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Abstract—In this paper we deal with the solvability
of quasilinear Euler-Lagrange equation

−div((a(x)+ | u |γ) | ∇u |p−2 ∇u) +
γ

p
| u |γ−2 u | ∇u |p

= λ | u |θ−2 u+ | u |q−2 u in Ω

with zero Dirichlet boundary condition, under the as-
sumption 1 < θ < p < q < p∗

p
(γ + p) and γ > 1. We

concern with the existence of multiplicity solutions
for the above equation in employing the critical point
methods. Moreover, we obtain the trivial solution of
such equation when Ω is a smooth star-shaped domain
in RN .

Keywords: Euler-Lagrange equation; Weak solution;

Truncated function; Nonsmooth critical point theory

1 Introduction

In this paper we study the following equation.

−div((a(x)+ | u |γ) | ∇u |p−2 ∇u) +
γ

p
| u |γ−2 u | ∇u |p

= λ | u |θ−2 u+ | u |q−2 u in Ω (1.1)

with zero Dirichlet boundary condition.

u = 0 on ∂Ω. (1.2)

In this case, the corresponding functional to the quasi-
linear Euler-Lagrange equation J is

J(u) =
1

p

∫
Ω

(a(x)+ | u |γ) | ∇u |p−λ

θ

∫
Ω

| u |θ−1

q

∫
Ω

| u |q

(1.3)
where γ > 1 , Ω is a bounded, open subset of RN with
N > 2 , 1 < p < N and a(x) is a measurable function
such that for two constants α and β

0 < α ≤ a(x) ≤ β a.e x ∈ Ω. (1.4)

We notice that the functional J is not Gâteau differen-
tiable in W 1

0 (Ω) but is only differentiable through the
direction of W 1,p

0 (Ω) ∩ �L∞(Ω).
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The main difficulty of this work is due to the term | u |γ in
which the functional J is well defined inW 1,p

0 (Ω)∩�L∞(Ω),
if we impose an additional condition on γ, namely, γ+p <
p∗. We point out that our approach has been studied in
[1], including L∞(Ω) a priori estimates. We apply the
Theorem 2.8 in [3] to establish the existence of multi-

plicity critical points under hypotheses 0 < λ < λ̃0 and
1 < θ < p < q < p∗

p (γ + p) for γ > 1 in which such
critical points um,n of Jm,n for m,n large enough are so-
lutions of (1.1)-(1.2) without passing to the limit on m

and n. Moreover, no such solution when λ > λ̃0 and Ω
is star-shaped for 1 < θ < p < q < p∗

p (γ + p) and γ > 1.
We notice that the multiplicity results for p-Laplacian
with critical growth of concave-convex functions has been
intensively studied. Recently, the existence of multiplici-
ty of bounded weak solutions for the quasilinear singular
Euler-Lagrange equation with natural growth with p = N
has been investigated by Quincy Stevene Nkombo (see
[10]). Finally, the novelty of this paper is that we study
the existence of multiplicity bounded weak solutions for
quasilinear Euler-Lagrange equation with 1 < p < N .

Notation: in the rest of this work we make use of the
following notation. Lp(Ω), 1 ≤ p ≤ ∞ , denote lebesgue
spaces. The usual norm in Lp(Ω) is denoted by | |p .

W k,p
0 (Ω) denote sobolev spaces ; the norm in W 1,p

0 (Ω) is
denoted by ‖ ‖p.
C0, C1, C2, C3, .... denote (possibly different) positive
constants.

2. The case 0 < λ < λ̃0

Definition 2.1 A measurable function u is called a weak
solution to the equation (1.1)-(1.2), if u ∈ W 1,p

0 (Ω) such
that | u |γ−2 u | ∇u |p∈ L1(Ω) and∫

Ω

(a(x)+ | u |γ) | ∇u |p−2 ∇u∇v

+
γ

p

∫
Ω

| u |γ−2 u | ∇u |p v

= λ

∫
Ω

| u |θ−2uv +

∫
Ω

| u |q−2uv

holds for every v ∈ W 1,p
0 (Ω) ∩ �L∞(Ω).

The main result of this paper is focus on the existence
of multiplicity bounded weak solutions to the equation
(1.1)-(1.2). For that the result is given by the following
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theorem.
Theorem 2.1 Suppose that γ satisfies the condition
γ + p < p∗. Moreover, there exists λ̃0 such that

1 < θ < p < q <
p∗
p
(γ + p); 0 < λ < λ̃0. (2.2)

Then, there exist infinitely many weak solutions for the
problem (1.1)-(1.2).
Proof. We use the theorem 2.8 in [3] in order to prove
the existence of multiplicity weak solutions to the prob-
lem (1.1)-(1.2). So that we divide this proof into several
steps.
• Step 1: A truncated function
If m is positive integer, we consider the truncated func-
tion at level m, Tm(t) is given

Tm(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−m− 1
2 if t ≤ −m− 1

(m+ 1)t+ t2+m2

2 if −m− 1 ≤ t ≤ −m

t if −m ≤ t ≤ m

(m+ 1)t− t2+m2

2 if m ≤ t ≤ m+ 1

m+ 1
2 if t ≥ m+ 1

(2.3)
which is introduced in [1].
Assuming that q0 and q1 are two numbers such that
1 < q0 < θ < p < q1 < q and the truncated function
fn,λ(t) is defined by

fn,λ(t) = λhn(t) + gn(t),

where

hn(t) =

⎧⎨⎩
|t|θ
θ if | t |< n,

nθ
(

1
θ − 1

q0

)
+ nθ−q0 |t|q0

q0
if | t |≥ n.

(2.4)

gn(t) =

{ |t|q
q if | t |< n

nq
(

1
q − 1

q1

)
+ nq−q1 |t|q1

q1
if | t |≥ n.

(2.5)
By observing the definition of hn(t) and gn(t), we deduce
the following inequalities

0 ≤ hn(t) ≤ nθ−q0

q0
| t |q0 and 0 ≤ hn(t) ≤ | t |θ

θ
.

(2.6)

0 ≤ gn(t) ≤ nq−q1

q1
| t |q1 and 0 ≤ gn(t) ≤ | t |q

q
.

(2.7)
Consequently, we infer that the estimate of the function
fn,λ(t) as follows

0 ≤ fn,λ(t) ≤ λnθ−q0

q0
| t |q0 +

nq−q1

q1
| t |q1 . (2.8)

Let us consider the truncated functional,

Jm,n(u) =
1

p

∫
Ω

(a(x)+ | Tm(u) |γ) | ∇u |p −
∫
Ω

fn,λ(u)

(2.9)

for u ∈ W 1,p
0 (Ω).

Which is clearly well defined for q0 < q1 < p∗.
• Step 2: Geometry of truncated function
Let r a positive real constant such that

Br = {u ∈ W 1,p
0 (Ω)/ ‖ u ‖p≤ r}.

The fact that, a(x)+ | Tm(u) |γ≥ α and integrating
inequality (2.8) on Ω, we get∫

Ω

fn,λ(u) ≤ λC0n
θ−q0 ‖ u ‖q0p +C1n

q−q1 ‖ u ‖q1p (2.10)

where C0 and C1 are nonnegative constants.
Combining (2.10) with the hypothesis,
a(x)+ | Tm(u) |γ≥ α, we obtain the following result

Jm,n(u) ≥ α

p
‖ u ‖pp −λC0n

θ−q0 ‖ u ‖q0p −C1n
q−q1 ‖ u ‖q1p .

Thereby, there exist nonnegative constants rn,λ , rn,λ and

λ̃0 such that

Jm,n(u) > 0 in Brn,λ
and Jm,n(u) ≥ rn,λ in ∂Brn,λ

for all 0 < λ < λ̃0.
• Step 3: Compactness of the truncated function.
Let {wk} be a sequence in W 1,p

0 (Ω) ∩ �L∞(Ω) satisfying,
for every n ∈ N the following conditions

Jm,n(wk) ≤ C1.

| wk | ∞ ≤ 2bk.

〈J ′
m,n(wk), w〉 ≤ εk

( | w |∞
bk

+ ‖ w ‖p
)
.

∀w ∈ W 1,p
0 (Ω) ∩ �L∞(Ω).

Where C1 is a nonnegative constant, {bk} ⊂ R+ − {0}
is a nonnegative sequence and {εk} ⊂ R+ − {0} is a se-
quence converging to zero.
Suppose that

g̃(λ, t) =

1
p+γ + fn,λ(t)

tf ′
n,λ(t)

.

And
g0(λ) = max

t∈R
g̃(λ, t).

Where λ > 0 and t > 0.
Let ε > 0, be given and choose t0 > 0 such that

max
t∈R

g̃(λ, t) ≤ g̃(λ, t0) + ε.

Clearly g̃(λ, t0) is an increasing and continuous function

with respect to λ and there exists λ̃0 a nonnegative num-
ber 0 < λ̃0 < ∞ and such that

g̃(λ̃0, t0) ≤ 1

p+ γ
, for all 0 < λ < λ̃0.
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Therefore

max
t∈R

g̃(λ, t) ≤ g̃(λ, t0) + ε ≤ g̃(λ̃0, t0) + ε.

Which leads to

max
t∈R

g̃(λ, t) ≤ 1

p+ γ
+ ε, for all 0 < λ < λ̃0.

Then it is easily verified by induction that

fn,λ(t)

tf ′
n,λ(t)

< g0(λ) <
1

p+ γ
, for all 0 < λ < λ̃0.

After straightforward calculation of the term

Jm,n(wk)− g0(λ)〈J ′
m,n(wk), wk〉

yields (
1

p
− g0(λ)

)∫
Ω

a(x) | ∇wk |p

+

∫
Ω

(
1

p
− g0(λ)− γ

p
g0(λ)wk

T ′
m(wk)

Tm(wk)

)
×| Tm)(wk) |γ | ∇wk |p

+

∫
Ω

(
g0(λ)wkf

′
n,λ(wk)− fn,λ(wk)

)
≤ C1 + εk

( | wk |∞
bk

+ ‖ wk ‖p
)
.

Notice that all the left-hand side terms are positives. In-
deed, the first one is nonnegative due to consequence of

the definition of g0(λ), namely,
fn,λ(t)
tf ′

n,λ(t)
< g0(λ) < 1

p+γ .

For the second term, it is enough to use the assumption,

0 ≤ tT ′
m(t)

Tm(t) ≤ 1, and that g0(λ) <
1

p+γ . The positiveness

of the third term is easily verified in using the definition of
g0(λ). Therefore, we can conclude that the sequence {wk}
is bounded in W 1,p

0 (Ω) for every p such that 1 < p < N .
So that the sequence {wk} admit a subsequence that we
still denote {wk}, which converges to a function w �
• Step 4: Existence of critical points of the truncated
function.
We point out that the main idea of this proof is in [4],
for that we adapt the arguments of Theorem 2.8 in [3] in
order to prove the existence of multiplicity critical points
of Jm,n.

Let Hk be a k-dimensional subspace of W 1,p
0 (Ω) as we

take wk ∈ Hk, the norm of wk, ‖ wk ‖p is finite.
We set

Σ = {C ⊂ W 1,p
0 (Ω)/ 0∈C ,C = −C}.

For C ∈ Σ the Z2−genus of C is denoted by γ(C).
According to the step 2 and step 3, the assumptions (I1)
and (I3) of Theorem 2.3 hold true (see [3]).
Moreover, letting

Am,n = Brn,λ
∪ {Jm,n ≥ 0}.

We can clearly assert that Hk ∩ Am,n is bounded for all
n ∈ N , the assumption (I5) Theorem 2.3 is complete.
Next we set

Γ∗ = {h ∈ C(W 1,p
0 (Ω),W 1,p

0 (Ω)) :

h is an odd homeomorphism h(0) = 0 and h(B1) ⊂ Am,n}.
And

Γk = {K ∈ Σ : γ(K ∩ h(∂B1)) ≥ k ∀h ∈ Γ∗}.

And then
Sk = inf

K∈Γk

max
w∈K

Jm,n(w).

So that we can state that lemma 2.7 in [3] holds. We
then choose

h(w) = rn,λw

where rn,λ a nonnegative real which has been defined in
the step 2 and h belongs to Γ∗. Consequently, we infer
that K∩Brn,λ

�= ∅ for all K ∈ Γk. Since Jm,n is bounded
from below on ∂Brn,λ

, then

Sk = inf
K∈Γk

max
w∈K

Jm,n(w) ≥ an,λ > 0.

Since all assumptions of Theorem 2.8 in [3] are satisfied,
thus there exist infinitely many critical points of Jm,n.
Hence, the Dirichlet problem (2.11)-(1.2) possesses in-
finitely many nontrivial weak solutions �
• Step 5: Uniformly L∞ - estimates
Consider the following equation

−div{(a(x)+ | Tm(wm,n) |γ) | ∇wm,n |p−2 ∇wm,n}

+
γ

p

T ′
m(wm,n)

Tm(wm,n)
| Tm(wm,n) |γ | ∇wm,n |p

= f ′
n,λ(wm,n). (2.11)

Assuming that either wm,n = um,n or wm,n = u0
m,n or

. . . . . . or wm,n = uk
m,n or . . . . . . solution of (2.11)-(1.2).

Setting that Tm(wm,n) = wm,n and v =| wm,n |b wm,n as
a test function , then we have

(b+ 1)

∫
Ω

(a(x)+ | wm,n |γ) | ∇wm,n |p | wm,n |b

+
γ

p

∫
Ω

| wm,n |b+γ | ∇wm,n |p

≤ (λ+ 1)nθ−q0+q−q1

∫
Ω

| wm,n |b+q. (2.12)

Dropping the positive terms on the left hand side of
(2.12), we get

(b+ 1)

∫
Ω

a(x) | wm,n |b| ∇wm,n |p

≤ (λ+ 1)nθ−q0+q−q1

∫
Ω

| wm,n |b+q. (2.13)
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On the other hand, we obtain the following result after
using the sobolev inequality

Cp
2

(∫
Ω

| wm,n | b+p
p p∗

) p
p∗

≤ (b+ p)p

pp

×
∫
Ω

| wm,n |b| ∇wm,n |p.

Therefore

Cp
2

(∫
Ω

| wm,n | b+p
p p∗

) p
p∗

≤ (b+ p)p

pp
1

α

∫
Ω

a(x) | wm,n |b| ∇wm,n |p. (2.14)

Combining (2.13) with (2.14), we have(∫
Ω

| wm,n | b+p
p p∗

) p
p∗

≤
(
(b+ p)p(λ+ 1)

α(pC2)p(b+ 1)

)

×nθ−q0+q−q1

∫
Ω

| wm,n |b+q.

It follows that

| wm,n |b+q
b+p
p p∗ ≤

(
(b+ p)p(λ+ 1)

α(pC2)p(b+ 1)

)
nθ−q0+q−q1 | wm,n |b+q

b+q.

Let r = b+ q, then

| wm,n | r−q+p
p p∗≤

(
(r − q + p)p(λ+ 1)

α(pC2)p(r − q + 1)

) 1
r−q+p

×n
θ−q0+q−q1

r−q+p | wm,n |
r

r−q+p
r .

Notice that wm,n belongs to W 1,p
0 (Ω) and so to Lp∗

(Ω),
we can choose r = r0 = p∗ − q to deduce that wm,n

belongs to L
r0+p−q

p p∗
(Ω), we can then choose r = r1 =

r0−q+p
p p∗ to obtain wm,n belongs to L

r0+p−q
p p∗

(Ω). Iter-
ating this process and defining by induction rk as{

r0 = p∗ − q

rk = rk−1
p∗

p + p∗

p (p− q).
(2.15)

We infer that wm,n belongs to Lrk(Ω) with

| wm,n |rk≤
(
(rk − q + p)p(λ+ 1)

α(pC2)p(rk − q + 1)

) 1
rk−q+p

×n
θ−q0+q−q1

rk−q+p | wm,n | p
∗
p

rk−1
rk .

Therefore

| wm,n |rk≤ . . . . . . ≤ C3 | wm,n |
( p∗

p )k p∗−q

rk
k

p∗ ≤ C4.

Because of∫
Ω
a(x) | ∇wm,n |p is bounded with respect to m and n.

Since p∗

p > 1, it is enough to show that rk is increasing
sequence which diverges to infinity, thus, if it is such that

rk+p−q
p p∗ ≥ N

2 an adaptation to the quasilinear case of

the proof of a result of Stampacchia (see [5]) implies that
there exists Mn > 0 such that

| wm,n |∞≤ Mn.

Let mn be an integer such that mn ≥ max(Mn+ p, t), if

we define wn
def
= wm,n, namely, either wn = u0

n
def
= u0

m,n

or wn = u1
n

def
= u1

m,n or . . . . . . or wn = uk
n

def
= uk

m,n or

wn = . . .
def
= . . .. Then Tmn(wn) = wn and T ′

mn
(wn) = 1,

consequently, the equation which is satisfied by wn is

−div
(
(a(x)+ | wn |γ) | ∇wn |p−2 ∇wn

)
+
γ

p
| wn |γ−2 wn| ∇wn |p = f ′

n,λ(wn) (2.16)

with zero Dirichlet boundary condition.
Notice that by the assumption q < p∗

p (p+ γ), then wn is

bounded in Lq(Ω) using this fact, we are going to show
that wn is uniformly bounded in L∞(Ω).
Let b > 0 as before, and choose v =| wn |b wn as a test
function in the equation (2.16)-(1.2) satisfied wn.
The fact that f ′

n,λ(t) ≤ (λ + 1) | t |q+b−1 and we drop
two nonnegative terms, and then we obtain

(b+ 1)

∫
Ω

a(x) | wn |b+γ | ∇wn |p ≤ (λ+ 1)

∫
Ω

| wn |q+b.

However, we get another inequality when we apply the
sobolev inequality to wb+p+γ

n , we then have

Cp
5

(∫
Ω

| wn | γ+b+p
p p∗

) p
p∗

≤
(
γ + b+ p

p

)p ∫
Ω

| wn |b+γ | ∇wn |p.

Thus(∫
Ω

| wn | γ+b+p
p p∗

) p
p∗

≤ (γ + b+ p)p(λ+ 1)

(pC5)p(b+ 1)

∫
Ω

| wn |b+q.

Where wn belongs to L
γ+r−q+p

p p∗
(Ω) provided that wn

belongs to Lr(Ω) with b = r − q, yields

| wn | γ+b+p
p p∗≤

(
(γ + b+ p)p(λ+ 1)

(pC5)p(b+ 1)

) p∗
p

| wn |
r

γ+r−q+p
r .

Because of p
b+γ+p ≤ p∗.

Arguing as before, if we consider the sequence rk as fol-
lows {

r0 = p∗

p (γ + p)

rk = rk−1
p∗

p + p∗

p (γ + p− q).
(2.17)

Thus wm,n belongs to Lrk(Ω) for every k and so

| wn |rk≤
(
(γ + rk−1 − q + p)p(λ+ 1)

(pC5)p(rk−1 − q + 1)

) p∗
p

| wn |
p∗
p

rk−1
rk

rk .
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It follows that

| wn |rk≤ . . . . . . ≤ C6 | wn |
( p∗

p )k+1 γ+p

rk
k

p∗
p (γ+p)

≤ C7.

The fact that∫
Ω

| wn |γ | ∇wn |p is bounded with respect to n.

And wn ∈ L
p∗
p (γ+p)(Ω), clearly the sequence {rk} is in-

creasing and unbounded for p∗

p > 1. So that in a finite
number of steps we conclude that

λ | wn |θ−2 wn+ | wn |q−2 wn

is bounded in Lr with r > N
2 . Using again an adaptation

of the proof theorem 2.1 in [5] yields that there exists a
nonnegative constant C ′

0 > 0, such that

| wn |∞≤ C ′
0, ∀n ≥ max(t, n).

In other words, we obtain

| u0
n |∞≤ C ′

1, | u1
n |∞≤ C ′

2, . . . . . . , | uk
n |∞≤ C ′

k . . . . . .

∀n ≥ max(t, n). �
• Step 6: Conclusion
Finally, if ∀n ≥ max(C ′

0, t, n) then

f ′
n,λ(wn) = λ | wn |θ−2 wn+ | wn |q−2 wn

and so w
def
= wn. In other words, either

w
def
= u0 def

= u0
n or w

def
= u1 def

= u1
n or . . . or

w
def
= uk def

= uk
n or . . . . . .

Hence, we can conclude that the problem (1.1)-(1.2) has
an infinitely many positive bounded weak solutions. �

3. The case λ > λ̃0

We complete the study of the equation (1.1)-(1.2) by
showing that such equation does not have nontrivial
solution. In order to prove this fact, we assume that Ω
is star-shaped, ie, x.ν > 0 on ∂Ω. Where ν is outward
normal to ∂Ω. For that we use the idea of [9] in the next
proposition.

Proposition 3.1 If Ω is a smooth star-shaped in RN

containing 0, then u ≡ 0 is the unique H2(Ω) ∩ H1
0 (Ω)

nonnegative solution of (1.1)-(1.2).
Proof. Let u belongs to H2(Ω)∩H1

0 (Ω) be a nonnegative
solution of (1.1). The divergence of the vector field
(a(x)+ | u |γ) | ∇u |p−2 ∇u(x∇u) can be written as
follows

div
{
(a(x)+ | u |γ) | ∇u |p−2 ∇u(x∇u)

}
= (x∇u)div

{
(a(x)+ | u |γ) | ∇u |p−2 ∇u

}

+(a(x)+ | u |γ) | ∇u |p−2 ∇u.∇(x∇u).

Since

∇u.∇(x∇u) =| ∇u |2 +
1

2

(
x∇(| ∇u |2)) .

And

1

2
(a(x)+ | u |γ) | ∇u |p−2

(
x∇(| ∇u |2))

=
1

p
(a(x)+ | u |γ) (x∇(| ∇u |p)) .

Consequently,

div
{
(a(x)+ | u |γ) | ∇u |p−2 ∇u(x∇u)

}
= (x∇u)div

{
(a(x)+ | u |γ) | ∇u |p−2 ∇u

}
+(a(x)+ | u |γ) | ∇u |p

+
1

p
(a(x)+ | u |γ) (x∇(| ∇u |p)) . (3.2)

Multiplying the equation (1.1) by x∇u, yields

(x∇u)div
{
(a(x)+ | u |γ) | ∇u |p−2 ∇u

}
=

γ

p
| u |γ−2 u | ∇u |p (x∇u)

−λ | u |θ−2 u(x∇u)− | u |q−2 u(x∇u). (3.3)

Replacing (3.3)into (3.2), we have

div
{
(a(x)+ | u |γ) | ∇u |p−2 ∇u(x∇u)

}
=

γ

p
| u |γ−2 u | ∇u |p (x∇u)

−λ | u |θ−2 u(x∇u)− | u |q−2 u(x∇u)

+ (a(x)+ | u |γ) | ∇u |p

+
1

p
(a(x)+ | u |γ) (x∇(| ∇u |p)) . (3.4)

On the other hand, applying Gauss formula to the vector
field (a(x)+ | u |γ) | ∇u |p−2 ∇u(x∇u), we obtain∫

Ω

div
{
(a(x)+ | u |γ) | ∇u |p−2 ∇u(x∇u)

}
=

∫
∂Ω

(a(x)+ | u |γ) | ∇u |p (x.ν)dσ. (3.5)

Combining (3.4) with (3.5), we get

−γN

p

∫
Ω

| u |γ | ∇u |p − λ

∫
∂Ω

| u |θ (x.ν)dσ

−
∫
∂Ω

| u |q (x.ν)dσ +

(
1− N

p

)∫
Ω

(a(x)+ | u |γ) | ∇u |p

=

∫
∂Ω

(a(x)+ | u |γ) | ∇u |p(x.ν)dσ.

The fact that p < N and x.ν > 0 on ∂Ω.
Therefore u ≡ 0. �
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