.,

K∗ = {x ∈ Rn : x · y ≤ 1, for all y ∈ K}.

Obviously, we have (K∗)∗ = K. From definition of the polar
of the convex body K, we know that: If K ∈ Kn

o , then the
support and radial functions of K∗, the polar body of K, are
defined respectively by

hK∗ = 1/ρK and ρK∗ = 1/hK . (9)

For a convex body K and a direction u ∈ Sn−1, let Ku

denote the image of the orthogonal projection of K onto u⊥,
the subspace of Rn orthogonal to u. The undergraph and
overgraph functions, lu(K; ·) : Ku → R and lu(K; ·) → R,
of K in the direction u are given by

K = {y′ + tu : −lu(K; y′) ≤ t ≤ lu(K; y′) for y′ ∈ Ku}.

Therefore, the Steiner symmetral SuK of K ∈ Kn
o in direc-

tion u is defined by the body whose orthogonal projection
onto u⊥ is identical to that of K and whose undergraph and
overgraph functions are

lu(SuK; y′) = lu(SuK; y′)

=
1

2

[
lu(K; y′) + lu(K; y′)

]
. (10)

For y′ ∈ Ku, define my′ = my′(u) by

my′(u) =
1

2
[lu(K; y′)− lu(K; y′)]

so that the midpoint of the chord K ∩ (y′ + Ru) is y′ +
my′(u)u. The length |K ∩ (y′ + Ru)| of this chord will be
denoted by σy′ = σy′(u). Note that the midpoints of the
chords of K in the direction u lie in a subspace if and only
if there exists an x′

0 ∈ Ku such that

x′
0 · y′ = my′ , for all y′ ∈ Ku.

In this case {y′ − lu(K; y′)u : y′ ∈ relintKu}, the under-
graph of K with respect to u, is mapped into the overgraph
by the linear transformation

y′ + tu 7→ y′ + [2(x′
0 · y′)− t]u.

The following is a classical characterization of the ellip-
soid: a convex body K ∈ Kn

o is an origin centered ellipsoid if
and only if for each direction u ∈ Sn−1 all of the midpoints
of the chords of K parallel to u lie in a subspace of Rn.
Gruber (see [10]) showed how the following Lemma is a
consequence of the Gruber-Ludwig theorem [3]:

IAENG International Journal of Applied Mathematics, 47:1, IJAM_47_1_04

(Advance online publication: 23 February 2017)

 
______________________________________________________________________________________ 



Lemma 2.1. A convex body K ∈ Kn
o is an origin centered

ellipsoid if and only if there exists an εK > 0 such that for
each direction u ∈ Sn−1 all of the chords of K that come
within a distance of εK of the origin and are parallel to u,
have midpoints that lie in a subspace of Rn.

If K ⊂ Rn−1 × R for (x′, t) ∈ Rn−1 × R, then we will
usually write h(K;x′, t) rather than h(K; (x′, t)).
Lemma 2.2. ([10], Lemma 1.2) Suppose K ∈ Kn

o and u ∈
Sn−1. For y′ ∈ relintKu, the overgraph and undergraph
functions of K in direction u are given by

lu(K; y′) = min
x′∈u⊥

{hK(x′, 1)− x′ · y′},

and
lu(K; y′) = min

x′∈u⊥
{hK(x′,−1)− x′ · y′}.

The following crude estimate will be required.
Lemma 2.3. ([10], Lemma 1.3) Suppose K ∈ Kn

o and u ∈
Sn−1. If y′ ∈ (rK/2)B ∩ u⊥ and x′

1, x
′
2 ∈ u⊥ are such that

lu(K; y′) = hK(x′
1, 1)− x′

1 · y′

and
lu(K; y′) = hK(x′

2,−1)− x′
2 · y′,

then both

|x′
1|, |x′

2| ≤
2RK

rK
.

We also need the following lemma.
Lemma 2.4. ([15]) Let x = (x1, x2, · · · , xn) ∈ Rn and y =
(y1, y2, · · · , yn) ∈ Rn. If

0 < m1 ≤ xk ≤ M1, 0 < m2 ≤ yk ≤ M2, k = 1, · · · , n,

then ( n∑
k=1

x2
k

)( n∑
k=1

y2k

)

≤

(√M1M2

m1m2
+
√

m1m2

M1M2

2

)2( n∑
k=1

xkyk

)2

.

Lemma 2.4 implies that if x, y ∈ Rn, then there exist a
constant c0 ∈ (0, 1) such that

|x · y| ≥ c0|x||y|. (11)

III. DEFINITION AND BASIC PROPERTIES OF ORLICZ
INTERSECTION BODIES

We give the concept of Orlicz intersection body in the
introduction: If ϕ ∈ Φ and K ∈ Sn

o , then

ρ−1
IϕK

(x)

= sup

{
λ > 0 :

∫
Sn−1

ϕ⋆

(
(x · u)

λ
ρK(u)

)
dV ∗

K(u) ≤ 1

}
,

(12)

where ϕ⋆ is defined by (4), and dV ∗
K is the volume-

normalized dual conical measure of K, defined by

|K|dV ∗
K =

1

n
ρnKdS,

where S is Lebesgue measure on Sn−1 (i.e., (n − 1)-
dimensional Hausdorff measure). We shall make use of the
fact that the volume-normalized dual conical measure

V ∗
K is a probability measure on Sn−1. (13)

From the following fact, we obtain the equivalence of the
two definitions (3) and (12).∫

K

ϕ

(
x · y
λ

)
dy

=
1

n

∫
Sn−1

ϕ⋆

(
(x · v)

λ
ρK(v)

)
ρK(v)ndS(v). (14)

(14) is given by the following:∫
K

ϕ

(
x · y
λ

)
dy

=

∫
Sn−1

∫ ρK(v)

0

ϕ

(
(x · v)

λ
r

)
rn−1drdS(v)

=

∫
Sn−1

(∫ 1

0

ϕ

(
(x · v)

λ
ρK(v)t

)
tn−1dt

)
ρK(v)ndS(v)

=
1

n

∫
Sn−1

ϕ⋆

(
(x · v)

λ
ρK(v)

)
ρK(v)ndS(v).

It follows from definition (12) and (6) that,

ρIϕK(rx) = r−1ρIϕK(x),

for x ∈ Rn\{o} and r > 0, and IϕK has a positive
continuous radial function ρIϕK(x), then IϕK ∈ Sn

o .
Since ϕ⋆ is strictly decreasing on (0,∞) or strictly in-

creasing on (−∞, 0), we obtain the function

λ 7→
∫
Sn−1

ϕ⋆

(
(x · v)

λ
ρK(v)

)
dV ∗

K(v)

is strictly increasing in (0,∞), and it is also continuous.
Thus, we have:
Lemma 3.1. Suppose K ∈ Sn

o and u0 ∈ Sn−1. Then∫
Sn−1

ϕ⋆

(
(u0 · v)

λ0
ρK(v)

)
dV ∗

K(v) = 1

if and only if
ρ−1
IϕK

(u0) = λ0.

(5) and (6) shows that Lemma 3.1 holds for all u0 ∈
Rn\{o}.

We shall require more than ρIϕK > 0. Specifically,
Lemma 3.2. Suppose ϕ ∈ Φ, and K ∈ Sn

o . Then there
exists a real c0 ∈ (0, 1) such that

cϕ⋆

RK
≤ ρIϕK ≤ cϕ⋆

c0rK
.

Proof. Let u0 ∈ Sn−1 and ρ−1
IϕK

(u0) = λ0. Then∫
Sn−1

ϕ⋆

(
(u0 · v)

λ0
ρK(v)

)
dV ∗

K(v) = 1. (15)

We first obtain the lower estimate. From the definition of
ϕ⋆, either ϕ⋆(cϕ⋆) = 1 or ϕ⋆(−cϕ⋆) = 1. If ϕ⋆(cϕ⋆) = 1,
then from the fact that ϕ⋆ is non-negative, Jensen’s inequality,
and Lemma 3.1 together with the fact that ϕ⋆ is monotone
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decreasing on (0,∞) and the probability measure (13), we
have

ϕ⋆(cϕ⋆) = 1

=

∫
Sn−1

ϕ⋆

(
(u0 · v)

λ0
ρK(v)

)
dV ∗

K(v)

≥ ϕ⋆

(∫
Sn−1

(u0 · v)ρK(v)

λ0
dV ∗

K(v)

)
≥ ϕ⋆

(∫
Sn−1

RK

λ0
dV ∗

K(v)

)
= ϕ⋆

(
RK

λ0

)
.

Since ϕ⋆ is monotone decreasing on (0,∞) so we conclude

λ0 ≤ cϕ⋆

RK
.

Then we obtain the lower bound for ρIϕK :

ρIϕK ≥ cϕ⋆

RK
.

The case ϕ⋆(−cϕ⋆) = 1 is handled the same way and gives
the same result.

To give the upper estimate, we see that from the definition
of cϕ⋆ , the fact that ϕ⋆ is strictly increasing on (−∞, 0) and
strictly decreasing on (0,∞), together with the fact that the
function t 7→ max{ϕ⋆(t), ϕ⋆(−t)} is monotone decreasing
on (0,∞), Lemma 3.1, the inequality (11) and the probability
measure (13), it follows that

max{ϕ⋆(cϕ⋆), ϕ⋆(−cϕ⋆)}
= 1

=

∫
Sn−1

ϕ⋆

(
u0 · v
λ0

ρK(v)

)
dV ∗

K(v)

≤
∫
Sn−1

max

{
ϕ⋆

(
|u0 · v|ρK(v)

λ0

)
,

ϕ⋆

(
− |u0 · v|ρK(v)

λ0

)}
dV ∗

K(v)

≤
∫
Sn−1

max

{
ϕ⋆

(
c0ρK(v)

λ0

)
,

ϕ⋆

(
− c0ρK(v)

λ0

)}
dV ∗

K(v)

≤
∫
Sn−1

max

{
ϕ⋆

(
c0rK
λ0

)
,

ϕ⋆

(
− c0rK

λ0

)}
dV ∗

K(v)

= max

{
ϕ⋆

(
c0rK
λ0

)
, ϕ⋆

(
− c0rK

λ0

)}
.

Since the even function t 7→ max{ϕ⋆(t), ϕ⋆(−t)} is mono-
tone decreasing on (0,∞) so we conclude

λ0 ≥ c0rK
cϕ⋆

.

Then the upper bound is obtained for ρIϕK :

ρIϕK ≤ cϕ⋆

c0rK
.

For c > 0, (3) and (5) immediately get that

ρIϕcK = c−1ρIϕK . (16)

The following shows that the Orlicz intersection body
operator Iϕ : Kn

o → Sn
o is continuous.

Lemma 3.3. Suppose ϕ ∈ Φ. If Ki ∈ Sn
o and Ki → K ∈

Sn
o , then IϕKi → IϕK.

Proof. If ϕ ∈ Φ and ϕ is continuous, convex, and ei-
ther strictly increasing in (−∞, 0) or strictly decreasing in
(0,∞), then we will show that for u0 ∈ Sn−1

ρIϕKi(u0) → ρIϕK(u0).

Suppose
ρ−1
IϕKi

(u0) = λi.

From Lemma 3.2, we have that there exists a real c0 ∈ (0, 1)
such that

c0rK
cϕ∗

≤ λi ≤
RK

cϕ∗
.

Since Ki → K ∈ Kn
o , we have rKi → rK > 0 and

RKi → RK < ∞, and thus there exist a, b such that
0 < a ≤ λi ≤ b < ∞, for all i. To show that the bounded
sequence {λi} converges to ρ−1

IϕK
(u0), we show that every

convergent subsequence of {λi} converges to ρ−1
IϕK

(u0).
Denote an arbitrary convergent subsequence of {λi} by {λi}
as well, and suppose that for this subsequence we have

λi → λ∗.

Clearly, a ≤ λ∗ ≤ b. Let Ki = λiKi. Since Ki → K, we
have

Ki → λ∗K.

Now (16), and the fact that ρ−1
IϕKi

(u0) = λi, shows that
ρIϕKi

(u0) = 1. Namely,∫
Sn−1

ϕ⋆

(
u0 · u
ρKi

(u)

)
dV ∗

Ki
(u) = 1

for all i. It follows from Ki → λ∗K and the continuity of
ϕ⋆ that ∫

Sn−1

ϕ⋆

(
u0 · u

ρλ∗K(u)

)
dV ∗

λ∗K(u) = 1,

which by Lemma 3.1 yields

ρIϕλ∗K(u0) = 1.

Thus, combining (16) and (5), we have

ρIϕK(u0) = λ∗.

This shows the desired result, i.e., ρIϕKi(u0) → ρIϕK(u0).
But for radial functions on Sn−1 pointwise and uniform

convergence are equivalent (see, e.g., Schneider [16], p.54).
Thus, the pointwise convergence ρIϕKi → ρIϕK on Sn−1

completes the proof.
The following result shows that the Orlicz intersection

body operator is also continuous in ϕ.
Lemma 3.4. If ϕi → ϕ ∈ Φ, then IϕiK → IϕK, for each
K ∈ Sn

o .
Proof. Let K ∈ Kn

o and u0 ∈ Sn−1. We will show that

ρIϕi
K(u0) → ρIϕK(u0).

If ϕ ∈ Φ with ϕ is continuous, convex, and either strictly
increasing in (−∞, 0) or strictly decreasing in (0,∞), and
let

ρ−1
Iϕi

K(u0) = λi,
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then rom Lemma 3.2 we have that there exists a real c0 ∈
(0, 1) such that

c0rK
cϕ∗

≤ λi ≤
RK

cϕ∗
.

Since ϕ⋆
i → ϕ⋆ ∈ Φ, we have cϕ⋆

i
→ cϕ⋆ ∈ (0,∞) and thus

there exist a, b such that 0 < a ≤ λi ≤ b < ∞, for all i.
To show that the bounded sequence {λi} converges to

ρ−1
IϕK

(u0), we show that every convergent subsequence of
{λi} converges to ρ−1

IϕK
(u0). Denote an arbitrary convergent

subsequence of {λi} by {λi} as well, and suppose that for
this subsequence we have

λi → λ∗.

Obviously, 0 < a ≤ λ∗ ≤ b. Since ρ−1
Iϕi

K(u0) = λi,

1 =

∫
Sn−1

ϕ⋆
i

(
u0 · u
λi

ρK(u)

)
dV ∗

K(u).

Combining ϕ⋆
i → ϕ⋆ ∈ Φ1 with λi → λ∗, we have

1 =

∫
Sn−1

ϕ⋆

(
u0 · u
λ∗

ρK(u)

)
dV ∗

K(u).

Thus, Lemma 3.1 gives

ρ−1
IϕK

(u0) = λ∗.

This shows that ρIϕi
K(u0) → ρIϕK(u0) as desired.

Since the radial functions ρIϕi
K → ρIϕK pointwise (on

Sn−1) they converge uniformly and hence

IϕiK → IϕK.

The operator Iϕ intertwines with elements of SL(n):
Lemma 3.5. Suppose ϕ ∈ Φ. For a star body K ∈ Sn

o and
a linear transformation T ∈ GL(n),

Iϕ(TK) = T−t(IϕK). (17)

Proof. Suppose x0 ∈ Rn and

ρ(IϕTK;x0)
−1 = λ0.

From Lemma 3.1 and (14), the substitution z = Ty and
the facts that |TK| = |detT ||K| and dz = |detT |dy, we
have

1 =
1

|TK|

∫
TK

ϕ

(
x0 · z
λ0

)
dz

=
1

|detT ||K|

∫
K

ϕ

(
x0 · Ty
λ0

)
|detT |dy

=
1

|K|

∫
K

ϕ

(
T tx0 · y

λ0

)
dy.

Lemma 3.1, (12) and (7) imply that

λ0 = ρ(IϕK;T tx0)
−1 = ρ(T−tIϕK;x0)

−1,

giving ρ(IϕTK;x0) = ρ(T−tIϕK;x0).

IV. PROOF OF THE ORLICZ BUSEMANN-PETTY
INTERSECTION INEQUALITY

Lemma 4.1. Suppose ϕ ∈ Φ, and K ∈ Kn
o . If u ∈ Sn−1

and x′
1, x

′
2 ∈ u⊥, then

ρ
(
Iϕ(SuK);

1

2
x′
1 +

1

2
x′
2, 1
)−1

≤ 1

2
ρ(IϕK;x′

1, 1)
−1 +

1

2
ρ(IϕK;x′

2,−1)−1. (18)

Equality in the inequality implies that all of the chords of K
parallel to u, whose distance from the origin is less than

rK
2max{1, |x′

1|, |x′
2|}

,

have midpoints that lie in a subspace.
Proof. Suppose that K ′ = Ku denotes the image of the
projection of K onto the subspace u⊥. For each y′ ∈ K ′, let
σy′(u) = σy′ = |K ∩ (y′ + Ru)| be the length of the chord
K ∩ (y′ + Ru), and let my′ = my′(u) be defined such that
y′ + my′u is the midpoint of the chord K ∩ (y′ + Ru). If
λ1, λ2 > 0, then we obtain∫

K

ϕ

(
(x′

1, 1) · y
λ1

)
dy

=

∫
K

ϕ

(
(x′

1, 1) · (y′, s)
λ1

)
dy′ds

=

∫
K′

dy′
∫ my′+σy′/2

my′−σy′/2

ϕ

(
x′
1 · y′ + s

λ1

)
ds

=

∫
K′

dy′
∫ σy′/2

−σy′/2

ϕ

(
x′
1 · y′ + t+my′

λ1

)
dt

=

∫
SuK

ϕ

(
x′
1 · y′ + t+my′(u)

λ1

)
dy′dt. (19)

Let t = −my′ + s, and∫
K

ϕ

(
(x′

2,−1) · y
λ2

)
dy

=

∫
K

ϕ

(
(x′

2,−1) · (y′, s)
λ2

)
dy′ds

=

∫
K′

dy′
∫ my′+σy′/2

my′−σy′/2

ϕ

(
x′
2 · y′ − s

λ2

)
ds

=

∫
K′

dy′
∫ σy′/2

−σy′/2

ϕ

(
x′
2 · y′ + t−my′

λ2

)
dt

=

∫
SuK

ϕ

(
x′
2 · y′ + t−my′(u)

λ2

)
dy′dt, (20)

by making the change of variables t = my′ − s. Abbreviate

x′
0 =

1

2
x′
1 +

1

2
x′
2 and λ0 =

1

2
λ1 +

1

2
λ2.

It follows from the convexity of ϕ that

2ϕ

(
(x′

0 · y′ + t)

λ0

)
≤ λ1

λ0
ϕ
(x′

1 · y′ + t+my′

λ1

)
+

λ2

λ0
ϕ
(x′

2 · y′ + t−my′

λ2

)
.

(21)
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From (19), (20) and (21), it follows that

λ1

λ0

∫
K

ϕ

(
(x′

1, 1) · y
λ1

)
dy

+
λ2

λ0

∫
K

ϕ

(
(x′

2,−1) · y
λ2

)
dy

=
λ1

λ0

∫
SuK

ϕ

(
x′
1 · y′ + t+my′(u)

λ1

)
dy′dt

+
λ2

λ0

∫
SuK

ϕ

(
x′
2 · y′ + t−my′(u)

λ2

)
dy′dt

≥ 2

∫
SuK

ϕ

(
x′
0 · y′ + t

λ0

)
dy′dt (22)

= 2

∫
SuK

ϕ

(
(x′

0, 1) · (y′, t)
λ0

)
dy′dt

= 2

∫
SuK

ϕ

(
(x′

0, 1) · y
λ0

)
dy.

Let

λ1 = ρ(IϕK;x′
1, 1)

−1 and λ2 = ρ(IϕK;x′
2,−1)−1.

From Lemma 3.1, we obtain

1

|K|

∫
K

ϕ

(
(x′

1, 1) · y
λ1

)
dy = 1

and
1

|K|

∫
K

ϕ

(
(x′

2,−1) · y
λ2

)
dy = 1.

Combining with the fact that |K| = |SuK| shows that

1

|SuK|

∫
SuK

ϕ

(
( 12x

′
1 +

1
2x

′
2, 1) · y

1
2λ1 +

1
2λ2

)
dy ≤ 1,

which together with definition (12) yields

1

ρSuK( 12x
′
1 +

1
2x

′
2, 1)

≤ 1

2
λ1 +

1

2
λ2,

with equality forcing (in light of the continuity of ϕ) equality
in (21) for all y′ ∈ K ′ and all t ∈ [−σy′/2, σy′/2]. This
establishes the desired inequality (18).

Suppose that equality holds. Hence there is equality in
(21) for all y′ ∈ K ′ and all t ∈ [−σy′/2, σy′/2].

From definition (8) of rK we see that if |y′| < rK/2 then(
− rK

2
,
rK
2

)
⊂
(
my′ − σy′

2
,my′ +

σy′

2

)
(23)

and(
− rK

2
,
rK
2

)
⊂
(
−my′ − σy′

2
,−my′ +

σy′

2

)
. (24)

Suppose y′ with

|y′| < rK
2max{1, |x′

1|, |x′
2|}

.

Therefore,
x′
1 · y′ ∈

(
− rK

2
,
rK
2

)
and

x′
2 · y′ ∈

(
− rK

2
,
rK
2

)
.

It follows from (23) and (24) that

x′
1 · y′ +my′ ∈

(
− σy′

2
,
σy′

2

)

and
x′
2 · y′ −my′ ∈

(
− σy′

2
,
σy′

2

)
.

Thus, the linear functions

t 7→ x′
1 · y′ + t+my′ and t 7→ x′

2 · y′ + t−my′

both have their root in (−σy′/2, σy′/2). Thus, they either (1)
have their root at the same t = ty′ ∈ (−σy′/2, σy′/2) or (2)
there will exist a t = t⋆y′ ∈ (−σy′/2, σy′/2) at which these
functions have opposite signs.

From the case (2). combining with the fact that

x′
1 · y′ + t⋆y′ +my′ and x′

2 · y′ + t⋆y′ −my′

have opposite signs tells us that

x′
1 · y′ + t+my′ and x′

2 · y′ + t−my′

have opposite signs for all t ∈ (t∗y′ − δy′ , t∗y′ + δy′) for
some δy′ > 0. This and the fact that there is equality in
(21) together with the fact that ϕ can not be linear in a
neighborhood of the origin gives

x′
1 · y′ + t+my′

λ1
=

x′
2 · y′ + t−my′

λ2
,

for all t ∈ (t∗y′ − δy′ , t∗y′ + δy′) which contradicts the
assumption that the linear functions have opposite signs.

In case (1) the linear functions

t 7→ x′
1 · y′ + t+my′ and t 7→ x′

2 · y′ + t−my′

have a root at the same t = ty′ ∈ (−σy′/2, σy′/2) and this
immediately yields

(x′
2 − x′

1) · y′ = 2my′ .

But this means that for |y′| < rK/max{2, 2|x′
1|, 2|x′

2|},
the midpoints

{(y′,my′) : y′ ∈ K ′}

of the chords of K parallel to u lie in the subspace{
(y′,

1

2
(x′

2 − x′
1) · y′) : y′ ∈ K ′

}
of Rn.

From the inequality (18) of Lemma 4.1, we have

ρ
(
Iϕ(SuK);

1

2
x′
1 +

1

2
x′
2,−1

)−1

≤ 1

2
ρ(IϕK;x′

1, 1)
−1 +

1

2
ρ(IϕK;x′

2,−1)−1.

If ϕ is assumed to be strictly convex, then the equality
conditions of the inequality in Lemma 4.1 are simple.
Lemma 4.2. Suppose ϕ ∈ Φ is strictly convex on R, and
K ∈ Kn

o . If u ∈ Sn−1 and x′
1, x

′
2 ∈ u⊥, then

ρ
(
Iϕ(SuK);

1

2
x′
1 +

1

2
x′
2, 1
)−1

≤ 1

2
ρ(IϕK;x′

1, 1)
−1 +

1

2
ρ(IϕK;x′

2,−1)−1,

and

ρ
(
Iϕ(SuK);

1

2
x′
1 +

1

2
x′
2,−1

)−1

≤ 1

2
ρ(IϕK;x′

1, 1)
−1 +

1

2
ρ(IϕK;x′

2,−1)−1.
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Equality in either inequality, implies

ρ(IϕK;x′
1, 1) = ρ(IϕK;x′

2,−1)

and that all of the midpoints of the chords of K parallel to
u lie in a subspace.
Proof. Observe that equality forces equality in (21) for all
y′ ∈ K ′ and all t ∈ [−σy′/2, σy′/2]. Since ϕ is strictly
convex, this means that we must have ϕ can not be linear in
a neighborhood of the origin given by

x′
1 · y′ + t+my′

λ1
=

x′
2 · y′ + t−my′

λ2
, (25)

for all t ∈ (−σy′/2, σy′/2). Choosing λ1 = ρ(IϕK;x′
1, 1)

−1

and λ2 = ρ(IϕK;x′
2,−1)−1, (25) immediately yields

ρ(IϕK;x′
1, 1)

−1 = λ1 = λ2 = ρ(IϕK;x′
2,−1)−1,

and
(x′

2 − x′
1) · y′ = 2my′ ,

for all y′ ∈ K ′. But this means that the midpoints {(y′,my′) :
y′ ∈ K ′} of the chords of K parallel to u lie in the subspace{

(y′,
1

2
(x′

2 − x′
1) · y′) : y′ ∈ K ′

}
of Rn.
Lemma 4.3. Suppose ϕ ∈ Φ,K ∈ Kn

o . If u ∈ Sn−1, then

I∗ϕ(SuK) ⊆ Su(I
∗
ϕK).

If the inclusion is an identity then all of the chords of K
parallel to u, whose distance from the origin is less than

rKrI∗
ϕ
K

4RI∗
ϕ
K

,

have midpoints that lie in a subspace.
Proof. Let y′ ∈ relint(I∗ϕK)u. According to Lemma 2.2
there exist x′

1 = x′
1(y

′) and x′
2 = x′

2(y
′) in u⊥ such that

lu(I
∗
ϕK, y′) = h(I∗ϕK;x′

1, 1)− x′
1 · y′, (26)

lu(I
∗
ϕK, y′) = h(I∗ϕK;x′

2,−1)− x′
2 · y′. (27)

From (10), (26) and (27) as well as Lemma 4.1 and Lemma
2.2, it follows that

lu(Su(I
∗
ϕK); y′)

=
1

2
lu(I

∗
ϕK; y′) +

1

2
lu(I

∗
ϕK; y′)

=
1

2
(h(I∗ϕK;x′

1, 1)− x′
1 · y′)

+
1

2
(h(I∗ϕK;x′

2,−1)− x′
2 · y′)

=
1

2
h(I∗ϕK;x′

1, 1) +
1

2
h(I∗ϕK;x′

2,−1)

−
(1
2
x′
1 +

1

2
x′
2

)
· y′

≥ hI∗
ϕ
(SuK)

(1
2
x′
1 +

1

2
x′
2, 1
)
−
(1
2
x′
1 +

1

2
x′
2

)
· y′

≥ min
x′∈u⊥

{
hI∗

ϕ
(SuK)(x

′, 1)− x′ · y′
}

= lu(I
∗
ϕ(SuK); y′), (28)

and

lu(Su(I
∗
ϕK); y′)

=
1

2
lu(I

∗
ϕK; y′) +

1

2
lu(I

∗
ϕK; y′)

=
1

2
(h(I∗ϕK;x′

1, 1)− x′
1 · y′)

+
1

2
(h(I∗ϕK;x′

2,−1)− x′
2 · y′)

=
1

2
h(I∗ϕK;x′

1, 1) +
1

2
h(I∗ϕK;x′

2,−1)

−
(1
2
x′
1 +

1

2
x′
2

)
· y′

≥ hI∗
ϕ
(SuK)

(1
2
x′
1 +

1

2
x′
2,−1

)
−
(1
2
x′
1 +

1

2
x′
2

)
· y′

≥ min
x′∈u⊥

{
hI∗

ϕ
(SuK)(x

′,−1)− x′ · y′
}

= lu(I
∗
ϕ(SuK); y′).

This gives the inclusion. Now let

I∗ϕ(SuK) = Su(I
∗
ϕK).

Together with Lemma 2.2, for each y′ ∈ (I∗ϕK)u ∩
(rI∗

ϕ
K/2)B, there exist x′

1 = x′
1(y

′) and x′
2 = x′

2(y
′) in

u⊥ such that

lu(I
∗
ϕK, y′) = h(I∗ϕK;x′

1, 1)− x′
1 · y′, (29)

lu(I
∗
ϕK, y′) = h(I∗ϕK;x′

2,−1)− x′
2 · y′. (30)

Since I∗ϕ(SuK) = Su(I
∗
ϕK), it follows from (28) that

hI∗
ϕ
(SuK)

(1
2
x′
1 +

1

2
x′
2, 1
)

=
1

2
hI∗

ϕ
K(x′

1, 1) +
1

2
hI∗

ϕ
K(x′

2,−1). (31)

From Lemma 2.3, (29) and (30), we have that both

|x′
1|, |x′

2| ≤
2RI∗

ϕ
K

rI∗
ϕ
K

.

(31) and the equality conditions in Lemma 4.1 show that all
of the chords of K parallel to u, whose distance from the
origin is less than

rKrI∗
ϕ
K

4RI∗
ϕ
K

,

have midpoints that lie in a subspace.
The following is a direct consequence of Lemma 2.1:

Corollary 4.4. Suppose ϕ ∈ Φ and K ∈ Kn
o . If u ∈ Sn−1,

then
I∗ϕ(SuK) ⊆ Su(I

∗
ϕK). (32)

If the inclusion is an identity for all u, then K is an ellipsoid
centered at the origin.
Theorem 4.5. If ϕ ∈ Φ and K ∈ Kn

o , then

|I∗ϕK|
|K|

≥
|I∗ϕB|
|B|

,

with equality if and only if K is an ellipsoid centered at the
origin.
Proof. Combining with the Steiner symmetrization argument,
there is a sequence of directions {ui}, such that the sequence
{Ki} converges to cB, where the sequences {Ki} is defined
by

Ki = Sui · · ·SuiK,
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with |K| = |Ki| and thus |K| = |cB| = cn|B|. Since the
Steiner symmetrization keeps the volume, by Corollary 4.4
we have

|I∗ϕK| ≥ |I∗ϕ(cB)| = |cI∗ϕB| = cn|I∗ϕB|,

namely,
|I∗ϕK|
|K|

≥
|I∗ϕB|
|B|

,

with equality if and only if K is an ellipsoid centered at the
origin.
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