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Abstract

The energy of G is defined as the sum of absolute value
of all eigenvalues of the adjacency matrix A(G). Let
B2(n, a, b, p) be the set of all bicyclic graphs on n ver-
tices with p pendent vertices and two cycles Ca and Cb
which have unique common vertex u0, B2

θ (n, a, b, p) the
graph class obtained by coinciding the common vertex u0
of Ca and Cb with the center of the star Sn−(a+b−1)+1,
and B2

µ(n, a, b, p) the set obtained by coinciding the com-
mon vertex u0 of Ca and Cb with the center of the star
Sp and connecting a pendent path Pn−(a+b−1)−(p−1) on
point u0. In this paper, it is obtained that B2

θ (n, a, b, p)
has the minimal energy in all graphs which have only
pendent vertices except two cycles, and B2

µ(n, a, b, p) has
the minimal energy in all graphs which have prescribed
cycles’ length and pendent vertices.

Keywords: Bicyclic graphs; Quasi-Order method; Min-
imal energy

1 Introduction

In this paper, all graphs are finite, connected, undirected
and simple. In recent years, many parameters and classes
of graphs were studied. For example, in [1], the restricted
connectivity of Cartesian product graphs were obtained,
and in [2, 12], some results on 3-equitable labeling and
the n-dimensional cube-connected complete graph were
gained. Let G be a graph with order n and adjacency
matrix A(G). The characteristic polynomial of G, de-
noted by φ(G), is defined as

φ(G, x) = det(xI −A(G)) =
n∑
i=0

aix
n−i,

where I is the identity matrix of order n. The roots of
the equation φ(G) = 0, denoted by λ1, λ2, · · ·, λn, are the
eigenvalues of A(G). It’s easy to see that each λi is real
since A(G) is real symmetric. The energy of G, denoted
by E(G), is defined as

E(G) =
n∑
i=1

|λi|.
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For the coefficients ai(G) of φ(G), set bi(G) =
|ai(G)| (i = 0, 1, · · ·, n). The following formula is given
in Sachs theorem,

ai(G) =
∑
S∈Li

(−1)ω(S)2c(S),

where Li denotes the set of Sachs subgraphs (the sub-
graphs in which every component is either a K2 or a
cycle) of G that contain i vertices, ω(S) is the number
of connected components of S, and c(S) is the number
of cycles contained in S.

It is well known that the Coulson integral formula of the
energy is expressed as the following form

E(G) = 1
2π

∫ +∞
−∞

1
x2 ln[(

bn
2 c∑
i=0

(−1)ib2ix2i)2

+(
bn

2 c∑
i=0

(−1)ib2i+1x
2i+1)2]dx.

(1)

Obviously, the formula (1) is a strictly monotonically
increasing function of bi(G), that is to say, for any two
graphs G1 and G2 with the same order, there exists the
following relationship:

bi(G1) ≥ bi(G2) hold for i ≥ 0

⇒ E(G1) ≥ E(G2).

In order to compare the energy of graphs with a bet-
ter way, we need to define the following Quasi-Order:
if bi(G1) ≥ bi(G2) hold for all i ≥ 0, we can write
G1�G2 or G2≺G1; if G1 � G2 and there exists some
i0 such that bi0(G1) > bi0(G2), then we write G1 � G2.
Combining with the formula (1), the increasing property
G1 � G2 ⇒ E(G1) > E(G2) of graph energy is obtained.

In theoretical chemistry, the energy of a molecular graph
can be approximately used to represent π-electron en-
ergy of the molecule, which is an important application
of the energy of graphs in the chemical field, and has
been widely studied by scholars. For a more detailed
explanation can refer to the literature [3-4,10-11,13-15].
In addition, for some special class of graphs, searching
for their extreme energy becomes an interesting topic.
For the graphs with cycles, many researching conclu-
sions have been obtained, for example, [7,9] give unicycle
graphs with minimal energy and maximal energy, respec-
tively. In [8,10], bicyclic graphs with minimal energy and
maximal energy are gotten. On this basis, the relevant
conclusions about the extreme energy of the graphs with
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given parameters are also gained. For example, [13] ob-
tains unicycle graphs with given diameter and minimal
energy. In [5], the minimal energy of unicyclic graphs
with prescribed girth and pendent vertices is given. In
[6], the minimal energy of bicyclic graphs with a given
diameter is obtained.

Bicyclic graphs are defined as connected graphs with n
vertices and n + 1 edges. According to the character-
istics of the number of common vertices in two circles
in the bicyclic graphs, they can be divided into three
classes: two cycles without any common vertex, two cy-
cles with common edges, and two cycles with an unique
common vertex. Here we discuss the last case, which
is denoted by B2(n, a, b, p), where a, b are the two cy-
cles’ length, and p is the number of pendent vertices. In
addition, B2

θ (n, a, b, p) is the graph class obtained by co-
inciding the common vertex u0 of Ca and Cb with the
center of the star Sn−(a+b−1)+1. Let B2

µ(n, a, b, p) be the
graph class obtained by coinciding the common vertex
u0 of Ca and Cb with the center of the star Sp, and con-
necting a pendent path Pn−(a+b−1)−(p−1) on point u0.
For sake of the convenience, we write B2

θ (n, a, b, p) and
B2
µ(n, a, b, p) as B2

θ (n, p) and B
2
µ(n, p) simply (see Fig.1-

2,20 and 28), subgraphs of G without pendent vertices is
called the base graph of G, and the base graph class of
graph class mentioned above is represented by B2

∞ (see
Fig.3). Let V ′(G) denote the set of all pendent vertices
of G. dG(x, y) is defined as the distance between two
vertices x and y of a graph G, and

dG(x,Ca,b) = min{dG(x, y)| y ∈ V (Ca,b),
x /∈ V (Ca,b)}.

In this paper, using Quasi-Order method, we discuss
the graphs with minimal energy in B2(n, a, b, p) that are
given length of two cycles with unique common point
and pendent vertices by mathematical induction. It is
obtained that B2

θ (n, a, b, p) has the minimal energy in
all graphs which have only pendent vertices except two
cycles, and B2

µ(n, a, b, p) has the minimal energy in all
graphs which have prescribed cycles’ length and pendent
vertices (please see Fig.1-2).

Lemma 1 ([10]) Let G be a simple graph and e = uv
be a pendent edge of G with pendent vertex v, then

bi(G) = bi(G− v) + bi−2(G− v − u).

Lemma 2 ([10]) Let G be a simple graph. If H is a
subgraph (proper subgraph) of G, then G�H(G � H).

2 Graphs with only pendent vertices ex-
cept two cycles in B2(n, a, b, p)

Theorem 3. LetG ∈ B2(n, a, b, p) with n = a+b+p−1
and p ≥ 1. Assume that the cycles’ length a and b are
fixed, and u0 is the common vertex of two cycles. If
G 6= B2

θ (n, a, b, p), then G � B2
θ (n, a, b, p).

Proof. We will show the theorem by induction on p.

(1) Suppose that p = 1, i. e., there is only one pendent
vertex. Assume that e = u0v is a pendent edge and v is

its pendent vertex, as shown in Fig.2. By Lemma 1, for
B2
∞ as in Fig.3, we can get

bi(B
2
θ (n, 1)) = bi(G− v) + bi−2(G− u0 − v)

= bi(B
2
∞) + bi−2(Pa−1 ∪ Pb−1).
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Assume that v is adjacent to ut but u0 belongs to cycle
Cb, as shown in Fig.4. By Lemma 1, for graphs A11 in
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Fig.4 and H1 in Fig.10, we obtain that

bi(A11) = bi(A11 − v1) + bi−2(A11 − ut − v1)
= bi(B

2
∞) + bi−2(H1).
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Obviously, Pa−1 ∪ Pb−1 is a proper subgraph of H1, so
Pa−1 ∪ Pb−1 ≺ H1, and then B2

θ (n, 1) ≺ A11.

(2) For p = 2 and B2
θ (n, 2), by Lemma 1, we can get

bi(B
2
θ (n, 2)) = bi(B

2
θ (n, 2)− v)

+bi−2(B
2
θ (n, 2)− u0 − v)

= bi(B
2
θ (n− 1, 1)) + bi−2(Pa−1 ∪ Pb−1).

If G 6∼= B2
θ (n, 2), then there is at least one pendent vertex

which is not adjacent to u0. The problem can be divided
into the following cases.

Case 1. There is at least one pendent point which is
adjacent to u0. Suppose that one point is such one and
the other is adjacent to ut on cycle Cb, as B11 shown in
Fig.5. By Lemma 1, we have

bi(B11) = bi(B11 − v1) + bi−2(B11 − ut − v1)
= bi(B

2
θ (n− 1, 1)) +Bi(H2),

where H2 is shown in Fig.11. Since Pa−1 ∪ Pb−1 is
a proper subgraph of H2, Pa−1 ∪ Pb−1 ≺ H2. Thus,
B2
θ (n, 2) ≺ B11.

Case 2. There is no pendent vertex which is adjacent to
u0, and both of them are adjacent to ut and us on one
cycle Cb, respectively, as B12 shown in Fig. 6. Then by
Lemma 1, we can get

bi(B
2
θ (n, 2)) = bi(B

2
θ (n, 2)− v)

+bi−2(B
2
θ (n, 2)− u0 − v)

= bi(B
2
θ (n− 1, 1)) + bi−2(Pa−1 ∪ Pb−1),

bi(B12) = bi(B12 − v) + bi−2(B12 − us − v)
= bi(H3) + bi−2(H4),

where H3, H4 are shown in Fig. 12-13.

We can obtain that B2
θ (n−1, 1) ≺ H3 from (1). In addi-

tion, it is obvious that Pa−1 ∪Pb−1 is a proper subgraph
of H4, so Pa−1 ∪ Pb−1 ≺ H4. Hence, B2

θ (n, 2) ≺ B12.

Case 3. There is no pendent vertex that is adjacent
to u0, and two points are adjacent to ut and ws on two
cycles Cb and Ca, respectively, as B13 shown in Fig. 7.
By Lemma 1, we obtain that

bi(B11) = bi(B11 − v) + bi−2(B11 − u0 − v)
= bi(H3) + bi−2(Pa−1 ∪H5),

and

bi(B13) = bi(B13 − v) + bi−2(B13 − ws − v)
= bi(H3) + bi−2(H6),

where H5, H6 are shown in Fig.14-15, respectively.

Comparing Pa−1 ∪ H5 with H6, since the former is a
proper subgraph of the latter, Pa−1 ∪H5 ≺ H6, that is,
B11 ≺ B13. Combining the conclusion B2

θ (n, 2) ≺ B11

from (1), we get B2
θ (n, 2) ≺ B13.

Thus, the theorem holds for p = 2.

(3) Assume that the theorem holds for p = l − 1. In the
sequel, we prove that the theorem still holds for p = l.
For B2

θ (n, l), we have

bi(B
2
θ (n, l)) = bi(B

2
θ (n, l)− v) + bi−2(B

2
θ (n, l)− u0 − v)

= bi(B
2
θ (n− 1, l − 1)) + bi−2(Pa−1 ∪ Pb−1).

If there is at least one pendent vertex whose neighbor is
not u0, as C11 shown in Fig.8, then by Lemma 1, we can
get

bi(C11) = bi(C11 − v1) + bi−2(C11 − ut − v1)
= bi(B

2
θ (n− 1, l − 1)) + bi−2(H7),

where H7 is shown in Fig.16. Since H7 contains Pa−1 ∪
Pb−1 as its proper subgraph, Pa−1 ∪ Pb−1 ≺ H7, so we
have B2

θ (n, a, b, l) ≺ C11.

Now suppose that there are p− k pendent vertices that
are adjacent to u0 (l ≥ k ≥ 2), as C12 shown in Fig.9
(the pendent vertices are not shown all). At this time,
choose a pendent edge wtv1 with wt 6= u0, then

bi(C12) = bi(C12 − v1) + bi−2(C12 − wt − v1)
= bi(H8) + bi−2(H9),

where H8, H9 are shown in Fig.17-18. Note that H8 and
H9 display a part of the pendent vertices except the de-
formation by deleting one or two vertices from C12. Since
B2
θ (n− 1, l− 1) and H8 are graphs which have only pen-

dent vertices except two cycles with n − 1 vertices, by
induction hypothesis, we can get B2

θ (n− 1, l − 1) ≺ H8,
and Pa−1 ∪ Pb−1 ≺ H9 because Pa−1 ∪ Pb−1 is a proper
subgraph of H9. Thus B2

θ (n, p) ≺ C12, and the theorem
holds for p = l.

In a word, we have shown that B2
θ (n, p) is the graph with

minimal energy for 1 ≤ p ≤ l, l ≥ 2 and n = a+b+p−1.

3 Bicyclic graphs with prescribed cy-
cles’ length and pendent vertices in
B2(n, a, b, p)

On the basis of Theorem 3, we study the case of n >
a+ b+ p− 1. Let Qa,b,pn be graphs shown in Fig. 19.
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Theorem 4. Let G ∈ B2(n, a, b, p) with n ≥ a+b+p−1
and p ≥ 1. Assume that the cycles’ length a and b
are fixed, and u0 is the common vertex of two cycles.
If G 6∼= B2

µ(n, a, b, p) and G 6∼= Qa,b,pn , then E(G) >
E(B2

µ(n, a, b, p)).

Proof. For n = a + b − 1 + p, by Lemma 1, we have
B2
µ(n, a, b, p)

∼= B2
θ (n, a, b, p), the result holds for this

case. We show that the result is also true for n − (a +
b− 1 + p) ≥ 1 in the following.

Assume that V ′(G) is the set of all pendent vertices
of G, v is the point in V ′(G) such that dG(v, Ca,b) =
max{dG(x,Ca,b), x ∈ V ′(G)}, and u is its unique neigh-
bor.
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Based on the value of n− (a+ b− 1 + p), there are two

cases that need to be discussed.

Case 1. n− (a+ b− 1 + p) = 1.

By the definition, we can get dG(v, Ca,b) = 2.

Subcase 1. 1. d(u) = 2. By Lemma 1, it is not difficult
to verify that

bi(B
2
µ(n, p)) = bi(B

2
µ(n, p)−v′)+bi−2(B2

µ(n, p)−v′−u′).

Suppose that G 6∼= B2
µ(n, p), then we must have G ∼= D11

orG ∼= D′11 (bothD11 andD′11 are graphs with n vertices
and p pendent vertices, and a part of pendent vertices
which are adjacent to vertices on cycles are shown in
Fig.21-22). Take D11 as an example, we have

bi(D11) = bi(D11 − v) + bi−2(D11 − v − u),

where D11 − v ∈ B2(n− 1, p) and D11 − v− u ∈ B2(n−
2, p− 1). Since

B2
µ(n, p)− v′ ∼= B2

θ (n− 1, p)

and
B2
µ(n, p)− v′ − u′ ∼= B2

θ (n− 2, p− 1),

we have

B2
θ (n− 1, p) ≺ B2(n− 1, p),

B2
θ (n− 2, p− 1) ≺ B2(n− 2, p− 1)

by Theorem 3. On account of G 6∼= B2
µ(n, p), we can get

B2
µ(n, p) − v′ ≺ D11 − v

and
B2
µ(n, p) − v′ − u′ ≺ D11 − v − u.

Thus, B2
µ(n, p) ≺ D11. Similarly, we can obtain that

B2
µ(n, p) ≺ D′11.

Subcase 1. 2. d(u) ≥ 3.

We get firstly

bi(B
2
µ(n, p)) = bi(B

2
µ(n, p)− v) + bi−2(B

2
µ(n, p)− v− u0)

= bi(B
2
µ(n− 1, p− 1)) + bi−2(Pa−1 ∪ Pb−1 ∪ P2), (2)

Assume that G 6∼= B2
µ(n, a, b, p), we must get G ∼= D12

or G ∼= D′12 (both D12 and D′12 are graphs with n ver-
tices and p pendent vertices, and a part of pendent ver-
tices that are adjacent to vertices on cycles are shown in
Fig.23-24). Take D12 as an example. Clearly,

bi(D12) = bi(D12 − v) + bi−2(D12 − v − u), (3)

and D12 − v ∈ B2(n − 1, p − 1). All points in N(u)
are pendent vertices except one on a cycle. Suppose
that there are m pendent vertices adjacent to u, then
|N(u)| = m + 1. Since G 6∼= Qa,b,pn , we have p ≥
m + 1. Set D12 − v − u = G′ ∪ (m − 1)P1, then
G′ ∈ B2(n−m− 1, p−m).

Now we show the result by induction n and p in the
following. Assume that the result holds for small n and
p, then B2

µ(n − 1, p − 1) ≺ B2(n − 1, p − 1). Because
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p ≥ m + 1, d(u) ≥ 3, and dG(v, Ca,b) = 2, there are at
least four pendent vertices in G, so n ≥ a+ b+ 4.

(1) Assume that n− (a+ b) = 4, i. e., n = a+ b+4, and
G ∈ B2(a+b+4, 4). Suppose that G ∼= D121, |V (D121−
v)| − (a + b) = 3 and D121 − v ∈ B2(a + b + 3, 3) (see
Fig.25). In the following, we use Quasi-Order method to
compare B2

µ(a + b + 3, 3) and D121 − v. By Lemma 1,
we get

bi(B
2
µ(a+ b+ 3, 3))

= bi(B
2
µ(a+ b+ 2, 2)) + bi−2(Pa−1 ∪ Pb−1 ∪ P2),

and

bi(D121− v) = bi(B
2(a+ b+ 2, 2)) + bi−2(B

2(a+ b, 1)).

By Subcase 1.1, we have B2
µ(a+b+2, 2) ≺ B2(a+b+2, 2),

and
Pa−1 ∪ Pb−1 ∪ P2 ≺ B2(a+ b, 1)

since Pa−1∪Pb−1∪P2 is a proper subgraph of B2(a+b, 1),
so we get

B2
µ(a+ b+ 3, 3) ≺ D121− v

and
B2
µ(a+ b+ 3, 3) ≺ B2(a+ b+ 3, 3).

Thus, for n = a+ b+ 4 and p = 4, we have

B2
µ(a+ b+ 3, 3) ≺ B2(a+ b+ 3, 3),

that is,

B2
µ(n− 1, p− 1) ≺ B2(n− 1, p− 1).

(2) Suppose that n− (a+ b) = 5, i. e., n = a+ b+ 5.

On the basis of (1), add one vertex to graph D121 such
that the number of pendent vertices increasing, then the
added pendent vertex is adjacent to u or other vertex on
cycles, and we obtain D122, D122

′ ∈ B2(a+ b+5, 5) that
are shown in Fig.26-27.

Suppose that G ∼= D122 or G ∼= D122, then |V (D122 −
v)| = |V (D122

′−v′)| = a+b+4 andD122−v,D122
′−v′ ∈

B2(a+ b+ 4, 4). By Lemma 1, we get

bi(B
2
µ(a+ b+ 4, 4))

= bi(B
2
µ(a+ b+ 3, 3)) + bi−2(Pa−1 ∪ Pb−1 ∪ P2),

bi(D122− v) = bi(B
2(a+ b+ 3, 3)) + bi−2(B

2(a+ b, 1)),

and

bi(D122
′−v′) = bi(B

2(a+b+3, 3))+bi−2(B
2(a+b+1, 2)).

Combining with the result of (1), we have

B2
µ(a+ b+ 3, 3) ≺ B2(a+ b+ 3, 3).

Since Pa−1 ∪ Pb−1 ∪ P2 is a proper subgraph of both
B2(a+ b, 1) and B2(a+ b+ 1, 2), we obtain that

Pa−1 ∪ Pb−1 ∪ P2 ≺ B2(a+ b, 1),

Pa−1 ∪ Pb−1 ∪ P2 ≺ B2(a+ b+ 1, 2),

B2
µ(a+ b+ 4, 4) ≺ D122− v

and
B2
µ(a+ b+ 4, 4) ≺ D122

′ − v′,

so we have

B2
µ(a+ b+ 4, 4) ≺ B2(a+ b+ 4, 4).

Thus, for n = a+ b+ 5 and p = 5, we have

B2
µ(a+ b+ 4, 4) ≺ B2(a+ b+ 4, 4),

that is,

B2
µ(n− 1, p− 1) ≺ B2(n− 1, p− 1).

(3) Assume that the theorem holds for n−(a+b) = p−1,
i. e., B2

µ(a+ b+ p− 2, p− 2) ≺ B2(a+ b+ p− 2, p− 2).

In the sequel, we prove that the theorem still holds for
n− (a+ b) = p. Suppose that G ∼= D12 or G ∼= D′12 (see
Fig. 23-24). Take D12 as an example. Clearly, |V (D12−
v)| = a+ b+p− 1 and D12− v ∈ B2(a+ b+p− 1, p− 1).

A comparison between B2
µ(a+b+p−1, p−1) and D12−v

will be accomplished in the following. By Lemma 1, we
have

bi(B
2
µ(a+ b+ p− 1, p− 1)) =

bi(B
2
µ(a+ b+ p− 2, p− 2)) + bi−2(Pa−1 ∪ Pb−1 ∪ P2),

and

bi(D12 − v) = bi(B
2(a+ b+ p− 2, p− 2))

+bi−2(B
2(a+ b+ p−m− 1, p−m)).

By induction assumption, we obtain that

B2
µ(a+ b+ p− 2, p− 2) ≺ B2(a+ b+ p− 2, p− 2).

Because p−m ≥ 1, it is not difficult to see that Pa−1 ∪
Pb−1 ∪ P2 is a proper subgraph of B2(a + b + p −m −
1, p−m), so

Pa−1 ∪ Pb−1 ∪ P2 ≺ B2(a+ b+ p−m− 1, p−m),

and
B2
µ(a+ b+ p− 1, p− 1) ≺ D12 − v.

Thus, for n = a+ b+ p, we have

B2
µ(a+ b+ p− 1, p− 1) ≺ B2(a+ b+ p− 1, p− 1),

that is,

B2
µ(n− 1, p− 1) ≺ B2(n− 1, p− 1).

By induction, we have

B2
µ(n− 1, p− 1) ≺ B2(n− 1, p− 1),

and the relationship between the first item on right of
equations (2) and (3): B2

µ(n− 1, p− 1) ≺ D12 − v. The
problem is turned into a proof of the relationship between
the second:Pa−1 ∪ Pb−1 ∪ P2 ≺ D12 − v − u.
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As what mentioned before, D12−v−u ∈ B2(n−m−1, p−
m). What remains is to prove that Pa−1 ∪ Pb−1 ∪ P2 ≺
B2(n −m − 1, p −m). Since p −m ≥ 1, it is clear that
Pa−1 ∪ Pb−1 ∪ P2 is a proper subgraph of B2(n − m −
1, p−m), so we get

Pa−1 ∪ Pb−1 ∪ P2 ≺ B2(n−m− 1, p−m).

Thus, we have B2
µ(n, p) ≺ D12. Similarly, we can ob-

tain that B2
µ(n, p) ≺ D′12. Hence the result in Case 1 is

proved.

Case 2. n− (a+ b− 1 + p) ≥ 2.

In the following, we deal with the problem in two sub-
cases.

Subcase 2.1. dG(v, Ca,b) ≥ 3.

Subcase 2.1.1. d(u) = 2.

Subcase 2.1.1.1. d(u1) = 2 and u1 is the neighbor
vertex of u.

Assume that G 6∼= B2
µ(n, a, b, p), we must have G ∼= D13

which has n vertices and p pendent vertices, where a
part of pendent vertices and pendent pathes are shown
in Fig.31.
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Obviously, D13 − v ∈ B2(n − 1, p) and D13 − v − u ∈
B2(n−2, p). In the following, the two items on the right

of equal will be compared, respectively. If we want to get
B2
µ(n−1, p) ≺ D13−v and B2

µ(n−2, p) ≺ D13−v−u, we
need to prove that B2

µ(n−1, p) ≺ B2(n−1, p) and B2
µ(n−

2, p) ≺ B2(n − 2, p). We show the result by induction
on n. Assume that the result holds for small n, then
B2
µ(n − 1, p) ≺ B2(n − 1, p) and B2

µ(n − 2, p) ≺ B2(n −
2, p). Note that dG(v, Ca,b) ≥ 3, and d(u) = d(u1) = 2.
Assume that the number of pendent vertices as p will
not change even though the order of graph G changes
constantly. There are at least two vertices except two
cycles and pendent vertices, so n ≥ a+ b+ p+ 1.
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For B2
µ(n, a, b, p) and D13, by Lemma 1, we have

bi(B
2
µ(n, p)) = bi(B

2
µ(n− 1, p)) + bi−2(B

2
µ(n− 2, p)),

bi(D13) = bi(D13 − v) + bi−2(D13 − v − u).

(1)If n− (a+ b− 1)− p = 2, then n = a+ b+ p+ 1.

Suppose that G ∼= D131 (the pendent edges are not
shown all in Fig.32) since G 6∼= B2

µ(a+b+p+1, p). We can
get V (D13−v′) = a+b+p and D13−v′ ∈ B2(a+b+p, p).
We use Quasi-Order method to compare B2

µ(a+ b+p, p)
and D131− v′. By Lemma 1, we get

bi(B
2
µ(a+ b+ p, p)) = bi(B

2
µ(a+ b+ p− 1, p))

+bi−2(B
2
µ(a+ b+ p− 2, p− 1))

and

bi(D131− v′) = bi(B
2(a+ b+ p− 1, p))

+bi−2(B
2(a+ b+ p− 2, p− 1).

Since

B2
µ(a+ b− 1 + p, p) ∼= B2

θ (a+ b− 1 + p, p),

B2
µ(a+ b+ p− 2, p− 1) ∼= B2

θ (a+ b+ p− 2, p− 1).
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By Theorem 3, we can obtain that

B2
µ(a+ b− 1 + p, p) ≺ B2(a+ b− 1 + p, p),

and

B2
µ(a+ b+ p− 2, p− 1) ≺ B2(a+ b+ p− 2, p− 1),

so we have B2
µ(a+ b+ p, p) ≺ D131− v′, that is B2

µ(a+
b+ p, p) ≺ B2(a+ b+ p, p). Thus, for n = a+ b+ p+ 1,
we have B2

µ(a+ b+ p, p) ≺ B2(a+ b+ p, p), i. e.,

B2
µ(n− 1, p) ≺ B2(n− 1, p).

On the basis above, to add one vertex to graph D131
but the number of pendent vertices will not change,
there exist two methods: lengthening the pendent path
which contains v′ and u′ on D131 or other pendent
path. Without loss of generality, assume that we add
one vertex such that the graph has the same pendent
vertices, then we obtain G ∼= D132 or G ∼= D132

′, where
D132, D132

′ ∈ B2(a+ b+ p+ 2, p).

(2) If n− (a+ b− 1)− p = 3, then n = a+ b+ p+ 2, so
it is not difficult to see that

V (D132− v′) = a+ b+ p+ 1,

D132− v′ ∈ B2(a+ b+ p+ 1, p),

V (D132
′ − v′) = a+ b+ p+ 1,

and
D132

′ − v′ ∈ B2(a+ b+ p+ 1, p).

Comparing B2
µ(a+ b+ p+ 1, p) and D132− v′ as well as

B2
µ(a+ b+ p+1, p) and D132

′ − v′, by Lemma 1, we get

bi(B
2
µ(a+ b+ p+ 1, p)) = bi(B

2
µ(a+ b+ p, p))

+bi−2(B
2
µ(a+ b+ p− 1, p)),

bi(D132− v′) = bi(B
2(a+ b+ p, p))

+bi−2(B
2(a+ b+ p− 1, p),

and
bi(D132

′ − v′) = bi(B
2(a+ b+ p, p))

+bi−2(B
2(a+ b+ p− 1, p− 1)).

Comparing three equations above, combining with the
proof of (1), the result of the comparison between the
first term of the right side of the equal is B2

µ(a+b+p, p) ≺
B2(a+ b+ p, p).

For the second term of the right side of the equal, since

B2
µ(a+ b− 1 + p, p) ∼= B2

θ (a+ b− 1 + p, p),

by Lemma 1, we get B2
µ(a + b − 1 + p, p) ≺ B2(a + b +

p− 1, p).

For B2
µ(a+ b+ p− 1, p) and B2(a+ b+ p− 1, p− 1), by

Theorem 1, we have

B2
µ(a+ b+ p− 1, p− 1) ≺ B2(a+ b+ p− 1, p− 1).

Now, we need only to prove that

B2
µ(a+ b+ p− 1, p) ≺ B2

µ(a+ b+ p− 1, p− 1).

From Lemma 1,we can get

bi(B
2
µ(a+ b+ p− 1, p))

= bi(B
2
θ (a+ b+ p− 2, p− 1)) + bi−2(Pa−1 ∪ Pb−1)

and
bi(B

2(a+ b+ p− 1, p− 1))
= bi(B

2
θ (a+ b+ p− 2, p− 1))

+bi−2(B
2(a+ b+ p− 3, p− 2)).

Since Pa−1∪Pb−1 is a proper subgraph of B2(a+ b+p−
3, p−2), the relationship on the second term of the right
side of the equal is

Pa−1 ∪ Pb−1 ≺ B2(a+ b+ p− 3, p− 2),

so

B2
µ(a+ b+ p− 1, p) ≺ B2(a+ b+ p− 1, p− 1).

Thus, for n = a+ b+ p+ 2, we obtain that

B2
µ(a+ b+ p+ 1, p) ≺ B2(a+ b+ p+ 1, p),

i. e.,
B2
µ(n− 1, p) ≺ B2(n− 1, p).

(3) If n−(a+b−1)−p = N−1, then n = a+b+p+N−2.
Set n1 = n, assume that the theorem holds for n1, i. e.,
we have

B2
µ(n1 − 2, p) ≺ B2(n1 − 2, p),

and
B2
µ(n1 − 1, p) ≺ B2(n1 − 1, p).

Suppose that n−(a+b−1)−p = N , then n = a+b+p+
N−1. Set n2 = n. Since V (G−v) = n2−1, without loss
of generality, assume that G ∼= D13 (the pendent pathes
are not shown all in the Fig.31). Obviously, D13 − v ∈
B2(n2−1, p). Comparing B2

µ(n2−1, p) with D13−v, by
Lemma 1, we have

bi(B
2
µ(n2 − 1, p))

= bi(B
2
µ(n2 − 2, p)) + bi−2(B

2
µ(n2 − 3, p)),

and

bi(D13 − v)
= bi(B

2(n2 − 2, p)) + bi−2(B
2(n2 − 3, p)).

Due to n2 = n1 + 1, we can get

B2
µ(n2 − 2, p) ∼= B2

µ(n1 − 1, p),
B2(n2 − 2, p) ∼= B2(n1 − 1, p),
B2
µ(n2 − 3, p) ∼= B2

µ(n1 − 2, p),

and
B2(n2 − 3, p) ∼= B2(n1 − 2, p).

By induction hypothesis, we have

B2
µ(n1 − 1, p) ≺ B2(n1 − 1, p),

and
B2
µ(n1 − 2, p) ≺ B2(n1 − 2, p).
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Therefore,

B2
µ(n2 − 2, p) ≺ B2(n2 − 2, p),

and
B2
µ(n2 − 3, p) ≺ B2(n2 − 3, p)),

that is to say,

B2
µ(n− 2, p) ≺ B2(n− 2, p),

and
B2
µ(n− 1, p) ≺ B2(n− 1, p).

So
B2
µ(n− 1, p) ≺ D13 − v.

According to the induction above, we have

B2
µ(n− 1, p) ≺ D13 − v,

and
B2
µ(n− 2, p) ≺ D13 − v − u,

that is,
bi(B

2
µ(n− 1, p)) < bi(D13 − v),

and
bi(B

2
µ(n− 2, p) < bi(D13 − v − u).

Thus, B2
µ(n, p) ≺ D13 and then the result is obtained.

Subcase 2.1.1.2. d(u1) ≥ 3.

Suppose that G ∼= D14, where D14 is the graph with n
vertices and p pendent vertices and a part of pendent
vertices and a pendent path are shown in Fig.35. For
B2
µ(n, p) and D14, we have

bi(B
2
µ(n, p)) = bi(B

2
µ(n− 1, p)) + bi−2(B

2
µ(n− 2, p)),

bi(D14) = bi(D14 − v) + bi−2(D14 − v − u).

Obviously, D14 − v ∈ B2(n − 1, p) and D14 − v − u ∈
B2(n − 2, p − 1). Similar as the subcase 2.1.1.1 and
subcase 1.2, we have B2

µ(n − 1, p) ≺ B2(n − 1, p), and
B2
µ(n − 2, p − 1) ≺ B2(n − 2, p − 1). So B2

µ(n − 1, p) ≺
D14−v, B2

µ(n−2, p−1) ≺ D14−v−u. Hence the problem
is turned into showing B2

µ(n− 2, p) ≺ B2
µ(n− 2, p− 1).

(i)For n − 2 − (a + b − 1 + p) = 0, then B2
µ(n − 2, p) ∼=

B2
θ (n− 2, p).

By Lemma 1, we get

B2
θ (n− 2, p) = bi(B

2
θ (n− 3, p− 1)) + bi−2(Pa−1 ∪ Pb−1),

B2
µ(n−2, p−1) = bi(B

2
θ (n−3, p−1))+bi−2(B2

θ (n−4, p−2)).

It is not difficult to find that Pa−1 ∪ Pb−1 is a proper
subgraph of B2

θ (n− 4, p− 2), so

B2
µ(n− 2, p) ≺ B2

µ(n− 2, p− 1).

(ii)For n− 2− (a+ b− 1 + p) ≥ 1. By Lemma 1, we get

bi(B
2
µ(n− 2, p)) = bi(B

2
µ(n− 2, p)− v1)

+bi−2(B2
µ(n− 2, p)− v1 − u1),

bi(B
2
µ(n− 2, p− 1)) = bi(B

2
µ(n− 2, p− 1)− v2)

+bi−2(B2
µ(n− 2, p− 1)− v2 − u2).

Note that B2
µ(n− 2, p)− v1 ∼= B2

µ(n− 2, p− 1)− v2. We
have

bi(B
2
µ(n− 2, p)− v1) = bi(B

2
µ(n− 2, p− 1)− v2).

Since

B2
µ(n− 2, p)− v1 − u1 = Pa−1 ∪ Pb−1 ∪ Pn−a−b−p,

and Pa−1 ∪ Pb−1 ∪ Pn−a−b−p is a proper subgraph of
B2
µ(n− 2, p− 1)− v2 − u2, we obtain that

B2
µ(n− 2, p)− v1 − u1 ≺ B2

µ(n− 2, p− 1)− v2 − u2,

thus
B2
µ(n− 2, p) ≺ B2

µ(n− 2, p− 1).

In summary, we get B2
µ(n, p) ≺ D14.

Subcase 2.1.2. d(u) ≥ 3.

Subcase 2.1.2.1. d(u1) = 2.

Suppose that G ∼= D15 where D15 is the graph with n
vertices and p pendent vertices that are adjacent to u1,
and a part of pendent vertices and pendent path are
shown in Fig.38.

For B2
µ(n, a, b, p) and D15, by Lemma 1, we have

bi(B
2
µ(n, p)) = bi(B

2
µ(n, p)−v1)+bi−2(B2

µ(n, p)−v1−u0)

= bi(B
2
µ(n−1, p−1))+bi−2(Pa−1∪Pb−1∪Pn−a−b−p+2),

bi(D15) = bi(D15 − v) + bi−2(D15 − v − u).
Obviously, D15 − v ∈ B2(n − 1, p − 1), and all vertices
are pendent vertices except one point u1 in N(u).

Suppose that there are m pendent vertices adjacent to
u, then |N(u)| = m + 1 (please see D′15 in Fig.39). Let
D′15 − v − u = G′ ∪ (m− 1)P1. Then G′ ∈ B2(n−m−
1, p−m+ 1). Similar as subcase 1.2, we have

B2
µ(n− 1, p− 1) ≺ B2(n− 1, p− 1),

and

B2
µ(n−m− 1, p−m+ 1) ≺ B2(n−m− 1, p−m+ 1),

so we obtain that B2
µ(n−1, p−1) ≺ D′15−v and B2

µ(n−
m−1, p−m+1) ≺ D′15−v−u. What remains is to prove
that Pa−1∪Pb−1∪Pn−a−b−p+2 ≺ B2

µ(n−m−1, p−m+1).
Since G 6∼= Qa,b,pn , p−m ≥ 1.

(i) For p = m+1, B2
µ(n−m−1, p−m+1) ∼= B2

µ(n−p, 2),
then by Lemma 1, we can get

bi(B
2
µ(n−m− 1, p−m+ 1))

= bi(B
2
µ(n− p, 2))

= bi(B
2
µ(n− p− 1, 1))

+bi−2(Pa−1 ∪ Pb−1 ∪ Pn−p−a−b),

and
bi(Pa−1 ∪ pb−1 ∪ Pn−a−b−p+2)
= bi(Pa−1 ∪ Pb−1 ∪ Pn−a−b−p+1)
+bi−2(Pa−1 ∪ Pb−1 ∪ Pn−a−b−p).
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Comparing the first term of the right side of the equal,
it is not difficult to find that Pa−1 ∪ Pb−1 ∪ Pn−a−b−p+1

is a proper subgraph of B2
µ(n− p− 1, 1), so we have

Pa−1 ∪ Pb−1 ∪ Pn−a−b−p+1 ≺ B2
µ(n− p− 1, 1).

Therefore,

Pa−1 ∪ Pb−1 ∪ Pn−a−b−p+2 ≺ B2
µ(n−m− 1, p−m+ 1)

holds.

(ii) For p ≥ m+ 2, by Lemma 1, we get

bi(B
2
µ(n−m− 1, p−m+ 1))

= bi(B
2
µ(n−m− 1, p−m+ 1)− v)

+bi−2(B
2
µ(n−m− 1, p−m+ 1)− v − u0)

= bi(B
2
µ(n−m− 2, p−m))

+bi−2(Pa−1 ∪ Pb−1 ∪ Pn−a−b−p),

and
bi(Pa−1 ∪ pb−1 ∪ Pn−a−b−p+2)
= bi(Pa−1 ∪ Pb−1 ∪ Pn−a−b−p+1)
+ bi−2(Pa−1 ∪ Pb−1 ∪ Pn−a−b−p)

holds for all i ≥ 0. Therefore,

Pa−1 ∪ Pb−1 ∪ Pn−a−b−p+2

≺ B2
µ(n−m− 1, p−m+ 1).

Subcase 2.1.2.2. d(u1) ≥ 3.

Without loss of generality, assume that G ∼= D16 where
D16 is the graph with n vertices and p pendent vertices,
and a part of pendent vertices and pendent path are
shown in Fig.41. Since d(u1) ≥ 3, p ≥ m + 1. Fur-
thermore, D16 − v ∈ B2(n− 1, p− 1) and D16 − v − u ∈
B2(n−m−1, p−m).The problem is transformed into the
similar situation above, so the corresponding conclusion
is still established.

In summary, the result in Subcase 2.1 is proved com-
pletely.

Subcase 2.2. dG(v, Ca,b) = 2.

Subcase 2.2.1. d(u) = 2.

Without loss of generality, assume that G ∼= D17 where
D17 is the graph with n vertices and p pendent vertices,
and a part of pendent vertices and pendent path are
shown in Fig.42.

Obviously, D17 − v ∈ B2(n − 1, p) and D17 − v − u ∈
B2(n − 2, p − 1). The problem is transformed into the
above similar situation. Similar as Subcase 2.1.1.2, we
have the corresponding conclusion.

Subcase 2.2.2. d(u) ≥ 3.

Without loss of generality, assume that G ∼= D18 where
D18 is the graph with n vertices and p pendent vertices,
and a part of pendent vertices and pendent paths are
shown in Fig.43. Assume that G′ is discussed as above.
Due to G 6∼= Qa,b,pn , p ≥ m+ 1. Obviously, we have

D18 − v ∈ B2(n− 1, p− 1),

and
D18 − v − u ∈ B2(n−m− 1, p−m),

the problem is transformed into the subcases above. Sim-
ilar as Subcase 1.2, we can get the corresponding conclu-
sion.

The proof is completed.
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