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Abstract—Generating representatives of some transcendental
functions in finite power series is one of several methods
applied in many fields of engineering and applied mathematics.
Many problems are in differential equations both linear and
non-linear or integral equations which should consider the
convergence and rate of convergence of the approximation
solution.

In this work, we study a method to generate approximation
of transcendental functions in a finite power series form such
as Taylor’s, Chebyshev and Legendre series expansions. We
then developed Maple software to generate approximation of
functions and compared efficiency and accuracy of all proposed
methods under the same condition. In addition, we analyze the
convergence of all methods both analytically and numerically.

Index Terms—Taylor’s series expansion, Chebyshev series
expansion, Legendre series expansion, Convergence, Transcen-
dental Functions.

I. INTRODUCTION

ALMOST all problems in many fields of engineering,
applied mathematics and sciences are in the models

of differential equations both linear and non-linear form
or integral equation. Sometimes these problems are not
simple to solve for an exact solution. Numerical solutions or
analytical solutions are one way to gain an approximation
solution which should consider the convergence and rate
of convergence of the approximation solution. Generating
approximation function in a power series form is one of
several methods applied to solve this problem.

Approximation of functions in a power series form have
been widely used in many fields of engineering, applied
mathematics and sciences. The methods of generating ap-
proximation function in power series form as Taylor’s,
Chebyshev and Legendre series expansions can be read in
text books [1]-[3]. From a general survey it was found
that there are many researches which applied approximation
function in power series forms, for example, Abdul-Majid
Wazwaz [4] and Shih-Hsiang Chang [5] applied Taylor
series to solve linear and non-linear ordinary differential
equations. In 2000, L.P.Streltsov [6] developed the theory of
function interpolation by polynomials from functional space
on a discrete point set. Comparative investigation shows that
Chebyshev polynomials of the first kind are more effec-
tive than other interpolating functions and their derivatives.
However, Legendre polynomials are more preferable for
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solving Fredholm equations. In 2000, Robert Piessens [7]
conducted a survey on the use of Chebyshev polynomials
in the numerical computation of integral transforms and
the solutions of integral equations, focusing especially on
problems showing singularity. In 2006, M.M. Hosseini [8]
presented the Adomian decomposition method with Cheby-
shev polynomials and applied it to linear and non-linear
ordinary differential equations. In 2007, K. Maleknejad,
K. Nouri and M. Yousefi [9] proposed a method to solve
Fredholm integral equations of the second kind by using
Legendre polynomials and collocation methods. They in-
vestigated convergence and rate of convergence. In addition
they gave examples to show the accuracy of this method.
In 2008, Lan Chen and He-Ping Ma [10] presented the
Legendre-Galerkin-Chebyshev collocation method (LGCC)
to approximate the eigenvalues of regular SturmLiouville
problems with three kinds of boundary conditions. Also,
they showed that this method preserves the symmetry of the
problem and numerical results with high accuracy. In 2009,
Yucheng Liu [11] proposed the modification of Adomian
decomposition method for orthogonal polynomials such as
Chebyshev and Legendre polynomials to approximate func-
tion on the interval (-1,1). In 2009, Wei-Chung Tien and
Chao-Kuang Chen [12] presented an efficient modification
of the Adomian decomposition method by using Legendre
polynomials to solve linear and non-linear models. In 2009,
Yucheng Liu [13] proposed a method to solve the Fredholm
integral equations of the second kind, where Chebyshev
polynomials are applied to approximate a solution for an
unknown function in the Fredholm integral equations. Also,
this work showed convergence and rate of convergence and
gave a few numerical examples and compared the results
with previous researches. In 2009, M. P. Ramirez T. and et.al.
[14] have studied the general solution of the two dimensional
Electrical Impedance Equation in terms of Taylor series in
formal powers, for the case when the electrical conductivity
is a separable-variables function. In 2013, A.H. Bhrawy,
M.M. Tharwat and A. Yildirim [15] derived a new explicit
formula for the integrals of shifted Chebyshev polynomials of
any degree for any fractional-order in terms of shifted Cheby-
shev polynomials themselves. They presented efficient direct
solvers for the general fractional-order differential equation
by using the Chebyshev approximation. In 2013, Nichaphat
Patanarapeelert and Vimolyut Varnasavang [16] studied se-
ries approximation and Convergence between Chebyshev and
Legendre Series. They found that the rate of convergence
of infinite series generated from the same function in terms
of Chebyshev polynomial are more rapid than Legendre
polynomial, while Chebyshev and Legendre Series gave the
close rate of convergence. In 2014, Piotr Ruta and Jozef
Szybinski [17] presented a method to solve the free vibration
of Non-Prismatic Sandwich Beams problem by using the
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Chebyshev Series to approximate the solution. In 2016, H.M.
Jaradat and et.al. [18] have developed an iterative technique
based on the generalized Taylor series residual power series
(RPS) to explore nonlinear fractional differential equations.

In this work, we study a method to generate approximation
of transcendental functions in a power series form such as
Taylor’s, Chebyshev and Legendre series expansions. We
then develop Maple software to generate an approximation
of function and compare efficiency and accuracy of all
proposed methods under the same condition. In addition, we
demonstrate the error analysis in generating the representa-
tives of some transcendental function both analytically and
numerically.

II. BACKGROUND

In this section, we first give a review of the definitions re-
lated to the representatives of functions obtained by Taylor’s,
Chebyshev and Legendre series expansions.

A. Taylor’s Series Expansion

Definition A [3] : Suppose f ∈ Cn[a, b], that f (n+1)

exists on [a, b], and x0 ∈ [a, b]. For every x ∈ [a, b], there
exists a number ξ(x) between x0 and x with

f(x) = Pn(x) +Rn(x), (1)

where

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2

+...+
f (n)(x0)

n!
(x− x0)

n

=
n∑

k=0

f (k)(x0)

k!
(x− x0)

k, (2)

and

Rn(x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)

n+1. (3)

Here Pn(x) is called the nth Taylor polynomial for f
about x0, and Rn(x) is called the remainder term (or
truncation error) associated with Pn(x). Since the number
ξ(x) in the truncation error Rn(x) depends on the value
of x at which the polynomial Pn(x) is being evaluated, it
is a function of the variable x. However, we are unable
to explicitly determine the function ξ(x). Taylor’s Theorem
simply ensures that such a function exists, and that its value
lies between x and x0. In fact, one of the common problems
in numerical methods is to try to determine a realistic bound
for the value of f (n+1)(ξ(x)) when x is in some specified
interval.

B. Chebyshev Series Expansion

Definition B [1] : If function f(x) is a continuous function
in the interval [−1, 1], it can be expressed as an infinite series
of Tn(x) as

f(x) =
c0
2

+

∞∑
n=1

cnTn(x), (4)

when
Tn(x) = cos(n cos−1 x), (|x| ≤ 1) (5)

where

c0 =
1

π

1∫
−1

f(x)Tn(x)√
1− x2

dx

and

cn =
2

π

1∫
−1

f(x)Tn(x)√
1− x2

dx. ;n = 1, 2, 3, ...

C. Legendre Series Expansion

Definition C [1] : If function f(x) is a continuous function
in the interval [−1, 1], it can be expressed as an infinite series
as

f(x) =
∞∑

n=0

anPn(x), (−1 ≤ x ≤ 1) (6)

where Pn(x) is Legendre polynomial of the first kind of
degree n can be write in the form

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, (7)

which is often referred to as Rodrigur’s formula and the
coefficients an is given by

an =
2n+ 1

2

1∫
−1

f(x)Pn(x)dx. ;n = 0, 1, 2, 3, ...

III. REPRESENTATIVES OF TRANSCENDENTAL
FUNCTIONS AND ERROR ANALYSIS

In this section, we show how to generate representatives
of transcendental functions by Taylor’s, Chebyshev and Leg-
endre series expansions. We then develop Maple software to
generate the approximation function and compare efficiency
and accuracy of all proposed methods under the same con-
dition. In addition, we demonstrate the error analysis of all
methods both analytically and numerically.

A. Trigonometrical Functions

Let us consider
f(x) = sin(x) and f(x) = cos(x) ; x ∈ [0, π]

(i) By Definition A, Taylor’s series expansion of sin(x) is
in the form

sin(x) = Ps(x) +Rs(x), (8)

where

Ps(x) = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 +

1

9!
x9 − 1

11!
x11,

and

Rs(x) =
1

13!
x13 sin(ξ(x)), 0 < ξ < 1

Thus,
|Rs(x)| ≤ 4.66× 10−4. (9)

Similarly,
cos(x) = Pc(x) +Rc(x), (10)

where

Pc(x) = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8 − 1

10!
x10,
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and
|Rc(x)| ≤ 1.93× 10−3. (11)

By substituting a new variable, for example,

w =
π
2 − x

2π
, (12)

we found that in the case of x ∈ [0, π] it will transform to
w ∈ [− 1

4 ,
1
4 ].

Since
sin(x) = cos(

π

2
− x),

then we have
sin(x) = cos(2πw). (13)

And by Taylor’s series expansion of cos(x) in form (10), we
have

sin(x) = 1− 2π2w2 +
2

3
π4w4 − 4

45
π6w6 +

2

315
π8w8

− 4

14175
π10w10 +Rs(w), (14)

where

Rs(w) =
1

12!
(2πw)12 − 1

14!
(2πw)14 +

1

16!
(2πw)16 + · · ·

Thus,

|Rs(w)| ≤
1

12!
(2πw)12

[
1

1− w2

]
≤ 5.02× 10−7. (15)

Similarly, since

cos(x) = sin(2πw). (16)

cos(x) = 2πw− 4

3
π3w3+

4

15
π5w5− 8

315
π7w7+

4

2835
π9w9

− 8

155925
π11w11 +Rc(w), (17)

where
|Rc(w)| ≤ 6.07× 10−8. (18)

(ii) By Definition B, Chebyshev series expansion of
sin(x);x ∈ [0, π], after changing to new variable w from
(12)

f(w) = cos(2πw)

=

∞∑
m=0

c2mT2m(w) ; w ∈
[
−1

4
,
1

4

]
where

c0 =
1

π

1
4∫

− 1
4

cos(2πw)√
1− w2

dw

c2m =
2

π

1
4∫

− 1
4

cos(2πw) · cos{(2m) cos−1(w)}√
1− w2

dw

; (m = 1, 2, 3...)

Thus,

sin(x) = 0.89− 14.4220w2 + 73.1563w4 − 157.9471w6

+152.2193w8 − 53.9414w10 +Rs(w). (19)

where
|Rs(w)| ≤ 4.08× 10−4.

Similarly,

cos(x) = 5.5490w−68.9338w3+293.9390w5−561.8103w7

+494.7377w9 − 163.5550w11 +Rc(w). (20)

where
|Rc(w)| ≤ 3.64× 10−4.

(iii) By Definition C, Legendre series expansion of
sin(x);x ∈ [0, π], after changing to new variable w from
(12)

f(w) = cos(2πw)

=
∞∑

m=0

a2mP2m(w) ; w ∈
[
−1

4
,
1

4

]
where

a2m =
4m+ 1

2

1
4∫

− 1
4

cos(2πw)P2m(w)dw ; (m = 0, 1, 2, 3, ...)

Thus,

sin(x) = 0.9100− 15.5798w2 + 83.5877w4 − 190.2764w6

+192.5844w8 − 71.4019w10 +Rs(w). (21)

where
|Rs(w)| ≤ 4.45× 10−4.

Similarly,

cos(x) = 5.9447w−77.8503w3+349.2304w5−699.9298w7

+644.1507w9 − 221.8501w11 +Rc(w). (22)

where
|Rc(w)| ≤ 3.60× 10−4.

We have generated the representatives of f(x) = sin(x)
and f(x) = cos(x) for x ∈ [0, π] in Taylor’s series
expansions in variable x, Taylor’s series expansions in new
variable w, Chebyshev and Legendre series expansions re-
spectively for the first six non-zero terms. We have compared
the efficiency of all proposed methods by considering the
bounded truncation error and found that the representatives
of sin(x) and cos(x) derived from the modified Taylor’s
series expansions (in the new variable w) provide the least
truncation errors in comparison with the respective ones
derived from Chebyshev and Legendre series expansions,
namely, |Rs(w)| ≤ 10−7 and |Rc(w)| ≤ 10−8.

Table I, II, III and IV illustrate the absolute errors between
actual value of sin(x) and the approximate values denoted by
E(Ts(x)), E(Ts(w)), E(Cs(w)) and E(Ls(w)) of Taylor’s
series expansion in 4, 5, 6 and 7 in terms of variables x and
new variable w, Chebyshev and Legendre series expansions
respectively.
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TABLE I
COMPARISON OF THE ABSOLUTE ERROR BETWEEN ACTUAL AND

APPROXIMATE VALUES OF sin(x) BY TAYLOR’S SERIES EXPANSION IN
TERMS OF VARIABLE x AND NEW VARIABLE w, CHEBYSHEV SERIES

EXPANSION AND LEGENDRE SERIES EXPANSION IN 4,5,6 AND 7 TERMS.

x w Absolute error (Approximate value in 4 terms)
E(Tx) E(Tw) E(Cw) E(Lw)

0 1
4

0 9 × 10−4 3.8 × 10−1 3.8 × 10−1

π
3

1
12

4.1 × 10−6 1.4 × 10−7 2.5 × 10−1 2.2 × 10−1

π
6

1
6

7.9 × 10−9 3.5 × 10−5 2.2 × 10−2 3.8 × 10−2

3π
4

− 1
8

5.9 × 10−3 3.6 × 10−6 1.3 × 10−1 1.1 × 10−1

π − 1
4

7.5 × 10−2 9 × 10−4 3.8 × 10−1 3.8 × 10−1

TABLE II
CONTINUED

x w Absolute error (Approximate value in 5 terms)
E(Tx) E(Tw) E(Cw) E(Lw)

0 1
4

0 2.5 × 10−5 3.2 × 10−1 3.1 × 10−1

π
3

1
12

4.1 × 10−8 1.2 × 10−10 1.4 × 10−1 1.2 × 10−1

π
6

1
6

2.2 × 10−10 4.3 × 10−7 5.3 × 10−2 5.6 × 10−2

3π
4

− 1
8

3 × 10−4 2.5 × 10−8 5.8 × 10−2 4.5 × 10−2

π − 1
4

6.9 × 10−3 2.5 × 10−5 3.2 × 10−1 3.1 × 10−1

TABLE III
CONTINUED

x w Absolute error (Approximate value in 6 terms)
E(Tx) E(Tw) E(Cw) E(Lw)

0 1
4

0 4.6 × 10−7 2.4 × 10−1 2.2 × 10−1

π
3

1
12

7.6 × 10−10 3.1 × 10−10 7.3 × 10−2 6 × 10−2

π
6

1
6

2 × 10−10 3.8 × 10−9 4.3 × 10−2 3.8 × 10−2

3π
4

− 1
8

1.1 × 10−5 1.2 × 10−11 2.5 × 10−2 2.1 × 10−2

π − 1
4

4.5 × 10−4 4.6 × 10−7 2.4 × 10−1 2.2 × 10−1

TABLE IV
CONTINUED

x w Absolute error (Approximate value in 7 terms)
E(Tx) E(Tw) E(Cw) E(Lw)

0 1
4

0 6.6 × 10−9 1.6 × 10−1 1.5 × 10−1

π
3

1
12

4.7 × 10−10 3.1 × 10−10 3.2 × 10−2 2.6 × 10−2

π
6

1
6

2 × 10−10 1.4 × 10−10 1.1 × 10−2 3.8 × 10−3

3π
4

− 1
8

2.9 × 10−7 1.3 × 10−10 2 × 10−2 2.1 × 10−2

π − 1
4

2.1 × 10−5 6.6 × 10−9 1.6 × 10−1 1.5 × 10−1

We can see that approximation of f(x) = sin(x) derived
from Taylor’s series expansion in the new variable w in 6
terms provide values more efficient than the respective values
derived from Chebyshev and Legendre series expansions
for 4 and 5 terms. Graphs of approximation of sin(x) by
Taylor’s series expansion in variable x and new variable w,
Chebyshev and Legendre series expansions are shown in Fig
1.

Fig. 1. Graphs of approximation of sin(x) by Taylor’s series expansion in
variable x and new variable w, Chebyshev series expansion and Legendre
series expansion in 6 terms.

Similarly, absolute error between actual value of cos(x)
and approximate values derived from Taylor’s series expan-
sion in the new variable w in 6 terms provides the value

which is better than the ones derived from Taylor’s series
expansion in variable x, Chebyshev and Legendre series
expansions in 4, 5 and 7 terms. Graphs of approximation of
cos(x) by Taylor’s series expansion in variable x and new
variable w, Chebyshev and Legendre series expansions are
shown in Fig 2.

Fig. 2. Graphs of approximation of cos(x) by Taylor’s series expansion in
variable x and new variable w, Chebyshev series expansion and Legendre
series expansion in 6 terms.

B. Inverse Trigonometrical Functions

Next, we present how to generate the representative of
f(x) = sin−1(x) in a power series form derived from
Taylor’s, Chebrshev and Legendre series expansions. Ap-
proximation of sin−1(x) for some values by all proposed
methods are shown in Table V.

(i) By Definition A, Taylor’s series expansion of sin−1(x)
is in the form

sin−1(x) = Pas(x) +Ras(x), (23)

where

Pas(x) = x+
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+

1 · 3 · 5 · 7
2 · 4 · 6 · 8

x9

9

; |x| < 1,

Ras(x) =
1 · 3 · 5 · 7 · 9
2 · 4 · 6 · 8 · 10

x11

11
+

1 · 3 · 5 · 7 · 9 · 11
2 · 4 · 6 · 8 · 10 · 12

x13

13
+· · ·

and

|Ras(x)| ≤ 2.24× 10−2

∣∣∣∣ x11

1− x2

∣∣∣∣ ≤ 3.7× 10−2. (24)

(ii) By Definition B, Chebyshev series expansion of
sin−1(x) is in the form

f(x) =
∞∑

m=0

c2m+1T2m+1(x), (25)

where

c2m+1 =
2

π

1∫
−1

f(x) cos{(2m+ 1) cos−1(x)}√
1− x2

dx ;m = 0, 1, ...

then substitute the new variable θ such that x = cos(θ), we
have

c2m+1 =
2

π

π∫
0

sin−1(cos θ) · cos{(2m+ 1) cos−1(cos θ)}dθ

=
4

π(2m+ 1)2
.
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Thus,

sin−1(x) = 1.0631x− 0.8839x3 + 4.6952x5 − 7.3911x7

+4.0241x9 +Ras(x). (26)

where

Ras(x) = 432.0020x11 − 316.8202x13 + 92.7145x15 + · · ·

(iii) By Definition C, Legendre series expansion of
sin−1(x) is in the form

f(x) =

∞∑
m=0

a2m+1P2m+1(x), (27)

where

a2m+1 =
4m+ 3

2

1∫
−1

sin−1(x)P2m+1(x)dx ;m = 0, 1, 2, 3, ...

Thus,

sin−1(x) = 1.0232x− 0.2587x3 + 2.1155x5 − 3.5234x7

+2.1190x9 +Ras(x). (28)

where

Ras(x) = 168.2477x11 − 129.0731x13 + 39.51x15 + · · ·

We now present the absolute error of sin−1(x) generated
in a power series form for the first non-zero five terms by
Taylor’s series expansion and compare the absolute error
of sin−1(x) generated by Chebyshev series expansion in
Nichaphat P. and Vimolyut V. paper [16].

TABLE V
COMPARISON OF THE ABSOLUTE ERROR BETWEEN ACTUAL AND

APPROXIMATE VALUES OF sin−1(x) IN 5 TERMS.

x sin−1(x) Absolute error (Approximate value in 5 terms)
E(Tx) E(Cx) E(Lx) E(Cx) [16]

1
2

0.5236 0.0001 0.0057 0.0016 0.0057√
2

2
0.7854 0.0008 0.0084 0.0029 0.0084√

3
2

1.0472 0.0118 0.0111 0.0052 0.0111

Table V shows the absolute error between actual value
and approximate values of f(x) = sin−1(x) derived from
Taylor’s, Chebyshev and Legendre series expansions. In con-
clusion, we compare the absolute error of f(x) = sin−1(x)
generated by Chebyshev series expansion in paper [16] as
shown in last column.

Fig. 3. Graphs of approximation sin−1(x) by Taylor’s series expansion,
Chebyshev series expansion and Legendre series expansion in 5 terms.

We can see that approximation of sin−1(x) by Taylor’s
series expansion provides value which is better than the
ones derived from Chebyshev, Legendre and Chebyshev
series expansions in paper [16]. Graphs of approximation
of sin−1(x) by Taylor’s, Chebyshev and Legendre series
expansions are shown in Fig 3.

C. Logarithm Function

Let us consider

f(x) = ln(x), x > 0

In the process of finding the approximate values of f(x) to
compare with the actual value, we limit the domain of f(x)
in (−1, 1) by using the new variable : w

w =
8

7

(
8
√
x− 1

8
√
x+ 1

)
. (29)

For w ∈ (−1, 1); we have 1
158 < x < 158 and

1

8
ln(x) = ln(8 + 7w)− ln(8− 7w)

ln(x) = 8

[
ln

(
1 +

7

8
w

)
− ln

(
1− 7

8
w

)]
(30)

= 8

[
ln

(
8 + 7w

8

)
− ln

(
8− 7w

8

)]
(31)

(i) By Definition A, Taylor’s series expansion of ln(1+x)
is in the form

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 +

1

5
x5 + · · · (32)

; −1 < x ≤ 1,

Therefore,

ln

(
1 +

7

8
w

)
=

7w

8
− 1

2

(
7w

8

)2

+
1

3

(
7w

8

)3

−1

4

(
7w

8

)4

+
1

5

(
7w

8

)5

(33)

and

ln

(
1− 7

8
w

)
= −7w

8
− 1

2

(
7w

8

)2

− 1

3

(
7w

8

)3

−1

4

(
7w

8

)4

− 1

5

(
7w

8

)5

. (34)

Substituting equation (33) and (34) under five terms into the
equation (30), then gives

ln(x) ≈ Pln(w) = 16

[
7w

8
+

1

3

(
7w

8

)3

+
1

5

(
7w

8

)5

+
1

7

(
7w

8

)7

+
1

9

(
7w

8

)9

+
1

11

(
7w

8

)11

+ · · ·

]

= 16

[
7w

8
+

1

3

(
7w

8

)3

+
1

5

(
7w

8

)5

+
1

7

(
7w

8

)7

+
1

9

(
7w

8

)9
]
+Rln(w). (35)
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(ii) By Definition B, Chebyshev series expansion of ln(x)
is in the form

ln(x) = 8 ln

(
8 + 7w

8− 7w

)
=

∞∑
m=0

c2m+1T2m+1(w) (36)

where

c2m+1 =
16

π

1∫
−1

ln
(

8+7w
8−7w

)
· cos{(2m+ 1) cos−1(w)}

√
1− w2

dw.

;m = 0, 1, 2, 3, ...

Substituting w = cos(θ), give

c2m+1 =
16

π

π∫
0

ln

(
8 + 7 cos(θ)

8− 7 cos(θ)

)
· cos[(2m+ 1)θ]dθ

;m = 0, 1, 2, 3, ...

Thus,

ln(x) = 14.0710w + 2.2924w3 + 7.8370w5 − 10.3825w7

+7.8342w9 +Rln(w). (37)

where

Rln(w) = 45.9461w11 − 36.9215w13 + 12.6416w15 + · · ·

(iii) By Definition C, Legendre series expansion of ln(x)
is in the form

ln(x) = 8 ln

(
8 + 7w

8− 7w

)
=

∞∑
m=0

a2m+1P2m+1(w). (38)

Where,

a2m+1 =
4m+ 3

2

1∫
−1

8 ln

(
8 + 7w

8− 7w

)
· P2m+1(w)dw

;m = 0, 1, 2, 3, ...

Thus,

ln(x) = 14.0434w + 2.7213w3 + 6.0845w5 − 7.7786x7

+7.4231w11 +Rln(w). (39)

where

Rln(w) = 34.9284w11 − 29.1304w13 + 10.4475w15 + · · ·

Table VI shows the absolute error between actual value
and approximate values of f(x) = ln(x) derived from
Taylor’s, Chebyshev and Legendre series expansions in 5
terms, respectively. We can see that approximation of ln(x)
derived from Taylor’s series expansion provides value which
is better than the ones derived from Chebyshev and Legendre
series expansions. Graphs of approximation of ln(x) by
Taylor’s, Chebyshev and Legendre series expansions are
shown in Fig 4.

TABLE VI
COMPARISON OF THE ABSOLUTE ERROR BETWEEN ACTUAL AND
APPROXIMATE VALUES OF ln(x) BY TAYLOR’S, CHEBYSHEV AND

LEGENDRE SERIES EXPANSIONS IN 5 TERMS.

x w Absolute error (Approximate value in 5 terms)
E(Tw) E(Cw) E(Lw)

0.5 −0.0495 3× 10−10 3.36× 10−3 2.05× 10−3

1 0 0 0 0
1.01 0.0007 1.48× 10−9 5.05× 10−5 3.08× 10−5

1.5 0.0290 3.80× 10−9 2.03× 10−3 1.24× 10−3

4 0.0988 1× 10−9 5.84× 10−3 3.51× 10−3

4.2 0.1022 4× 10−9 5.96× 10−3 3.58× 10−3

10 0.1633 0 6.71× 10−3 3.87× 10−3

30 0.2393 5× 10−8 3.82× 10−3 1.83× 10−3

Fig. 4. Graphs of approximated values of ln(x) derived from Taylor’s series
expansion, Chebyshev series expansion and Legendre series expansion in 5
terms.

IV. APPLICATIONS

In this section, we illustrate the applications of approxi-
mated transcendental function in a power series form.

A. Application I

Fig. 5. Graph of the alternating current I.

Fig. 5 shows the profile of the saw-tooth wave arising from
the alternating current I passing through conductor which has
the form [19]

I = 2

(
sin(t)− 1

2
sin(2t) +

1

3
sin(3t)− 1

4
sin(4t) + ...

)
(40)

If we substitute in each term of current I in equation (40)
by the representative of f(x) = sin(x) derived from Taylor’s
series in the new variable w (14), we found that the absolute
error between actual value and approximate value of current
I in 27 terms is 10−3 shown in Table VII.
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TABLE VII
ABSOLUTE ERROR BETWEEN ACTUAL VALUE AND APPROXIMATE VALUE

OF CURRENT I

Number terms of I Absolute error
10 0.1010
15 0.0326
19 0.0139
25 0.0325
27 0.0079
30 0.0259

B. Application II

Root finding of equation sin(x) = x
3π ; x ∈ (0, π] and

(2π, 3π].

Fig. 6. Graph of y1 = sin(x) and y2 = x
3π

.

Fig. 6 shows the solutions of equation sin(x) = x
3π in

interval (0, π] and (2π, 3π].
Case I: x ∈ (0, π], we can find a solution by solving

f(x) = sin(x)− x

3π
= 0, x ∈ (0, π] (41)

we use approximation of sin(x) in (41) by Taylor’s series
approximation in (14)

sin(x) = 1− 1

2!
(2πw)2+

1

4!
(2πw)4− 1

6!
(2πw)6+

1

8!
(2πw)8

(42)
where

w =
π
2 − x

2π
, 0 < x < 2π, −3

4
< w <

1

4
.

The computation has terminated when | sin(x)− x
3π | < ϵ.

TABLE VIII
ROOT FINDING sin(x) = x

3π
(0 < x ≤ π)

x w sin(x)− x
3π

π − 0.1 = 3.041593 −0.234085 −0.222877
π − 0.2 = 2.941593 −0.218169 −0.113437
π − 0.3 = 2.841593 −0.202254 −0.005979

π − 0.301 = 2.840593 −0.202094 −0.004918
π − 0.302 = 2.839593 −0.201935 −0.003857

...
...

...
π − 0.306 = 2.835593 −0.201299 0.000384

We can see from Table VIII, that the approximated so-
lution of the equation sin(x) = x

3π for 0 < x ≤ π is
x∗ = 2.835593.
Case II: 2π < x ≤ 3π
By property ;

sin(x) = sin(3π − x) ; x ∈ (2π, 3π] (43)

That is, we can find solution by solving

f(x) = sin(x)− x

3π
= 0, x ∈ (2π, 3π]

or
sin(3π − x)− x

3π
= 0. (44)

which we can calculate by formula

xi+1 = sin(3π − (x0 − δi)) (45)

where initial data x0 = 2π + 0.2 = 6.483185
and δi = ih, i = 0, 1, 2, ...N ;
we can guess the value of h by considering the value of
f(x).

We use property (43) and apply approximation of sin(x)
to generate the function by Taylor’s series expansion (42)
to gain the results. The computation has terminated when
| sin(x)− x

3π | < ϵ.

TABLE IX
ROOT FINDING sin(x) = x

3π
(2π < x ≤ 3π)

δi x0 x0 + δi x w sin(x) − x
3π

0.2 2π 2π + 0.2 2.94 −0.22 −0.48921
2π + 0.4 2.74 −0.19 −0.31969
2π + 0.6 2.54 −0.15 −0.16569
2π + 0.8 2.34 −0.12 −0.03419

0.01 2π + 0.8 2π + 0.81 2.33 −0.12 −0.02832
2π + 0.82 2.32 −0.12 −0.02253

...
...

...
...

0.001 2π + 0.86 2π + 0.861 2.28 −0.11 0.00047

We can see from Table IX, that the approximated solution
of the equation sin(x) = x

3π for 2π < x ≤ 3π is x∗
1 =

2π + 0.861 = 7.144185.
From Figure 6, we can see that equation sin(x) = x

3π
has two solutions for x ∈ (2π, 3π] and we found the first
solution from the previous computation. Similarly, we can
find a second solution of equation sin(x) = x

3π for x ∈
(2π, 3π] which is x∗

2 = 8.337778.

V. CONCLUSION

In this work, the methods to generate approximation func-
tions in a power series form have been presented focusing
on Taylor’s, Chebyshev and Legendre series expansions.
We have developed Maple software to analyze the rate of
convergence in an attempt to select the one with the least
truncation error to represent the efficient representative of a
transcendental function.

We have found that the Taylor’s series expansion in the
modified form with the substitution of an appropriate variable
is most efficient.

The simplicity of the calculation by using the “substitution
method” in the Taylor’s series expansion enable the process
to be carried out on a personal computer of medium capacity,
thus yielding benefits to the theoretical studies of some
electricity problems and other practical works in applied
science.
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