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Abstract—We consider level-dependent volatility estimation
for jump diffusion models and propose a range-based threshold
spot volatility estimator with high frequency discrete obser-
vations. Under some weak conditions, the consistency and
asymptotic normality of our estimator are provided. By our
theoretical inferences, we find that the precision of our statistic
is five times greater than that of pure threshold estimator.

Index Terms—Range-based spot volatility estimation, Thresh-
old, Precision, Consistency, Asymptotic normality, Jump diffu-
sion models.

I. INTRODUCTION

THE jump diffusion models are widely used in a variety
of financial applications, such as interest rate modeling

([1], [2], [3]), bond pricing ([4]), derivative pricing ([5], [6]),
risk management and hedging ([7], [8]), among others.

A state variable (an integrate rate, an exchange rate or
a logarithmic asset price) {Xt}t≥0 may be evolved by the
following common jump diffusion process

Xt =X0 +

∫ t

0
µ(Xs)ds+

∫ t

0
σ(Xs)dWs+

Nt∑
i=1

Ji, t ∈ [0, T ] , (1)

with initial condition X0 = x0, where {Wt}t≥0 is a standard
Brownian motion defined on a filtered probability space
(Ω,ℑ, (ℑt)t≥0, P ) and adapted to the filtration (ℑt)t≥0, namely,
for any 0 ≤ s ≤ t < ∞, it has ℑs ⊆ ℑt ⊆ ℑ. Functions
µ (·) and σ (·) are, respectively, drift term and diffusion term
of the process {Xt}t≥0. N = (Nt)t≥0 is a poisson process
with constant intensity λ, jumping at times denoted by
(τi)i=1,2,··· ,NT

, and each Ji is the size of jump occurred at
τi. The random variable Ji are i.i.d. and independent of N .

Suppose the process {Xt}t≥0 is observed discretely at
equidistant time points {t = t1, t2, · · · , tn} with δ = T/n =

ti − ti−1(i = 1, 2, · · · , n) which is a time distance between two
consecutive observations. For ease of discussion, we denote
the process {Xt}t≥0 by X = Y + J , where Y and J are the
continuous part and the jump part respectively.

In view of the fundamental role of the volatility term in
financial applications, a great many scholars dedicate their
interest and passion to estimate the volatility (integrated
volatility or spot volatility) by disentangling the contributions
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due to the jumps and those due to the diffusion part from
state variable with a exercisable mathematical or economet-
ric technique, such as realized approach ([9]), maximum
likelihood approach ([10]), power, bipower and multipower
variation approach ([11], [12], [13]) and threshold-based
approach ([2], [14], [15], [16]), among others.

Threshold method (or truncation-based method) for an-
alyzing jump diffusion models was originally proposed in
[17], it is a simple yet powerful methodology to identify
jump. When the squared increment of the state variable is
larger than a suitably defined threshold, the jump occurs.
Using this technique, with low or moderate frequency data,
[2] proposed an efficient spot volatility estimator with

σ̂2
n (x) =

n∑
i=1

K

(
Xti−1

−x

h

)
(∆iX)2 I{(∆iX)2≤r(δ)}

n∑
i=1

K

(
Xti−1

−x

h

)
δ

, (2)

where h is bandwidth, K (·) is kernel function, ∆iX is denoted
by the increment

(
Xti −Xti−1

)
and r (δ) is a deterministic

function of the lag δ between two adjacent observations(
Xti−1 , Xti

)
. Under a set of conditions, they obtain a stable

convergence result. It is worth noting that this threshold
technique is usually not suitable to be used in high frequency
data directly due to well-known microstructure noise. In
order to ignore the noise, people often sample sparsely at
some lower frequency, which inevitably leads to the lack of
information and efficiency.

Along with the rapid development of information tech-
nology and the increasing perfection of financial market,
obtaining high frequency financial data (intraday data, hour
data, minute data, even real time data) is becoming easier and
easier. Exploring appropriate models and effective approach
to analyze these high frequency data has become an im-
portant issue that mathematical scholars, statistical scholars
and econometric scholars have to face and solve. The recent
related works include but not limit to [18], [19], [20].

Realized range-based variance (developed in [21], [22],
[23]) is formed from entire price process, so this technique
for volatility estimation reveals more information than the
realized method in which returns are sampled at fixed
intervals. Its another advantage is that the high frequency
financial data are not easy to be contaminated by the market
microstructure noise. Unfortunately, there are few range-
based works done on volatility estimation for jump diffusion
models so far. Presenting a realized range-based multi-power
variation theory, [24]drew a jump-robust inference about the
diffusion volatility with high frequency data and reflected
their estimators’ significant efficiency.

Motivated by the literatures in [2], [23], [24], combin-
ing the range-based technique with the threshold idea, we
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present a range-based threshold volatility estimator for jump
diffusion models when high frequency data are available. In
contrast with integrate volatility estimation in [24], in this
paper, the object we want to estimate is spot volatility. Our
estimator proposed has the advantages of the two methods
combined, such as the former’s estimation precision and the
latter’s powerfulness.

II. PRELIMINARIES

The following assumptions will be used in the work.

A1. The functions µ(·), σ(·) are time homogeneous and at
least twice differentiable, and satisfy the local Lipschitz’s
condition

|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ C |x− y| .

A2. µ(·), σ(·), µ′(·), σ′(·), µ′′(·) and σ′′(·) are all bounded.

A3. b satisfies (δ log(1/δ))
1
2

b
= oP (1).

A4. K(·) is twice differential, symmetrical, nonnegative
bounded function with support set [−1, 1], satisfies∫ 1

−1
K(x)dx = 1,

∣∣∣K(i) (x)
∣∣∣ < ∞ (i = 0, 1, 2)

and ∫ 1

−1
|K (x)| |x| dx,

∫ 1

−1
K2(x)dx < ∞.

Define

LY (t, a) = lim
ε→0

1

ε

∫ t

0
I[a,a+ε] (Ys) d [Ys] (∀a, t)

where I(·) is indicator function, [Y ]t is the quadratic variation
process of the process {Yt}t≥0, then we can define the
chronological local time by

LY (t, a) =
1

σ2(a)
lim
ε→0

1

ε

∫ t

0
I[a,a+ε](Ys)σ

2(Ys)ds

=
1

σ2(a)
LY (t, a) a.s. (∀a, t).

Lemma 2.1. (The Occupation Time Formula) ([25]) Let
Yt be a continuous semi-martingale with quadratic variation
process [Y ]t , and let LY (t, a) be the local time at a , then∫ t

0
f(Ys, s)d[Y ]s =

∫ ∞

−∞
da

∫ t

0
f(a, s)dLY (s, a),

for every positive Borel measurable function f . Especially, if
f is time homogeneous, then the expression can be simplified
by ∫ t

0
f(Ys)d[Y ]s =

∫ ∞

−∞
f(a)LY (t, a)da.

We extend Theorem 1 in [26] to the case for jump diffusion
models.

Lemma 2.2. Under the conditions A3, A4, given n → ∞,

T fixed, and b → 0 (as n → ∞ ), then the quantity
δ
b

n∑
i=1

K
(

Xti
−x

b

)
converges to LY (T, x) with probability one.

Proof. For each n, define the following random sets

I0,n = {i ∈ {1, 2, · · · , n} : ∆iN = 0} ,

and

I1,n = {i ∈ {1, 2, · · · , n} : ∆iN ̸= 0} .

then

δ

b

n∑
i=1

K

(
Xti − x

b

)

=
δ

b

n∑
i∈I0,n

K

(
Xti − x

b

)
+

δ

b

n∑
i∈I1,n

K

(
Xti − x

b

)
.

The second term above is dominated by NT
Kδ
b

(
a.s.→ 0

)
, where

NT is the jumps in
[
0,T

]
. For the first term, in view of

Theorem 1 in [26], we have

δ

b

n∑
i∈I0,n

K

(
Xti − x

b

)
a.s.→ L̄Y (T, x).

III. MAIN RESULTS

For any partition sequence 0 = t0 < t1 < · · · < tn = T , we
define the range of the process {Xt}t≥0 between the sampling
time ti−1 and ti as

yXti,δi
= sup

ti−1≤s,t≤ti

{Xt −Xs}.

Similarly, we define the range of a standard Brownian motion
between the sampling time ti−1 and ti as

yWti,δi
= sup

ti−1≤s,t≤ti

{Wt −Ws}.

[22] derived the moment generating function of the range
of a scaled Brownian motion Xt = σWt. The rth moment
generating function can be expressed as

E[yrXti,δi
] = λrδ

r/2
i σr (r ≥ 1),

where λr = E[yrW1,1
]. In the situation of equidistant sampling,

we abbreviate the range yXti,δi
to yXti

(yWti,δi
to yWti

).
We propose a range-based spot volatility threshold estima-

tor as

σ̂2(x) =

n∑
i=1

K
(

Xti
−x

b

)
y2Xti

I{y2
Xti

≤r(δ)}

δλ2

n∑
i=1

K
(

Xti
−x

b

) , (3)

where r(δ) is a deterministic function of the lag between two
adjacent observations (Xti , Xti−1), such that lim

δ→0
r(δ) = 0 and

lim
δ→0

(δ log 1
δ
)
/
r(δ) = 0.

Let

δ

b

n∑
i=1

K

(
Xti − x

b

)
= D(T, x),

then the estimator σ̂2 (x) can also be denoted by

σ̂2(x) =

n∑
i=1

K
(

Xti
−x

b

)
y2Xti

I{y2
Xti

≤r(δ)}

λ2bD(T, x)
. (4)
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Lemma 3.1. ([27]) Suppose that
Nt∑
i=1

Ji is a finite activity

jump process, where N is a non-explosive counting process
and the random variable Ji satisfy, ∀t ∈ [0, 1], P{∆Nt ̸=
0, JNt = 0} = 0. r(δ) is a deterministic function of the lag
between two adjacent observations (Xti , Xti−1 ), such that
lim
δ→0

r(δ) = 0 and lim
δ→0

(δ log 1
δ
)
/
r(δ) = 0. Then for P-almost all

ω, ∃δ̄(ω) > 0, ∀δ ≤ δ̄(ω), we have

I{y2
Xti

≤r(δ)}(ω) = I{∆iN=0}(ω) (∀i = 1, ..., n). (5)

Theorem 3.2. Under the conditions A1-A4, given n → ∞, T

fixed and b → 0 (as n → ∞ ), then

σ̂2(x)
P→σ2(x).

Proof. To prove this theorem, it is enough to prove the
following two results:

(I)
1

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)
σ2
(
Xti−1

)
y2Wti

P→σ2(x) ;

(II) σ̂2 (x)
P→ 1

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)
σ2
(
Xti−1

)
y2Wti

.

Next, we prove the above two results in sequence.
Result (I) Define

ςi =
1

λ2δ
σ2(Xti−1 )y

2
Wti

, (6)

ξi =
δ

bD(T, x)
K

(
Xti − x

b

)
ςi, (7)

Vn =
δ

bD(T, x)

n∑
i=1

K

(
Xti − x

b

)
ςi. (8)

We can easily obtain

E[ ςi| ℑi−1] = σ2(Xti−1 ),

then

∑n

i=1
E[ ξi| ℑi−1]

=
δ

bD(T, x)

n∑
i=1

E

[
K

(
Xti − x

b

)
ςi

∣∣∣∣ℑi−1

]

=
δ

bD(T, x)

n∑
i=1

K

(
Xti − x

b

)
σ2
(
Xti−1

)
=

1

bD(T, x)

∑n

i=1

∫ ti

ti−1

K

(
Xu− − x

b

)
σ2 (Xu) du

+
1

bD(T, x)

∑n

i=1

∫ ti

ti−1

K

(
Xu− − x

b

)(
σ2(Xti−1 )−σ

2(Xu)
)
du

+
1

bD (T, x)

n∑
i=1

∫ ti

ti−1

(
K

(
Xti − x

b

)
−K

(
Xu− − x

b

))
duσ2

(
Xti−1

)
= A1 +A2 +A3. (9)

The third term A3 in (9) coincides with

1

bD (T, x)

∑
i∈I0,n

∫ ti

ti−1

(
K

(
Xti − x

b

)
−K

(
Xu− − x

b

))
duσ2

(
Xti−1

)
+

1

bD (T, x)

∑
i∈I1,n

∫ ti

ti−1

(
K

(
Xti − x

b

)
−K

(
Xu− − x

b

))
duσ2

(
Xti−1

)
= A3,1 +A3,2. (10)

For A3,1 in (10), it is

1

bD (T, x)

∑
i∈I0,n

∫ ti

ti−1

∣∣∣∣∣K′

(
X̃iu − x

b

)∣∣∣∣∣
∣∣∣∣Xti −Xu

b

∣∣∣∣ duσ2
(
Xti−1

)
,

where X̃iu is a value on the line segment connecting Xti−1

to Xu.
Using the property of uniform boundedness of the incre-

ments of X paths when J ≡ 0 (UBI property for short), we
have

max
i≤n

sup
ti−1≤u≤ti

|Xti −Xu| = Oa.s.

(
(δ log (1/δ))

1
2

)
, (11)

and then

K′

(
X̃iu − x

b

)
= K′

(
Xu− − x

b
+

X̃iu −Xu−

b

)

= K′

(
Xu− − x

b
+Oa.s.

(
(δ log (1/δ))

1
2

b

))

= K′
(
Xu− − x

b
+ oP (1)

)
, (12)

it follows from (11) and (12) that A31 is bounded by

1

bD (T, x)

(δ log (1/δ))
1
2

b

∫ T

0

∣∣∣∣K′
(
Xu− − x

b
+oP (1)

)∣∣∣∣∣∣σ2(Xu+oP (1))
∣∣du

=
(δ log (1/δ))

1
2

bD (T, x)

1

b

∫ +∞

−∞

∣∣∣∣K′
(
p− x

b
+oP (1)

)∣∣∣∣σ2(p+oP (1))L̄Y(T, x)dp

=
(δ log (1/δ))

1
2

bD (T, x)

∫ +∞

−∞

∣∣K′(c+ oP (1))
∣∣σ2(cb+x+oP (1))L̄Y(T, cb+x)dc

= OP

(
(δ log (1/δ))

1
2

b

)
P→ 0,

the first equality above uses Lemma 2.1, the last equality
above uses Lemma 2.2 and boundness of K′ and σ. Using
Taylor expansion for K, UBI property and boundness of K′,
we obtain

A3,2 = oP

(
NT

K̄′δ

bD(T, x)

)
P→ 0.

Similarly, using the assumption A1, UBI property and Lem-
ma 2.1, 2.2, it is easy to see that

A2 ≤ OP

(
(δ log (1/δ))

1
2

)
P→ 0.

For the first term A1 in (9), using Lemma 2.1 and Taylor
expansion for σ2, we have

A1 =
1

bD (T, x)

∫ T

0
K

(
Xu− − x

b

)
σ2 (Xu) du

=
1

bD (T, x)

∫ T

0
K

(
Xu− − x

b

)(
σ2 (x)+

(
σ2 (Xu)−σ2 (x)

))
du

=
1

bD (T, x)

∫ +∞

−∞
K

(
p− x

b

)(
σ2 (x)+

(
σ2 (p)−σ2 (x)

))
L̄Y(T, p)dp

=σ2 (x)+
1

bD (T, x)

∫ +∞

−∞
K

(
p− x

b

)(
σ2
)′

(ε) (p−x)L̄Y(T, p) dp,

(13)

where ε is a value on the line segment connecting p to x, the
second term of the last equality above is
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Oa.s.

(
b

D (T, x)

∫ +∞

−∞
|K (c)| |c| L̄Y (T, bc+ x) dc

)
,

using the assumption A4 and Lemma 2.2, it tends to Zero,
therefore,

A1 → σ2 (x) .

Combing with A1, A2 and A3, we have

n∑
i=1

E [ ξi| ℑi−1]
P→σ2 (x) .

By setting

θi =
δ

bD (T, x)
K

(
Xti − x

b

)
(ςi − E [ ςi| ℑi−1]) ,

we obtain

E
[
θ2i
∣∣ℑi−1

]
=

δ2

b2D2 (T, x)
K2

(
Xti − x

b

)
Λ2σ

4 (Xti ) , (14)

where Λ2 =
(
λ4 − λ2

2

)/
λ2
2.

Using the same steps to (9), we obtain

n∑
i=1

E
[
θ2i
∣∣ℑi−1

]
=

Λ2δ2

b2D2 (T, x)

n∑
i=1

K2

(
Xti − x

b

)
σ4 (Xti )

= OP

(
δ

bD (T, x)

)
P→ 0,

then

1

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)
σ2
(
Xti−1

)
y2Wti

= Vn
P→σ2 (x) .

Result (II) Using Lemma 3.1, write

σ̂2 (x)

=

n∑
i=1

K
(

Xti
−x

b

)
y2Xti

I{∆iN=0}

δλ2

n∑
i=1

K
(

Xti
−x

b

)

=

n∑
i=1

K
(

Xti
−x

b

)
sup

ti−1≤s,t≤ti

(∫ t
s µ (Yu) du+

∫ t
s σ (Yu) dWu

)2
δλ2

n∑
i=1

K
(

Xti
−x

b

)

−

n∑
i=1

K
(
Xti

−x

b

)
sup

ti−1≤s,t≤ti

(∫ t
s µ (Yu) du+

∫ t
s σ (Yu)dWu

)2
I{∆iN ̸=0}

δλ2

n∑
i=1

K
(

Xti
−x

b

)

=

n∑
i=1

K
(

Xti
−x

b

)
y2Yti

δλ2

n∑
i=1

K
(

Xti
−x

b

) −

n∑
i=1

K
(

Xti
−x

b

)
y2Yti

I{∆iN ̸=0}

δλ2

n∑
i=1

K
(

Xti
−x

b

)
= D1 +D2. (15)

For y2Yti
in D2, using Triangle inequality, it is dominated by

2

(
sup

ti−1≤s,t≤ti

∫ t

s
µ (Xu) du

)2

+2

(
sup

ti−1≤s,t≤ti

∫ t

s
σ (Xu) dWu

)2

= E1 + E2.

Obviously,
E1 = Oa.s.

(
δ2
)
.

For E2, using Burkholder-Davis-Gundy inequality (hereafter
indicated as BDG inequality), there exists a constant C (> 0)

to make

E2 ≤ C

∫ ti

ti−1

σ2 (Xu) du = Oa.s. (δ) .

Therefore,

D2 = Oa.s.

(
K̄NT δ

bD (T, x)

)
P→ 0. (16)

By (15) and (16), we have

σ̂2 (x)−
1

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)
σ2
(
Xti−1

)
y2Wti

=D1 −
1

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)
σ2
(
Xti−1

)
y2Wti

−D2

=
1

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)(
y2Yti

−σ2
(
Xti−1

)
y2Wti

)
+oP (1) .

(17)

For the main part in the second equality of (17), it can be
decomposed as F1 + F2, where

F1=
2

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)
σ
(
Xti−1

)
yWti

(
yYti

−σ
(
Xti−1

)
yWti

)
,

and

F2 =
1

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)(
yYti

− σ
(
Xti−1

)
yWti

)2
.

By the define of yYti
and yWti

, we have

F2 ≤
1

λ2bD (T, x)
×

n∑
i=1

K

(
Xti − x

b

)(
sup

ti−1≤s,t≤ti

∣∣∣∣∫ t

s
µ (Xu)du+

∫ t

s
(σ (Xu)−σ (Xti ))dWu

∣∣∣∣
)2

≤
2

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)(
sup

ti−1≤s,t≤ti

∣∣∣∣∫ t

s
µ (Xu) du

∣∣∣∣
)2

+
2

λ2bD (T, x)
×

n∑
i=1

K

(
Xti − x

b

)(
sup

ti−1≤s,t≤ti

∣∣∣∣∫ t

s
(σ (Xu)− σ (Xti )) dWu

∣∣∣∣
)2

= F21 + F22,

the second inequality above uses Triangle inequality. It is
easy to see F21 = Oa.s. (δ) . For F22, using UDG inequality,
the assumption A1, UBI property and Lemma 2.1, 2.2, there
exists a constant C(> 0) to make

IAENG International Journal of Applied Mathematics, 47:1, IJAM_47_1_07

(Advance online publication: 23 February 2017)

 
______________________________________________________________________________________ 



E [F22]≤
2C

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)∫ ti

ti−1

(σ (Xu)−σ (Xti ))
2 du

= Oa.s. (δ log (1/δ)) ,

thus, F2 = oa.s. (1) . For F1, we have

F1 ≤
2

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)
σ (Xti ) yWti

Gi,

where

Gi = sup
ti−1≤s,t≤ti

∣∣∣∣∫ t

s
µ (Xu) du+

∫ t

s
(σ (Xu)− σ (Xti )) dWu

∣∣∣∣ ,
using Hölder’s inequality with counting measure, we obtain

F1 ≤
2

λ2D (T, x)

(
1

b

n∑
i=1

K

(
Xti − x

b

)
σ2 (Xti ) y

2
Wti

) 1
2

×

(
1

b

n∑
i=1

K

(
Xti − x

b

)
G2

i

) 1
2

,

using Hölder’s inequality with probability measure, we have

E [F1] ≤
2

λ2D (T, x)

(
E

[
1

b

n∑
i=1

K

(
Xti − x

b

)
σ2 (Xti ) y

2
Wti

]) 1
2

×

(
E

[
1

b

n∑
i=1

K

(
Xti − x

b

)
G2

i

]) 1
2

≤
2C

λ2D (T, x)
Oa.s.

(√
D (T, x)

)
×

(Oa.s. (δD (T, x)) +Oa.s. (δ log (1/δ)D (T, x)))
1
2

= Oa.s.

(
(δ log (1/δ))

1
2

)
,

the second inequality above uses the similar decomposition
and method to F2. Combining with F1, F2 and (17), it has

σ̂2 (x)−
1

λ2bD (T, x)

n∑
i=1

K

(
Xti − x

b

)
σ2
(
Xti−1

)
y2Wti

P→ 0.

These complete the proof of the whole theorem 3.2.

Theorem 3.3. Assume that the conditions of Theorem 3.2
hold and

b3D (T, x)

δ
= oP (1),

then the asymptotic distribution of the volatility estimator
σ̂2 (x) is of the form

√
bD (T, x)

δ

(
σ̂2 (x)− σ2 (x)

) d→N

(
0,Λ2σ

4 (x)

∫ 1

−1
K2 (c) dc

)
,

where Λ2 =
(
λ4 − λ2

2

)/
λ2
2.

Proof. σ̂2 (x)− σ2 (x) can be decomposed as

σ̂2(x)−Vn+
n∑

i=1

θi+

(
δ

bD (T, x)

n∑
i=1

K

(
Xti−x

b

)
E [ ςi| ℑi−1]−σ2 (x)

)
.

First, by the proof in Theorem 3.2, we have

σ̂2 (x)− Vn = OP

(
(δ log (1/δ))

1
2

)
.

Secondly,

δ

bD (T, x)

n∑
i=1

K

(
Xti − x

b

)
E [ ςi| ℑi−1]− σ2 (x)

=
δ

bD (T, x)

n∑
i=1

K

(
Xti − x

b

)(
σ2
(
Xti−1

)
− σ2 (x)

)
=

δ

bD (T, x)

n∑
i=1

K

(
Xti − x

b

)(
σ2
(
Xti−1

)
− σ2 (Xti )

)
+

δ

bD (T, x)

n∑
i=1

K

(
Xti − x

b

)(
σ2 (Xti )− σ2 (x)

)
= Oa.s.

(
(δ log (1/δ))

1
2

)
+Oa.s. (b)

= OP (b) .

then

√
bD (T, x)

δ

(
σ̂2 (x)− σ2 (x)

)
=

√
bD (T, x)

δ

(
n∑

i=1

θi +OP

(
(δ log (1/δ))

1
2

)
+OP (b)

)

=

√
bD (T, x)

δ

n∑
i=1

θi + oP (1) . (18)

Next, we consider the distribution of
√

bD(T,x)
δ

n∑
i=1

θi. The

sum of the conditional second moment can be calculated as

bD (T, x)

δ

n∑
i=1

E
[
θ2
i

∣∣ℑi−1

]
=

bD (T, x)

δ

δ2

b2D2 (T, x)

n∑
i=1

K2

(
Xti − x

b

)
Λ2σ

4
(
Xti−1

)
=

Λ2δ

bD (T, x)

n∑
i=1

K2

(
Xti − x

b

)
σ4
(
Xti−1

)
=

Λ2δ

bD (T, x)

∑
i∈I0,n

K2

(
Xti − x

b

)
σ4
(
Xti−1

)
+

Λ2δ

bD (T, x)

∑
i∈I1,n

K2

(
Xti − x

b

)
σ4
(
Xti−1

)
= H1 +H2.

For the term H2, it tends as to zero obviously. For H1 then,
we have

H1 =
Λ2δ

bD (T, x)
×

∑
i∈I0,n

K2

(
Xti − x

b

)((
σ4(Xti )−σ

4(x)
)
+
(
σ4
(
Xti−1

)
−σ4(Xti )

)
+σ4(x)

)
,

(19)

by the assumption A1, UBI property and Lemma 2.1, 2.2,
we obtain that H1 converges to Λ2σ4 (x)

∫ 1
−1 K

2 (c) dc in prob-
ability. We verify Liapounov’s condition as follows
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b
3
2 (D (T, x))

3
2

δ
3
2

n∑
i=1

E
[
θ3i
∣∣ℑi−1

]
=

δ
3
2

b
3
2 (D (T, x))

3
2

∑
i∈I0,n

K3

(
Xti − x

b

)
E
[
(ςi−E [ ςi| ℑi−1])

3
∣∣∣ℑi−1

]

+
δ

3
2

b
3
2 (D (T, x))

3
2

∑
i∈I1,n

K3

(
Xti − x

b

)
E
[
(ςi−E [ ςi| ℑi−1])

3
∣∣∣ℑi−1

]
= L1 + L2.

Obviously, L2 → 0. For L1, we have

L1=
δ

3
2

b
3
2 (D (T, x))

3
2

∑
i∈I0,n

K3

(
Xti − x

b

)(
λ6

λ3
2

−
3λ4

λ2
2

+2

)
σ6
(
Xti−1

)
= OP

(
δ

1
2

b
1
2 (D (T, x))

1
2

)
P→ 0.

If the Liapounov’s condition is satisfied, then the Lindeberg’s
condition is also satisfied, hence, by the Corollary 3.1 in [28],
we obtain

√
bD (T, x)

δ

n∑
i=1

θi
d→N

(
0,Λ2σ

4 (x)

∫ 1

−1
K2 (c) dc

)
,

further, we have

√
bD (T, x)

δ

(
σ̂2 (x)− σ2 (x)

) d→N

(
0,Λ2σ

4 (x)

∫ 1

−1
K2 (c) dc

)
.

(20)

Remark 3.1. The equation b3D(T,x)
δ

= oP (1) in Theorem 3.3
guarantees that the term

√
bD(T,x)

δ
OP (b) in (18) is asymptot-

ically negligible.

Remark 3.2. Given the different definition of the local time
of X, [2] proposed a similar asymptotic variance with (20).
Notice that the constant appearing in [2] is 2, in contrast, the
number in (20) is Λ2 ≈ 0.4, therefore, the precision of our
estimator is five times greater than that of the estimator in
[2].

IV. CONCLUSIONS

This paper proposes range-based threshold spot volatility
estimation for jump diffusion models. It is formed from
entire high frequency data and reduce the influence of
microstructure noise effectively. Comparing with the general
pure threshold estimator, our method improves the estimation
precision by 5 times.
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[3] L. Gómez-Valle and J. Martı́nez-Rodrı́guez, “Estimation of risk-neutral
processes in single-factor jump-diffusion interest rate models,” Journal
of Computational and Applied Mathematics, vol.291, pp.48-55, 2016.

[4] E. Eberlein and S. Raible, “Term structure models driven by general
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[15] J. E. Figueroa-López and J. Nisen, “Optimally threshold realized pow-
er variations for Levy jump diffusion models,” Stochastic Processes
and Their Applications, vol.123, pp.2648-2677, 2013.

[16] Y. Shimizu, “Threshold selection in jump-discriminant filter for dis-
cretely observed jump processes,” Statistical Methods and Applica-
tions, vol.19, pp.355-378, 2010.

[17] C. Mancini, “Disentangling the jumps of the diffusion in a geometric
jumping Brownian motion,” Giornale dellIstituto Italiano Attuari,
vol.64, pp.19-47, 2001.

[18] C. S. Bos, P. Janus and S. J. Koopman, “Spot variance path estima-
tion and its application to high-frequency jump testing,” Journal of
Financial Econometrics, vol.10, pp.354-389, 2012.

[19] J. Li, “Robust estimation and inference for jumps in noisy high
frequency data: a local-to-continuity theory for the pre-averaging
method,” Econometrica, vol.81, pp.1673-1693, 2013.

[20] X. B. Kong, Z. Liu, and B. Y. Jing, “Testing for pure-jump processes
for high-frequency data,” Annals of Statistics, vol.43, pp.847-877,
2015.

[21] W. Feller, “The asymptotic distribution of the range of sums of
independent random variables,” Annals of Mathematical Statistics,
vol.22, pp.427-432, 1951.

[22] M. Parkinson, “The extreme value method for estimating the variance
of the rate of return,” Journal of Business, vol.53, pp.61-65, 1980.

[23] K. Christensen and M. Podolskij, “Realized range-based estimation of
integrated variance,” Journal of Econometrics, vol.141, pp.323-349,
2007.

[24] K. Christensen and M. Podolskij, “Asymptotic theory of range-based
multipower variation,” Journal of Financial Econometrics, vol.10,
pp.417-456, 2012.

[25] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion,
3rd ed. Bernin: Springer-Verlag, 1998.

[26] F. M. Bandi and P. C. B. Phillips, “Fully nonparametric estimation of
scalar diffusion models,” Econometrica, vol.71, pp.241-283, 2003.

[27] J. W. Cai, P. Chen and X. Mei, “Realized range-based threshold
estimation for jump-diffusion models,” IAENG International Journal
of Applied Mathematics, vol.45, pp.293-299, 2015.

[28] P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application,
New York: Academic Press, 1980.

IAENG International Journal of Applied Mathematics, 47:1, IJAM_47_1_07

(Advance online publication: 23 February 2017)

 
______________________________________________________________________________________ 




