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On Minimal Energy of a Class of Bicyclic Graphs
with given Cycles” Length and Pendent Vertices*
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Abstract

The energy of G is defined as the sum of absolute value
of all eigenvalues of the adjacency matrix A(G). Let
B?(n,a,b,p) be the set of all bicyclic graphs on n ver-
tices with p pendent vertices and two cycles C, and Cj
which have unique common vertex ug, B2(n,a,b,p) the
graph class obtained by coinciding the common vertex ug
of €y and €y with the center of the star S, _(a46—1)41,
and BZ(n, a, b, p) the set obtained by coinciding the com-
mon vertex ug of C, and C}, with the center of the star
Sp and connecting a pendent path P,_(44p—1)—(p—1) On
point ug. In this paper, it is obtained that Bj(n,a,b, p)
has the minimal energy in all graphs which have only
pendent vertices except two cycles, and BZ(n, a, b, p) has
the minimal energy in all graphs which have prescribed
cycles’ length and pendent vertices.

Keywords: Bicyclic graphs; Quasi-Order method; Min-
imal energy

1 Introduction

In this paper, all graphs are finite, connected, undirected
and simple. In recent years, many parameters and classes
of graphs were studied. For example, in [1], the restricted
connectivity of Cartesian product graphs were obtained,
and in [2, 12], some results on 3-equitable labeling and
the n-dimensional cube-connected complete graph were
gained. Let G be a graph with order n and adjacency
matrix A(G). The characteristic polynomial of G, de-
noted by ¢(G), is defined as

6(G,z) = det(a] — AG)) = 3 aga™",
1=0

where [ is the identity matrix of order n. The roots of
the equation ¢(G) = 0, denoted by A1, Ag, -+, A, are the
eigenvalues of A(G). It’s easy to see that each \; is real
since A(G) is real symmetric. The energy of G, denoted
by E(G), is defined as

B(G) = IA.
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For the coefficients a;(G) of ¢(G),
|a;i(G)| (i = 0,1, - -, m).
in Sachs theorem,

w(G) = I (1929,

SeL;

set b;(G) =
The following formula is given

where L; denotes the set of Sachs subgraphs (the sub-
graphs in which every component is either a Ky or a
cycle) of G that contain i vertices, w(S) is the number
of connected components of S, and ¢(S) is the number
of cycles contained in S.

It is well known that the Coulson integral formula of the
energy is expressed as the following form

O
E(G)= & [T L m[(Y (=1)ibya?)?

21 J—oco 22 =
. = 1)

+< (71)ib21‘+1$2i+1)2]dz.
=0

,_
[I—

Obviously, the formula (1) is a strictly monotonically
increasing function of b;(G), that is to say, for any two
graphs G; and G5 with the same order, there exists the
following relationship:

In order to compare the energy of graphs with a bet-
ter way, we need to define the following Quasi-Order:
if b;(G1) > b;(G2) hold for all i+ > 0, we can write
G1-Go or G2=<Gq; if G = G5 and there exists some
10 such that bio (Gl) > bio (Gg), then we write G1 = Gs.
Combining with the formula (1), the increasing property
G1 > G2 = E(G1) > E(G3) of graph energy is obtained.

In theoretical chemistry, the energy of a molecular graph
can be approximately used to represent m-electron en-
ergy of the molecule, which is an important application
of the energy of graphs in the chemical field, and has
been widely studied by scholars. For a more detailed
explanation can refer to the literature [3-4,10-11,13-15].
In addition, for some special class of graphs, searching
for their extreme energy becomes an interesting topic.
For the graphs with cycles, many researching conclu-
sions have been obtained, for example, [7,9] give unicycle
graphs with minimal energy and maximal energy, respec-
tively. In [8,10], bicyclic graphs with minimal energy and
maximal energy are gotten. On this basis, the relevant
conclusions about the extreme energy of the graphs with
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given parameters are also gained. For example, [13] ob-
tains unicycle graphs with given diameter and minimal
energy. In [5], the minimal energy of unicyclic graphs
with prescribed girth and pendent vertices is given. In
[6], the minimal energy of bicyclic graphs with a given
diameter is obtained.

Bicyclic graphs are defined as connected graphs with n
vertices and n + 1 edges. According to the character-
istics of the number of common vertices in two circles
in the bicyclic graphs, they can be divided into three
classes: two cycles without any common vertex, two cy-
cles with common edges, and two cycles with an unique
common vertex. Here we discuss the last case, which
is denoted by B2(n,a,b,p), where a,b are the two cy-
cles’ length, and p is the number of pendent vertices. In
addition, B3(n,a,b,p) is the graph class obtained by co-
inciding the common vertex ug of C, and Cj with the
center of the star S, _(,44—1)41. Let Bi(n7 a,b,p) be the
graph class obtained by coinciding the common vertex
ug of C, and C with the center of the star .S}, and con-
necting a pendent path P,_(445—1)—(p—1) on point ug.
For sake of the convenience, we write Bj(n,a,b,p) and
B2(n,a,b,p) as Bg(n,p) and B (n,p) simply (see Fig.1-
2,20 and 28), subgraphs of G without pendent vertices is
called the base graph of G, and the base graph class of
graph class mentioned above is represented by B2 (see
Fig.3). Let V/(G) denote the set of all pendent vertices
of G. dg(z,y) is defined as the distance between two
vertices z and y of a graph G, and

da(z,Cayp) = min{dg(z,y)| y € V(Cap),

X % V(Ca)b)}.

In this paper, using Quasi-Order method, we discuss
the graphs with minimal energy in B2(n,a,b,p) that are
given length of two cycles with unique common point
and pendent vertices by mathematical induction. It is
obtained that B3Z(n,a,b,p) has the minimal energy in
all graphs which have only pendent vertices except two
cycles, and Bi(n,a,b, p) has the minimal energy in all
graphs which have prescribed cycles’ length and pendent
vertices (please see Fig.1-2).

Lemma 1 ([10]) Let G be a simple graph and e = uv
be a pendent edge of G with pendent vertex v, then
bl(G) = bZ(G — U) + bi_Q(G - v — U)

Lemma 2 ([10]) Let G be a simple graph. If H is a
subgraph (proper subgraph) of G, then G-H (G >~ H).

2 Graphs with only pendent vertices ex-
cept two cycles in B%(n,a,b, p)

Theorem 3. Let G € B%(n,a,b,p) withn = a+b+p—1
and p > 1. Assume that the cycles’ length a and b are
fixed, and wug is the common vertex of two cycles. If
G # B3(n,a,b,p), then G = BZ(n,a,b,p).

Proof. We will show the theorem by induction on p.

(1) Suppose that p = 1, i. e., there is only one pendent
vertex. Assume that e = ugv is a pendent edge and v is

its pendent vertex, as shown in Fig.2. By Lemma 1, for
B2, as in Fig.3, we can get

bl(Bg(n, 1)) = bl(G — ’U) + bi_Q(G — Uy — ’U)
bv(Bgo> + bi—Z(Pa—l U Pb—l)-

(%

Fig.2 B3 (n,a,b,1)

Fig.1 B}(n,a,b,p)

Ut
U1
Fig.3 B% Fig.4 A1
Q @ Us
Ut
U U1 v1 v

Ut+1
a/

\.ut—l

Fig.10 H;  ut+1

Fig.11 H,

Fig.12 H;

ws+h.
..

U1

Fig.13 H, Fig.14 H;

Assume that v is adjacent to u; but ug belongs to cycle
Cp, as shown in Fig.4. By Lemma 1, for graphs A;; in
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Fig.4 and H; in Fig.10, we obtain that

bi(A11)

=b;(A11 —v1) + bi—2(A11 —ug —v1)
= bi(BZ,) + bi—2(H)1).

Obviously, P,_1 U P,_1 is a proper subgraph of Hy, so
P, 1UP_1< Hl, and then Bg(n, ].) < A1

(2) For p =2 and B3(n,2), by Lemma 1, we can get

bi(Bj(n,2)) = bi(Bj(n,2) — v)
—|—bi,2(Bg(n, 2) — Ug — ’U)
= bl(Bg(n -1, 1)) + bifz(Pafl @] bel)'

If G % B3(n,2), then there is at least one pendent vertex
which is not adjacent to ug. The problem can be divided
into the following cases.

Case 1. There is at least one pendent point which is
adjacent to ug. Suppose that one point is such one and
the other is adjacent to u; on cycle Cy, as By; shown in
Fig.5. By Lemma 1, we have

bi(B11) = bi(B11 — v1) + bi—2(B11 — us — v1)
= bi(Bj(n — 1,1)) + Bi(Ha),

Since P,_1 U Py_1 is
Thus,

where Hs is shown in Fig.11.
a proper subgraph of Hs, P,_1 U P,_1 < Hs.
Bg(n,Z) =< Bll~

Case 2. There is no pendent vertex which is adjacent to
ug, and both of them are adjacent to u; and us on one
cycle Cy, respectively, as Byo shown in Fig. 6. Then by
Lemma 1, we can get

bi(B3(n,2)) = b;(B3(n,2) — v)
+b7;,2(Bg(n, 2) — Uy — ’U)
=b;(B}(n—1,1)) + b;—2(Pa—1 U Py_1),

bi(Bi2) = bij(Bi2 — v) + bi—2(B12 — us — v)
=b;(H3) + b;—2(Hy),
where Hs, Hy are shown in Fig. 12-13.
We can obtain that B (n—1,1) < Hs from (1). In addi-

tion, it is obvious that P,_1 U P,_; is a proper subgraph
of Hy, so P,_1UP,_y < H,. Hence, Bg(n,2) < Bio.

Case 3. There is no pendent vertex that is adjacent
to ug, and two points are adjacent to u; and ws on two
cycles (% and C,, respectively, as Bi3z shown in Fig. 7.
By Lemma 1, we obtain that

b;(B11) = b;j(B11 —v) + bi—2(B11 — uo — v)
= b;(Hs) + bi—2(Py—1 U Hy),

and

b;(Bi3) (Biz —v) + bi—2(B13 —ws — v)

= bi(H3) + b;—2(Hs),
where Hy, Hg are shown in Fig.14-15, respectively.

Comparing P, 1 U Hs with Hg, since the former is a
proper subgraph of the latter, P,_1 U H5 < Hg, that is,
Bi1 < Bijz. Combining the conclusion B3(n,2) < B
from (1), we get B3 (n,2) < Bis.

Thus, the theorem holds for p = 2.

(3) Assume that the theorem holds for p =1 — 1. In the
sequel, we prove that the theorem still holds for p = I.
For BZ(n,l), we have

bi(Bj(n,1)) = bi(Bj(n,1) — v) + bi—2(Bj(n,1) — uo — v)
= bl(Bg(n - 1,0— 1)) + bifg(Pafl @] Pb71)~

If there is at least one pendent vertex whose neighbor is
not ug, as C1 shown in Fig.8, then by Lemma 1, we can
get

b;(C11) (Ci1 —v1) +bi—2(Cr1 —ug — 1)

= bZ(Bg(’I’L — l,l — 1)) + bi,Q(H7),

where H7 is shown in Fig.16. Since H7 contains P, 1 U
P, as its proper subgraph, P, 1 U P,_1 < Hr, so we
have BZ(n,a,b,l) < Ci.

Now suppose that there are p — k pendent vertices that
are adjacent to ug (I > k > 2), as C15 shown in Fig.9
(the pendent vertices are not shown all). At this time,
choose a pendent edge w;v; with w; # ug, then

b;(C12) = b;(Cr2 — v1) + bj—2(Cr2 — wy — v7)
= b;(Hsg) + b;—2(Hy),

where Hg, Hg are shown in Fig.17-18. Note that Hg and
Hy display a part of the pendent vertices except the de-
formation by deleting one or two vertices from C75. Since
B3(n—1,1—1) and Hg are graphs which have only pen-
dent vertices except two cycles with n — 1 vertices, by
induction hypothesis, we can get BZ(n — 1,1 — 1) < Hs,
and P,_1 U P,_1 < Hg because P,_1 U P,_1 is a proper
subgraph of Hy. Thus Bj(n,p) < Ci2, and the theorem
holds for p = 1.

In a word, we have shown that B (n, p) is the graph with
minimal energy for 1 <p <[,/ >2andn=a+b+p—1.

3 Bicyclic graphs with prescribed cy-
cles’ length and pendent vertices in
B2(n,a,b,p)

On the basis of Theorem 3, we study the case of n >
a+b+p—1. Let Q4P be graphs shown in Fig. 19.
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Theorem 4. Let G € B%(n,a,b,p) withn > a+b+p—1
and p > 1. Assume that the cycles’ length a and b
are fixed, and ug is the common vertex of two cycles.
If G % Bl(n,a,b,p) and G % Q%P then E(G) >
E(B:(n,a,b,p)).

Proof. For n = a+b— 1+ p, by Lemma 1, we have
Bﬁ(n,a,b,p) >~ B2(n,a,b,p), the result holds for this
case. We show that the result is also true for n — (a +
b—1+p)>1 in the following.

Assume that V'(G) is the set of all pendent vertices
of G, v is the point in V/(G) such that dg(v,Cup) =
max{dg(z,Cep),x € V'(G)}, and w is its unique neigh-
bor.

u
v e e

Flg21 D11

Fig.22 D/, Fig.23 Dio
u
v
Fig.24 D}, Fig.25 Dol
I
u u
v v
Fig.26 D122 Fig.27 D122’

XYy

Fig.28 B (n,p) Fig.29 BX(a+b+p+1,p)

Based on the value of n — (a + b — 1 + p), there are two

cases that need to be discussed.
Casel.n—(a+b—1+p)=1.
By the definition, we can get dg (v, Cqp) = 2.

Subcase 1. 1. d(u) = 2. By Lemma 1, it is not difficult
to verify that

bi(B2(n,p)) = bi(Bi(n,p) —v') +bi_a(Bi(n,p) —v' —u).

Suppose that G 2 Bi(n,p)7 then we must have G = Dy,
or G = D}, (both Dy; and D, are graphs with n vertices
and p pendent vertices, and a part of pendent vertices
which are adjacent to vertices on cycles are shown in
Fig.21-22). Take D1y as an example, we have

bi(D11) = bi(D11 —v) + bj—2(D11 —v —u),

where Dy —v € B*(n—1,p) and D1; —v —u € B?(n —
2,p—1). Since

B} (n,p) —v' = Bj(n—1,p)
and
Bi(n,p) —v —u' =2 Bi(n—2,p—1),
we have

Bg(n - 17p) = BQ(n - 1ap)7
Bg(n—Q,p— 1)< B?*(n—2,p—1)

by Theorem 3. On account of G % Bi(n,p), we can get
Bl(n,p) —v' <Dy —v
and
Bﬁ(n,p) —v' —u' <Dy —v—u.
Thus, Bﬁ(n,p) < Dj;. Similarly, we can obtain that
Subcase 1. 2. d(u) > 3.

We get firstly
bi(B2(n,p)) = bi(B(n,p) — v) + bi—a(B(n, p) — v — ug)

:bi(Bi(’l’L—1,p—1))+bi,2(Pa,1 UP[,,l UPQ), (2)

Assume that G % Bi(n,a, b,p), we must get G = Djq
or G = D}, (both Dy5 and Dj, are graphs with n ver-
tices and p pendent vertices, and a part of pendent ver-
tices that are adjacent to vertices on cycles are shown in
Fig.23-24). Take Dj5 as an example. Clearly,

bi(D12) = b;(D12 — v) + bj—2(D12 — v — u), (3)

and D13 —v € B?*(n — 1,p — 1). All points in N(u)
are pendent vertices except one on a cycle. Suppose
that there are m pendent vertices adjacent to wu, then
IN(u)] = m + 1. Since G % Q%"P, we have p >
m+ 1. Set Dig —v—u = G U (m — 1)P;, then
G' € B3 (n—m—1,p—m).

Now we show the result by induction n and p in the
following. Assume that the result holds for small n and
p, then Bﬁ(n —~1,p—1) < B*(n — 1,p — 1). Because
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p>m+1, d(u) > 3, and dg(v,Cyp) = 2, there are at
least four pendent vertices in G, so n > a + b + 4.

(1) Assume that n— (a+b) =4,1. e, n=a+b+4, and
G e BQ(a+b+4,4) Suppose that G = Dlgl, |V(D1217
v)| = (a+b) = 3 and D1a1l —v € B%(a + b+ 3,3) (see
Fig.25). In the following, we use Quasi-Order method to
compare Bi(a + b+ 3,3) and D21 —v. By Lemma 1,
we get

bi(B2(a+b+3,3))
=bi(B:(a+b+2,2)) 4+ bi_2(Pa1UP,_1 U Py),

and

bi(D12l —v) = b;(B*(a +b+2,2)) + b—2(B*(a +b,1)).

By Subcase 1.1, we have B? (a+b+2,2) < B*(a+b+2,2),
and
P, 1UP, 1 UP, < B*(a+b,1)

since P,_1UP,_1UP, is a proper subgraph of B2(a+b, 1),
so we get
Bl(a+b+3,3) < Dipl —v

and
Bl(a+b+3,3) < B*(a+b+3,3).

Thus, for n = a + b+ 4 and p = 4, we have
2 2
Bj(a+b+3,3) < B*(a+b+3,3),
that is,

2 2
Bu(n—l,p—l)—<B (n—1,p—1).

(2) Suppose that n — (a +b) =5,1i. e, n=a+b+5.

On the basis of (1), add one vertex to graph D131 such
that the number of pendent vertices increasing, then the
added pendent vertex is adjacent to u or other vertex on
cycles, and we obtain D192, D122" € B?(a+b+5,5) that
are shown in Fig.26-27.

Suppose that G 2 D122 or G = D192, then |V(D122 —
v)| = V(D122 =v")| = a+b+4 and D132—v, D132' =" €
B?(a+b+4,4). By Lemma 1, we get

bi(Bi(a+b+4,4))
=bi(B;(a+b0+3,3)) + bi—a(Pa1U Py 1 UPy),

bi(D122 —v) = b;(B*(a + b+ 3,3)) + bi_a(B*(a +b,1)),

and

bi(D122' —v") = bj(B*(a+b+3,3))+bi_2(B?*(a+b+1,2)).

Combining with the result of (1), we have
Bi(a+b+3,3) < B*(a+b+3,3).

Since P,_1 U P,_1 U P, is a proper subgraph of both
B?(a+b,1) and B?(a+ b+ 1,2), we obtain that

P, tUP,_1UP, < B*a+1b,1),
P,1UP_1UP -<BQ(a+b—|—1,2),

Bli(a+b+4,4) < D1s2 —v

and
Bi(a+b+4,4) < D2’ — v/,

so we have
2 2
B (a+b+4,4) < B (a+0b+4,4).
Thus, for n =a + b+ 5 and p = 5, we have
2 2
Bi(a+b+4,4) < B*(a+b+4,4),
that is,
2 2
B,(n—-1,p—-1)<B*(n—1,p—1).
(3) Assume that the theorem holds for n—(a+b) = p—1,
i.e,Ba+b+p—2,p—2)<B*(a+b+p—2,p—2).

In the sequel, we prove that the theorem still holds for
n — (a4 b) = p. Suppose that G = Dy5 or G = D}, (see
Fig. 23-24). Take D12 as an example. Clearly, |V (Do —
v)=a+b+p—1and D1y —v € B*(a+b+p—1,p—1).

A comparison between Bi(a—l—b—i—p— 1,p—1) and Di3—v
will be accomplished in the following. By Lemma 1, we
have

bi(Bi(a+b+p—1,p—1)) =
bz(BZ(CL +b+p—2,p— 2)) + bifg(Pafl Upb,_1U PQ),

and

bi(Diz —v) = bi(B>(a+b+p—2,p—2))
+bi—2(B*(a+b+p—m—1,p—m)).

By induction assumption, we obtain that
Bia+b+p—2,p—2)<B*(a+b+p—2,p—2).

Because p — m > 1, it is not difficult to see that P, 1 U
Py_1 U P, is a proper subgraph of B>(a +b+p —m —
1,p —m), so

Pa_luPb_lLJPQ-<Bz(a+b+p*m*17]3*m)a

and
Bi(a+b+p—l,p71)<D1271}.

Thus, for n = a + b+ p, we have
Bl(a+b+p—1p—1)<B*(a+b+p—1,p—1),
that is,

2 2
Bi(n—1,p—1) < B*(n—1,p—1).

By induction, we have
2 2
B,(n—1,p-1)<B*(n—1,p-1),

and the relationship between the first item on right of
equations (2) and (3): B(n—1,p—1) < D12 —v. The
problem is turned into a proof of the relationship between
the second:P,_1 UP,_1 UPy < Do — v —u.
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As what mentioned before, D1 —v—u € B?(n—m—1,p—
m). What remains is to prove that P,_1 U Py_q U Py <
B%(n —m — 1,p — m). Since p —m > 1, it is clear that
P, 1UP, 1 UP, is a proper subgraph of B?(n —m —
1,p—m), so we get

P, 1UP, 1UP, < B*(n—m—1,p—m).

Thus, we have B7(n,p) < Dia. Similarly, we can ob-
tain that BZ(n,p) < Dj,. Hence the result in Case 1 is
proved.

Case 2. n—(a+b—1+p) > 2.

In the following, we deal with the problem in two sub-
cases.

Subcase 2.1. dg(v,Cyp) > 3.
Subcase 2.1.1. d(u) =2

Subcase 2.1.1.1. d(u;) = 2 and wu; is the neighbor
vertex of u.

Assume that G % BZ(n,a, b,p), we must have G = D3
which has n vertices and p pendent vertices, where a
part of pendent vertices and pendent pathes are shown
in Fig.31.

H

H

H
Ul

F1g30 Bl(a+b+p+2,p+1)

Flg 31 D13

p.: 1

Fig.35 D14

V2

Fig.36 Bh(a+b+p—1,p) Fig37 Bi(a+b+p—1,p—1)

Obviously, D13 —v € B%*(n — 1,p) and D13 —v —u €
B?(n—2,p). In the following, the two items on the right

of equal will be compared, respectively. If we want to get
B2(n—1,p) < Dig—v and B}(n—2,p) < Di3—v—u, we
need to prove that B (n—1 p) = BQ(n 1,p) and B2 (n—
2,p) < B%(n —2 p) We show the result by induction
on n. Assume that the result holds for small n, then
B2(n—1,p) < B*(n—1,p) and B:(n —2,p) < B*(n —
2,p). Note that dg(v,Cyp) > 3, and d(u) = d(u1) = 2.
Assume that the number of pendent vertices as p will
not change even though the order of graph G changes
constantly. There are at least two vertices except two
cycles and pendent vertices, son > a+b+p+ 1.

Fig.40 Bi(n —m —1,p—m+1) Fig.4l Dg

Fig.42 D17

Flg43 DlS

For Bz(n7 a,b,p) and Dq3, by Lemma 1, we have

bi(Bj(n,p)) 1,p)) + bi—2(Bji(n — 2,p)),

bi(Dlg) = bi(Dlg — ’U) + bi,Q(Dlg —v — u)

= bi(B;(n

(DIfn—(a+b—1)—p=2,thenn=a+b+p+ 1.

Suppose that G = Dj3l (the pendent edges are not
shown all in Fig.32) since G % B2 s (a+b+p+1,p). We can
get V(D13—v') = a+b+pand D13—v € B%(a+b+p,p).
We use Quasi-Order method to compare B?(a+b+p, p)
and D31 —v’. By Lemma 1, we get

b(B?(a+b+p, p)) =bi(B2(a+b+p—1,p))

+b;— 2( 2la+b+p— 2p—1))
and
bi(Di31 —v') = b;(B*(a+b+p—1,p))
+b;i2(B*(a+b+p—2,p—1).
Since

Bi(a+b—1+p,p)=Bjla+b—1+p,p),

Bi(a+b+p72,p—1)%Bg(a+b+p72,p—1).
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By Theorem 3, we can obtain that
2 2
Bi(a+b—1+p,p) < B*(a+b—1+p,p),
and
2 2
Bla+b+p—2p—1)<B*(a+b+p—2,p—1),

so we have B;(a—i-b—kp,p) < D31 — 4/, that is Bﬁ(a—k
b+p,p) < B*(a+b+p,p). Thus, forn=a+b+p+1,

we have B2 (a+b+p,p) < B*(a+b+p,p), i e,

2 2
B,(n—1,p) < B*(n—1,p).

On the basis above, to add one vertex to graph D3l
but the number of pendent vertices will not change,
there exist two methods: lengthening the pendent path
which contains v’ and %' on D31 or other pendent
path. Without loss of generality, assume that we add
one vertex such that the graph has the same pendent
vertices, then we obtain G = D132 or G = D132’, where
D1327 D132/ S B2((Z =+ b + P + 2,p)

2)Ifn—(a+b—1)—p=3,thenn=a+b+p+2, so
it is not difficult to see that
V(D132 —v') =a+b+p+1,
D132 —v' € B*(a+b+p+1,p),
V(D132 =v')=a+b+p+1,

and

D132 —v' € BXa+b+p+1,p).
Comparing Bﬁ(a +b+p+1,p) and D132 — v as well as
B(a+b+p+1,p) and D132" — o', by Lemma 1, we get

bi(B(a+b+p+1,p) =bi(B;(a+b+p,p))
+bi—2(BZ(a + b+p - lap))7

bZ(D132 - ’U/) — bz(B2(a + b +p7p))
—i—bi,g(BQ(a—l-b—i—p— 1,]7),

and
bi(D132' — ') = b;(B*(a+ b+ p,p))
+bi2(B*(a+b+p—1,p—1)).

Comparing three equations above, combining with the
proof of (1), the result of the comparison between the
first term of the right side of the equal is Bi(a+b—|—p, p) <
B%(a+b+p,p).

For the second term of the right side of the equal, since
Bi(a+b—1+p,p) = Bi(a+b—1+p,p),

by Lemma 1, we get B2(a+b—1+p,p) < B*(a+b+
p_]-7p)‘

For Bﬁ(a—l—b—l—p— 1,p) and B*(a+b+p—1,p—1), by
Theorem 1, we have

2 2
Bia+b+p—-1,p—1)<B(a+b+p—1,p—1).
Now, we need only to prove that

Bl(a+b+p—1,p)<Bila+b+p—1,p—1).

From Lemma 1,we can get

bi(Bj(a+b+p—1,p)
= bz(Bg(a +b+p—2,p— 1)) + bi_Q(Pa_l U Pb—l)

and
bi(B*(a+b+p—1,p—1))
=bi(Bj(a+b+p—2,p—1))
+bi_o(B*(a+b+p—3,p—2)).

Since P, _1UP,_; is a proper subgraph of B%(a+b+p—
3,p—2), the relationship on the second term of the right
side of the equal is

Paflupbfl '<B2(a+b+p_37p_2)7
SO

Bi(a+b+p—1,p) <B*a+b+p—1,p—1).

Thus, for n = a + b+ p + 2, we obtain that

Bﬁ(a+b+p+1,p) < B%(a+b+p+1,p),

2 2
B[L(n - 17p) < B (n - lap)

3)Ifn—(a+b—1)—p= N—1, thenn = a+b+p+N—-2.
Set ny = n, assume that the theorem holds for ny, i. e.,
we have

Bi(nl - 27p) = B2(’I’L1 - 2ap)7

and
B(ny —1,p) < B*(n1 — 1,p).

Suppose that n—(a+b—1)—p = N, thenn = a+b+p+
N —1. Set ng = n. Since V(G —v) = ny — 1, without loss
of generality, assume that G = D;3 (the pendent pathes
are not shown all in the Fig.31). Obviously, D15 — v €
B?(ny —1,p). Comparing Bz (ne —1,p) with D13 —v, by
Lemma 1, we have

bi(B:(n2 — 1,p))
= bi(B2(ny — 2,p)) + bi—2(B2(n2 — 3,p)),
and

bi(Dlg —’U)
= bi(Bz(’ng — 2,p)) + bi_g(Bz(’l’Lg — 3,p)).

Due to no = n1 + 1, we can get

B;QJ,(TLZ - 2ap) = Bi(nl - 17p)7
BQ(nZ - 27p) = Bz(nl - 1ap)a
BZ(’I’LQ - 37p) = BZ(nl - 27]9)»

and
B*(ny — 3,p) = B*(ny — 2,p).

By induction hypothesis, we have
Bi(nl - 17]3) < B2(n1 - 1ap)7

and
Bi(nl - 2,]7) = BQ(nl - 2ap)
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Therefore,

BZ(TLQ 27p)<32(n2_27p)7

and

Bl (ny — 3,p) < B*(ny — 3,p)),

that is to say,
2 2
B (n —2,p) < B*(n —2,p),

and
2 2
B (n—1,p) < B*(n—1,p).
So

Bz(n 1,p) < D13 —v.

According to the induction above, we have

Bl(n—1,p) < Di3 — v,
and
Bi(n 2,p) < D13 —v —u,
that is,
bi(B2(n —1,p)) < bi(D13 —v),
and

bl(Bi(TL — 27])) < bi(Dlg -V — 'LL)
Thus, B2 (n,p) < Dy and then the result is obtained.

Subcase 2.1.1.2. d(u1) > 3.

Suppose that G = Di4, where Dy, is the graph with n
vertices and p pendent vertices and a part of pendent
vertices and a pendent path are shown in Fig.35. For
BZ2(n,p) and Di4, we have

bi(B}(n,p)) = bi(Bh(n — 1,p)) + bi—2(Bj (n — 2,p)),
b; (D14) =b; (D14 —v) + bifz(DM — v — u)

Obviously, D1y —v € B%(n — 1,p) and Dyy —v —u €
B?(n — 2,p — 1). Similar as the subcase 2.1.1.1 and
subcase 1.2, we have B(n — 1,p) < B*(n —1,p), and
B2(n 2p 1)<32(n—2p71) So BX:(n —1,p) <
D14 v, B? (n 2,p—1) < Dyy—v—u. Hence the problem
is turned mto showing B2 (n —2,p) < BA(n—2,p —1).

(i)For n —2 — (a+b—1+p) =0, then B(n —2,p) =
Bj(n —2,p).

By Lemma 1, we get

B3(n—2,p) = bj(Bi(n—3,p—1)) + bi_a(Pa1 U Pp_y),

B2(n—2,p—1) = bi(Bj(n—3,p—1))+b;_2(Bj (n—4, p—2)).

It is not difficult to find that P,
subgraph of BZ(n —4,p — 2), so

_1 U Py_q is a proper

2 2
Bu(n —2,p) < Bu(n —-2,p—1).

(i)Fforn—2—(a+b—1+p) > 1. By Lemma 1, we get

bi(Bﬁ(n —2,p)) = b,-(BZ(n —2,p) —v1)
+bi—2(BZ(n — 2,p) —v1 — u1),

bl-(Bi(n -2,p—1)) = bi(BfL(n —2,p—1)—v9)
+bi—a(B2(n —2,p — 1) — v2 — ua).
Note that B2(n—2,p) —v1 = B(n—2,p—1) — vp. We

have

bi(Bi(n —2,p) —v1) = bi(Bi(n —2,p — 1) — v2).

Since
Bli(n—2,p) —vi —u1 = Pacy UPy_1 U Py apyp,

and P,_1 U P,_1 UP,_,_4_p is a proper subgraph of
B2(n —2,p—1) — vy — uy, we obtain that

Bi(n Q,p)—vl—ul%Bi(n—Q,p—l)—vg—u%

thus

2 2
Bﬂ(n —2,p) < Bu(n —-2,p—1).

In summary, we get Bﬁ(n,p) < D14.
Subcase 2.1.2. d(u) >3
Subcase 2.1.2.1. d(uy) = 2.

Suppose that G = D5 where D5 is the graph with n
vertices and p pendent vertices that are adjacent to uq,
and a part of pendent vertices and pendent path are
shown in Fig.38.

For Bi(n7 a,b,p) and Dy5, by Lemma 1, we have

bi(Bj(n,p)) = bi(Bj(n,p) —

—b(Bz(” L,p—1))+bi—2(Pac1UPy 1 UPp_q_p—pi2),
bi(D15) = bi(D15 — v) + bi—2(D15 — v — u).

Obviously, D15 —v € B?(n — 1,p — 1), and all vertices
are pendent vertices except one point u; in N(u).

v1)+bi—2(B (Tl P) —v1—uo)

Suppose that there are m pendent vertices adjacent to
u, then |N(u)] = m + 1 (please see Di; in Fig.39). Let
Djs—v—u=G"U(m—1)P;. Then G’ € B*(n —m —
1,p —m+1). Similar as subcase 1.2, we have

2 2
Bi(n—1,p—1)<B*(n—1,p—1),
and

2 2
Bin—m—-1,p-m+1)<B*(n-—m—-1p-—m+1),

so we obtain that B2 (n—1,p—1) < Dj5 —v and B} (n—
m—1,p—m+1) < D{y —v—u. What remains is to prove
that P, 1UP,_1UP,_q_p—pyo < Bﬁ(nfmfl,pferl).
Since G' % Q%P p —m > 1.

(i) For p = m+1, BX(n—m—1,p—m+1)
then by Lemma 1, we can get

~ 2
= Bu(nfpv 2)a

bi(B2(n—m—1,p—m +1))
= b;(Bj(n —p,2))
=b;(Bi(n—p—1,1))

+bz 2( a— IUPb 1UPn p—a— b)

and
bi(Pa—l Upp—1 U P7L—a—b—p+2)
== bi(Pa—l U Pb—l U Pn—a—b—p—i—l)
+bi72(Pa71 U bel ) Pnfafbfp)
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Comparing the first term of the right side of the equal,
it is not difficult to find that P,—1 U Py U Py q_p—pt1
is a proper subgraph of BZ(n —p—1,1), so we have

PoyUP, 4 UPy_qppi1 <= Bi(n—p—1,1).
Therefore,
Pi i UPy 1 UPy_ g ppt2 < Bi(n -m—-1p—m+1)
holds.
(ii) For p > m + 2, by Lemma 1, we get

bi(BZ(n -—m—-1p—m+1))
=b(BX(n—m—1,p—m+1)—0)

i (B2 —m— 1, p—m+ 1) — v — )
= bi(Bi(n —m—=2,p—m))

+bi—2(Pa—1 U Pb—l U Pn—a—b—p)7

and
bi(—Pafl Upbfl U Pn7a7b7p+2)
- bi(Pafl U bel U Pnfafbfijl)
+ bi—Q(Pa—l U Pb—l U Pn—a—b—p)

holds for all ¢ > 0. Therefore,

Pafl U bel U PnfafbprrQ
<Bi(n—m—1,p—m+1).

Subcase 2.1.2.2. d(uq) > 3.

Without loss of generality, assume that G = Dy where
D1 is the graph with n vertices and p pendent vertices,
and a part of pendent vertices and pendent path are
shown in Fig.41. Since d(u;) > 3, p > m + 1. Fur-
thermore, Dig —v € B*(n—1,p—1) and Dig—v —u €
B?%(n—m—1, p—m).The problem is transformed into the
similar situation above, so the corresponding conclusion
is still established.

In summary, the result in Subcase 2.1 is proved com-
pletely.

Subcase 2.2. dg(v,Cyp) = 2.
Subcase 2.2.1. d(u) = 2.

Without loss of generality, assume that G = D;7 where
D17 is the graph with n vertices and p pendent vertices,
and a part of pendent vertices and pendent path are
shown in Fig.42.

Obviously, D17 —v € B%(n — 1,p) and D17 —v —u €
B?(n — 2,p — 1). The problem is transformed into the
above similar situation. Similar as Subcase 2.1.1.2, we
have the corresponding conclusion.

Subcase 2.2.2. d(u) > 3.

Without loss of generality, assume that G = Dyg where
D5 is the graph with n vertices and p pendent vertices,
and a part of pendent vertices and pendent paths are
shown in Fig.43. Assume that G’ is discussed as above.
Due to G 2 Q%*? p > m + 1. Obviously, we have

Dig—veB*(n—1,p—1),

and
Dig—v—u€ B*n—m—1,p—m),

the problem is transformed into the subcases above. Sim-
ilar as Subcase 1.2, we can get the corresponding conclu-
sion.

The proof is completed.
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