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Solvability of Quasilinear Euler-Lagrange
Equations

Quincy Stevene Nkombo *

Abstract—In this paper we deal with the solvability
of quasilinear Euler-Lagrange equation

—div((a(z)+ |u|") | Vu |p*2 Vu) + %\ U \772 ul| Vu |?

=MMulPutr|ul"u in Q

with zero Dirichlet boundary condition, under the as-
sumption 1 < 6 < p < ¢ < Z(y+p) and v > 1. We
concern with the existence of multiplicity solutions
for the above equation in employing the critical point
methods. Moreover, we obtain the trivial solution of

such equation when () is a smooth star-shaped domain
in RV.
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Truncated function; Nonsmooth critical point theory

1 Introduction

In this paper we study the following equation.

—div((a(@)+ | u[") | Vu 72 V) + 2| u 72w | Vu P

=Au|2ut|ul"%u in Q

(1.1)

with zero Dirichlet boundary condition.

u=0 on Of. (1.2)

In this case, the corresponding functional to the quasi-
linear Euler-Lagrange equation J is

_1 a(z ul|” up—é ue—1 u |7
=~ | @@t | vup=3 [ ul Q/“<13>|

where v > 1, Q is a bounded, open subset of RY with
N >2,1<p< N and a(x) is a measurable function
such that for two constants o and 3

J(u)

O<a<alz)<pf ae zel (1.4)

We notice that the functional J is not Gateau differen-
tiable in W (2) but is only differentiable through the
direction of W,"?(Q) NL>®(Q).
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The main difficulty of this work is due to the term | u |¥ in
which the functional J is well defined in W, ** ()L™ (Q),
if we impose an additional condition on v, namely, v+p <
p*. We point out that our approach has been studied in
[1], including L*°(€2) a priori estimates. We apply the
Theorem 2.8 in [3] to establish the existence of multi-
plicity critical points under hypotheses 0 < \ < Xo and
1 <0 <p<gq<P(y+p) for vy > 1 in which such
critical points um » of Jmz for m,m large enough are so-
lutions of (1.1)-(1.2) without passing to the limit on m
and n. Moreover, no such solution when A > Xo and €
is star-shaped for 1 < 0 < p < q < %*(7 +p) and v > 1.
We notice that the multiplicity results for p-Laplacian
with critical growth of concave-convex functions has been
intensively studied. Recently, the existence of multiplici-
ty of bounded weak solutions for the quasilinear singular
Fuler-Lagrange equation with natural growth with p = N
has been investigated by Quincy Stevene Nkombo (see
[10]). Finally, the novelty of this paper is that we study
the existence of multiplicity bounded weak solutions for
quasilinear Euler-Lagrange equation with 1 < p < N.

Notation: in the rest of this work we make use of the
following notation. LP(Q), 1 < p < oo, denote lebesgue
spaces. The usual norm in LP(Q) is denoted by | |, .

WJP(€) denote sobolev spaces ; the norm in W, ™* () is
denoted by || ||,.
Co,Cy,C4,Cs, ...

constants.

denote (possibly different) positive

2. The case 0 < \ < Xo

Definition 2.1 A measurable function wu is called a weak
solution to the equation (1.1)-(1.2), if u € W, ?(Q) such
that | u |72 u | Vu [P€ L(Q2) and

/ (a(@)+ | u ") | Vu [P~ Vave
Q
+’y/ |u |2 u| Vul|Pv

—)\/|u\9 2uv—i—/|u|q Zuw

holds for every v € W, *(€2) NL>(£).

The main result of this paper is focus on the existence
of multiplicity bounded weak solutions to the equation
(1.1)-(1.2). For that the result is given by the following
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theorem.

Theorem 2.1 Suppose that v satisfies the condition

v+ p < p*. Moreover, there exists Ay such that

px ~

1<0<p<q<;(7+p); 0< A< A (2.2)

Then, there exist infinitely many weak solutions for the

problem (1.1)-(1.2).

Proof. We use the theorem 2.8 in [3] in order to prove

the existence of multiplicity weak solutions to the prob-

lem (1.1)-(1.2). So that we divide this proof into several

steps.

e Step 1: A truncated function

If m is positive integer, we consider the truncated func-

tion at level m, T,,(t) is given

—m—1if t<-m-—1

(m+1)t+ 550 Gf —m—1<t<—m
tif —m<t<m

(m+1)t— Em> if <t <m+1
m+3 if t>m+1

T (t) =

(2.3)
which is introduced in [1].
Assuming that qo and ¢; are two numbers such that

1 <qo <0 < p< q < qand the truncated function
faa(t) is defined by

fn,)\(t) = )‘hn(t) + gn(t)a

where
9 .
_ B if Jtl<n,
n(t) nG(l_i)_,_n@fqow if |t|>n
0 q0 qo0 =
(2.4)
LEif Jtl<n
gn(t) = q(1 1 g—q ItI"t
(2.5)

By observing the definition of h,,(t) and g, (t), we deduce
the following inequalities

nf—ao ‘ t |9
0 < hy(t) < [t]7 and 0<h,(t) <—.
do 0
(2.6)
nd—a ‘ t |£I
0<gn(t) < [¢|7 and 0<g,(t) <
q1 q
(2.7)

Consequently, we infer that the estimate of the function
fna(t) as follows

Anf—a 9—q
0< fur® < 22— o +2— pn . (28)
Let us consider the truncated functional,
1
I = [ (@) | Tt ) | Vu P = [ foa(w
P Ja Q
(2.9)

for ue WyP(Q).

Which is clearly well defined for ¢y < ¢1 < p*.
e Step 2: Geometry of truncated function
Let 7 a positive real constant such that

B, = {ue Wy(Q)/ || ullp<r}.

The fact that, a(z)+ | Tm(u) |"> a and integrating
inequality (2.8) on 2, we get

/ Fan() < ACon?=® || w [© + Cyn || u 2 (2.10)
Q

where Cy and C; are nonnegative constants.
Combining (2.10) with the hypothesis,
a(z)+ | T, (u) |7> a, we obtain the following result

(u
(6%
Imn(u) > —
n(w) )

o— _
[ [I5 =ACon™ ™ [ [|I7? =Crn® ™ || w ||

Thereby, there exist nonnegative constants r,, x , 7, x and
Ao such that

Jmpn(u) >0 in B, , and Jyn(u) >7,x in OB
for all 0 < A < \o.

e Step 3: Compactness of the truncated function.

Let {wy.} be a sequence in Wy (Q) N L>(Q) satisfying,

for every n € N the following conditions
Jm,n(wk) S Cl~

|wk|m§2bk.

G%mwwmﬁ<%(hﬂm+ﬂw

Yw € Wy P(Q) NL2(Q).

Where C; is a nonnegative constant, {b,} C RT — {0}
is a nonnegative sequence and {ex} C Rt — {0} is a se-
quence converging to zero.

Suppose that

L_|_f’n )\(t)
TN _ pty ’
g( at) tfrlb,)\(t)
And

go(A) = rtrg%(g()\, t).

Where A > 0 and ¢ > 0.
Let € > 0, be given and choose ty > 0 such that

q <7 .
rtneagg(%t) <g(Ato) +e

Clearly g(\,to) is an increasing and continuous function
with respect to A and there exists A\ a nonnegative num-
ber 0 < \g < oo and such that

- 1 -
g)\o,to < ——, forall 0< A< A
(Ao, to) e
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Therefore
max (A, 1) < G\, to) + & < G(ho,to) + e
Which leads to

forall 0< A< XO.
teR

- 1
maxg(\,t) < —— +¢,
P+
Then it is easily verified by induction that

fn,k(t)
t 'rIL,)\(t)

After straightforward calculation of the term

1 ~
<go(A\) < ——, forall 0< X<\

P+

Jm,n(wk) - gO(A)<‘]rIn,n (wk)v wk>

(5-0m) [ )| Turp

+/Q (; —90(A) — %QO(A)wk ZZEZ:;)

X| Ty (wi) 7] Vg, |P

yields

+/ (goNwe fr, 5 (wi) = frx(wr))
Q

Wy
<ovta(Mles ).
by,

Notice that all the left-hand side terms are positives. In-
deed, the first one is nonnegative due to consequence of

t];‘TZi((?) < 9N < -
For the second term, it is enough to use the assumption,
0< % < 1, and that go(\) < ﬁ. The positiveness
of the third term is easily verified in using the definition of
go(N). Therefore, we can conclude that the sequence {wy}
is bounded in Wol’p(Q) for every p such that 1 < p < N.
So that the sequence {wy} admit a subsequence that we
still denote {wy,}, which converges to a function w O

e Step 4: Existence of critical points of the truncated
function.

We point out that the main idea of this proof is in [4],
for that we adapt the arguments of Theorem 2.8 in [3] in
order to prove the existence of multiplicity critical points
of Jm.n-

Let Hy be a k-dimensional subspace of W,*(Q) as we
take wy, € Hy, the norm of wy, || wy ||, is finite.

We set

the definition of go()\), namely,

Y ={CcW,?Q)/ 0eC ,C=-C}.

For C' € ¥ the Zs—genus of C is denoted by v(C).
According to the step 2 and step 3, the assumptions (1)
and (I3) of Theorem 2.3 hold true (see [3]).

Moreover, letting

Am,n = B'rn)\ U {Jm,n > O}

We can clearly assert that Hy N A,, ,, is bounded for all
n € N, the assumption (/5) Theorem 2.3 is complete.
Next we set

I* = {h € C(Wy™(Q), Wy " (Q)

h is an odd homeomorphism h(0) = 0 and h(B1) C Ay, }-
And

Iy = {K IS ’}/(Kﬁ h(8Bl)) >k VYhe F*}

And then
Sk = Inf max Jy, ,(w).
Kely wek
So that we can state that lemma 2.7 in [3] holds. We
then choose
h(w) = rp w

where 7, y a nonnegative real which has been defined in
the step 2 and h belongs to I'*. Consequently, we infer
that KNB,, , # 0 forall K € I';. Since Jy, , is bounded
from below on 0B then

Tn, X0

Sy = inf maxJy, »(w) > anx > 0.
Kel'y, weK

Since all assumptions of Theorem 2.8 in [3] are satisfied,
thus there exist infinitely many critical points of Jy, ;.
Hence, the Dirichlet problem (2.11)-(1.2) possesses in-
finitely many nontrivial weak solutions [
e Step 5: Uniformly L*° - estimates
Consider the following equation

—div{(a(x)—|— | Tm(wm,n) "Y) | vwm,n |p72 vwm,n}

T (Wi,
] m (Winn)

Ton(Wm,n) |7 Vwmn [P
T | Tnloman) ] Vet

= ,’M(wmn) (2.11)
Assuming that either wy,n = Umn OF Wy = u?nm or
...... OF Wy .y = ufn,n or ......solution of (2.11)-(1.2).

Setting that Ty (Wm.n) = Win and v =| Wy [° W as
a test function , then we have

(b+ 1)/ (CL(I’)+ | wm-,'"« "Y) | vw777‘7n |p | wm,n |b
Q

+1/ | Wm,n ‘b+7| vwm,n |p
P Ja

< (A + 1)pf-wta—a / | Wy P79 (2.12)
Q

Dropping the positive terms on the left hand side of
(2.12), we get

(b+1) / a(@) | won 'l Viomn |7
Q

< (A Dpfmwtema / | W [P (2.13)
Q
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On the other hand, we obtain the following result after
using the sobolev inequality

P

b+ «\ PT
cp(/mmn by ) <

></ | Wi, |b\ Vwm.n |
Q

cr (/ | Wi |77 )
L +prl

< ELPEL  ao) |t ] Vit 1
Combining (2.13) with (2.14), we have

([ i t25) " < (22021
A

a(pC2)P(b+1)

Xn97QO+q*q1/ | Winn |b+q
Q
It follows that

vy (PP
bepe =\ a(pCa)P (b + 1)
Let r = b+ ¢, then

1
— g+ pPN+1)\ T
| W |emgtn . < <(r q+p)*( ))
» a(pCo)P(r —q+1)

0—gqpt+a—a1
r—q+p

(b+p)?
pp

Therefore

(2.14)

IN

9—qo+q—
|wm,n )n dord—q W n |b+q

_r
T—q+p

Xn | Wi |1

Notice that wy, , belongs to W, ?(Q) and so to LP" (),
we can choose r = rop = p* — ¢ to deduce that wy,

*

P (Q), we can then choose r = r; =

rotpP—q *
p* to obtain w,, , belongs to L e (Q). Tter-
ating this process and defining by induction r as

ro—q+p

ro =p* —
oo (2.15)
rk =1 + 50— q).
We infer that w,, , belongs to L™ () with
e —q+p)° e
a(pCz)P (Tk —q+ )
f—g0ta—ar p* Tk—1
Xn Tk—4tp | Win,n ‘ P Tk
Therefore
% kp*;q
| Wi | < oeeee < Cs | Wimn |y "< Oy
Because of
fQ \ VW, |P is bounded with respect to m and n.

P

Smce > 1, it is enough to show that ry is increasing
sequence which diverges to infinity, thus, if it is such that

TREDog e > % an adaptation to the quasilinear case of

P
the proof of a result of Stampacchia (see [5]) implies that
there exists M,, > 0 such that

Let m,, be an integer such that m,, > max(M, +p,t), if

def def
we define w,, = W, namely, either w, = u) = u% "
1 def g L def &
Or Wy = Up = Upy, OF ..., or Wy = Uy = Upy,, OF
def
Wy, = .. . Then T,y (wn) = wy, and T, (wy,) =

consequently, the equation which is satisfied by wy, i8

—div((a(z)+ | wy, ") | Vw, P72 Vw,)

2 Lo 72 wal Vun [P = fa(wa) - (216)
with zero Dirichlet boundary condition.

Notice that by the assumption ¢ < %(p +7), then w, is
bounded in L9(£2) using this fact, we are going to show
that w,, is uniformly bounded in L>(£2).

Let b > 0 as before, and choose v =| w,, |* w,, as a test
function in the equation (2.16)-(1.2) satisfied w,,.

The fact that f], \(t) < (A+1) | ¢ [77*"" and we drop
two nonnegative terms, and then we obtain

< ()\+1)/ | wy, |90,
Q

However, we get another inequality when we apply the
sobolev inequality to w?TP+7 we then have

(b+ 1>/ a(@) | w, 7] Vuw, |”
Q

p

5l p
c? (/ | wp |”+£+”p*) < (W> / | Wy, |b+7| YVw, .
Q p Q

Thus

b
(/ w0, |w+zb)+pp*>p < /| |b+q.
Q
at+p *

Where w,, belongs to L P (Q) provided that w,
belongs to L™ () with b = r — ¢, yields

(’y+b+p /\+1
(pCs)P

*

VO PP DN T
(pCs5)P(b+ 1) n .

| W, |'v+;+pp*g <(

Because of —2— < p*.

. biy+p = :
Arguing as before, if we consider the sequence ry as fol-
lows

_
ro="= (7; p) . (217)
r=re-1 + (v +p—aq).
Thus wy, ,, belongs to L™ () for every k and so
(V+rei—g+pPO+ D)7
|w’ﬂ ‘Tkg P — | n |7‘;C .
(pCs)P(ri—1 —q+1)
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It follows that
ﬁ)k-*—l Ftp

| Wn, |7‘k§
The fact that

/ | wy, || Vw,, |P is bounded with respect to n.
Q

And w, € L7 OFP)(Q), clearly the sequence {ry} is in-
creasing and unbounded for 2 > 1. So that in a finite

number of steps we conclude that

2 Wy + | Wnp, |q72 Wn,

A wy, |97

is bounded in L" with r > % Using again an adaptation
of the proof theorem 2.1 in [5] yields that there exists a
nonnegative constant C} > 0, such that

| wn |0 < Cj, Vn > maz(t,m).

In other words, we obtain
| ud o< O, | ul |oo< Chyoo. Jul o<l

Vn > max(t,n). O

e Step 6: Conclusion
Finally, if Vn > maxz(C},t,7) then

fv/z,/\(wn) =X w, |9_2 wy+ | wy, ‘q_Q Wn,

d .
and so w 2 wg. In other words, either

de de de
f 0 7f Ug or w :f

w e oy uk or......
Hence, we can conclude that the problem (1.1)-(1.2) has
an infinitely many positive bounded weak solutions. [J

3. The case \ > XO

We complete the study of the equation (1.1)-(1.2) by
showing that such equation does not have nontrivial
solution. In order to prove this fact, we assume that 2
is star-shaped, ie, z.v > 0 on 0N2. Where v is outward
normal to 9. For that we use the idea of [9] in the next
proposition.

Proposition 3.1 If Q is a smooth star-shaped in RV
containing 0, then u = 0 is the unique H?(Q) N H}(Q)
nonnegative solution of (1.1)-(1.2).
Proof. Let u belongs to H2(Q2) N H{ () be a nonnegative
solution of (1.1). The divergence of the vector field
(a(z)+ | u]’) | Vu [P7? Vu(zVu) can be written as
follows

div {(a(z)+ [ u [7) | Vu [P7? Vu(zVu)}

= (2Vu)div {(a(z)+ [ u ") | Vu [P7? Vu}

+ (a(x)+ |u|?) | Vu P72 Vu.V(2Vu).
Since

Vu.V(zVu) =| Vu |? +% (zV(| Vu ).
And

@@+ [u ) | Vu =2 (29 Vu )

— ~(ale)+ | u[) @9(| Vu ).

Consequently,

div {(a(z)+ [ u [7) | Vu [P72 Vu(zVu)}

= (zVu)div {(a(z)+ [ u [7) | Vu [P72 Vu}

+(a@)+ [u ) [ Vu P

+% (a(z)+ [u ") (@V(] Vu 7)), (3-2)
Multiplying the equation (1.1) by zVu, yields
(zVu)div{(a(z)+ |u|") | Vu [P7? Vu}
= % w2 u| Vu P (2Vu)
A u 2 u(@Vu)— | u |72 u(zVau). (3.3)
Replacing (3.3)into (3.2), we have
div {(a(z)+ | u [7) | Vu [P72 Vu(zVu)}
- % w72 u | Vu [P (zVu)
A P72 u(@Vu)— | u |72 u(zVu)
+(a(@)+ [u ) [ Vu [P
+% (a(z)+ [u ") (@V(] Vu 7)) (3.4)

On the other hand, applying Gauss formula to the vector
field (a(z)+ | u|?) | Vu [P~2 Vu(zVu), we obtain

/dlv{

= / (a(z)+ | u 7)) | Vu [P (z.v)do.
09

Combining (3.4) with (3.5), we get

—%/Qmpwqu/mmw(x.u)da
—/mmq (x.u)d0+<1—Z>/ﬂ(a(m)+|u|7)|Vu g

= / (a(z)+ |uw!|") | Vu [P(z.v)do.
o9

The fact that p < NV and z.v > 0 on 0f2.
Therefore v = 0. O

)+ |u|?) | Vau P2 Vu(:vVu)}

(3.5)
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