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Abstract—In this paper, by using a fixed-point theorem
in cones to study the boundary value problem for a class
of higher order mixed type of delay differential equations
with singularity. The sufficient condition of existence of their
solutions is derived. Some examples are included to illustrate
the results.
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I. INTRODUCTION

IN this paper, we consider the existence of positive
solutions to the following higher order mixed-type of

delay differential equations
−u(n)(t) = λp(t)f [t, u(t− τ),

∫ t
0
k(t, s)u(s)ds],

0 < t < 1, τ > 0,

u(t) = u
′
(t) = · · · = u(n−3)(t) = u(n−2)(t) = 0,

−τ ≤ t ≤ 0, (1.1)
u(n−2)(1) = (n− 1)!au(η).

where λ is a positive real parameter; n ≥ 2 is an integer.

In equation (1.1), we assume that the following conditions
(H1)− (H5) hold

(H1)f ∈ C(J ×R×R,R), J = [0, 1], 0 < a ≤ 1,
0 < η < 1, 0 < τ < 1

2 .

(H2)p(s) ∈ C(J1, R
+), J1 = (0, 1).

(H3)v(t) =
∫ t
0
k(t, s)u(s)ds,D = {(t, s) ∈ J × J :

t > s}, k(t, s) ∈ C(D,R+).
k0 = min{k(s, t) : (s, t) ∈ D},
k1 = max{k(s, t) : (s, t) ∈ D}

(H4)u ∈ C[−τ, 1]
⋂
C(n)[0, 1];u(t) ≥ 0, t ∈ [−τ, 1].

(H5)
∫ 1

0
s(1− s)p(s)ds <∞,∃θ[ τ2 ,

1−τ
2 )

such that
∫ 1−θ+τ
θ+τ

G2(s, s)p(s)ds > 0.

Boundary value problems(BVPS) for higher-order delay
differential equations arise naturally in various applications
to physical, biological, and chemical processes. Frequently,
these occur in the form of a multipoint boundary value
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problem for an nth-order ordinary differential equations,
such as an n-degrees of freedom in which n states are
observed at n times[2,3]. In recent years, many researchers
have done a great deal of research works upon lower
order differential equations with delay, and some good
results were produced, see, for example [4-22]. But higher
order cases haven not been focused. BVPS of higher-order
differential equations have received a few of attention (see
[23,24,25,26]).

For n = 2, v = 0, in the case of ordinary differential
equations, BVPs analogous to (1.1) with singularity has been
widely studies by many authors, see,for example, [12,15-17].
For the case τ = 0, v = 0, and a = 0, Graef and Yang [23]
obtain respectfully the existence of positive solutions to two-
point and multi-point BVPs (1.1) when u(n) = λp(t)f(u(t)).
In the case v = 0, a = 0, Shen and Dong [24]have applied a
fixed-point theorem to derive the sufficient conditions which
assure that the equation (−u(n) = λp(t)f(t, u(t − τ)), 0 <
t < 1) with the boundary conditions (u(0) = u′(0) = · · · =
u(n−3) = u(n−2) = 0,−τ ≤ t ≤ 0;u(n−2)(1) = 0) have the
positive solutions, and p(t) has some suitable singularity at
the ends of (0,1).

In the paper, we prove that the existence of positive
solutions of the more general BVPs for n-order (n ≥ 2)
differential equations (1.1).

For the existence of positive solutions of the boundary
value problem of two or higher order differential equations,
we mainly adopt the scheme which transforms it into integral
equations. During the process of transformation, several
kinds of Green functions play important roles. Here Green
functions are defined as follows

G2(t, s) =

{
(1− t)s, 0 ≤ s ≤ t ≤ 1,
t(1− s), 0 ≤ t ≤ s ≤ 1.

For n ≥ 3, we define

Gn(t, s) =

∫ t

0

Gn−1(v, s)dv.

Lemma 1.1. Gn(t, s) satisfies:

(i) Gn(t, s) ≤ G2(s, s), (t, s) ∈ [0.1]× [0, 1],
n ≥ 2, n ∈ N.

(ii) Let 0 < θ ≤ 1− θ ≤ 1− τ, Jθ = [θ, 1− θ],
for t ∈ Jθ, s ∈ [0, 1], one has

G2(t, s) ≥ min{t, 1− t}G2(s, s) ≥ θG2(s, s), (1.2)

Gn(t, s) ≥ θn−1G2(s, s), t ∈ Jθ, n ≥ 2, n ∈ N. (1.3)

Proof At first, we prove the conclusion (i) of Lemma
1.1 by induction.
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Clearly, G2(t, s) ≤ G2(s, s).

Assuming that when n = k, Gk(t, s) ≤ G2(s, s).

Then n = k + 1, for (t, s) ∈ [0.1]× [0, 1]

Gk+1(t, s) =

∫ t

0

Gk(v, s)dv,

≤
∫ 1

0

G2(s, s)dv,

= G2(s, s).

Therefore the conclusion (i) of Lemma 1.1 holds.

For the conclusion (ii) of Lemma 1.1, the relation formula
(1.2) is clear. We prove the relation formula (1.3) in the
following.

For t ∈ Jθ, by (1.2) we have G2(t, s) ≥ θG2(s, s).

Assuming when n = k, Gk(t, s) ≥ θk−1G2(s, s).

Then when n = k + 1, t ∈ Jθ

Gk+1(t, s) =

∫ t

0

Gk(v, s)dv,

≥
∫ t

0

θk−1G2(s, s)dv,

= tθk−1G2(s, s),

≥ θkG2(s, s).

Therefor (1.3) holds.

Let
E = {u ∈ C[−τ, 1] : u(t) ≥ 0, for t ∈ J ; u(t) =

u
′
(t) = · · · = u(n−3)(t) = u(n−2)(t) = 0,

for t ∈ [−τ, 0]; u(n−2)(1) = (n− 1)!au(η)}.

With the norm ‖ · ‖ given by ||u|| = sup{|u(t)| : −τ ≤
t ≤ 1}, then (E, ‖ · ‖) is a Banach space. It is obvious
that‖ · ‖ = ‖ · ‖[0,1] for u ∈ E.

Define a cone K ∈ E by

K = {u ∈ E : u(t) ≥ 0, fort ∈ [0, 1]; min
t∈Jθ

u(t) ≥ γ||u||},

where γ = θn−1(1−aηn−1)
1+a−aηn−1 .

II. SOME PRELIMINARIES

For convenience of the reader, in the section, we also
present some definitions and some lemmas.

Definition 2.1. Let X be a real Banach space and K ∈ X
be a closed, convex set. K is a cone if only if the following
conditions are satisfied

(i) λu ∈ K,if λ > 0 and u ∈ K.

(ii) if u ∈ K and −u ∈ K,then u = 0.

Definition 2.2. u(t) is the positive solution of BVP(1.2)
if and only if it satisfies the following conditions:

(i) u ⊂ C[−τ, 1] ∩ Cn;u(t) > 0, t ∈ (0, 1).

(ii) When t ∈ [−τ, 0], u(t) = u
′
(t) = · · · = u(n−3)(t) =

u(n−2)(t) = 0, and u(1) = (n− 1)!au(η)(0 < η < 1).

(iii) u(n)(t) = −λp(s)f(t, u(t− τ), v(t)),∀t ∈ (0, 1).

If u(t) is the solution of BVP (1.1), then u(t) can be
represented as

u(t) =


0,−τ ≤ t ≤ 0.

λ
∫ 1

0
Gn(t, s)p(s)f(s, u, v)ds+

aλtn−1

1−aηn−1

∫ 1

0
Gn(η, s)p(s)f(s, u, v)ds, 0 < t < 1.

We define the operator Φ : C[−τ, 1]→ C[−τ, 1] by

Φu(t) =


0,−τ ≤ t ≤ 0.

λ
∫ 1

0
Gn(t, s)p(s)f(s, u, v)ds+

aλtn−1

1−aηn−1

∫ 1

0
Gn(η, s)p(s)f(s, u, v)ds, 0 < t < 1.

Based on the above, we derive the following lemmas.

Lemma 2.1. The fixed-point of the map Φ is the solution
of equation (1.1).

Proof It’s easy to get

Φu(t) = Φ
′
u(t) = · · · = Φ(n−3)u(t) = Φ(n−2)u(t) =

0,−τ ≤ t ≤ 0,

Φ(n−2)u(1) = (n− 1)!aΦu(η).

We prove by reduction that Φ(n)u(t) = −λp(t)f(t, u, v)
also hold.

For n = 2, calculate easily Φ′′u(t) = −λp(t)f(t, u, v).

Assuming that when n = k, Φ(k)u(t) = −λp(t)f(t, u, v).

Then n = k + 1, from

Φu(t) = λ

∫ 1

0

Gk+1(t, s)p(s)f(s, u, v)ds

+
aλtk

1− aηk

∫ 1

0

Gk+1(η, s)p(s)f(s, u, v)ds,

= λ

∫ 1

0

(∫ t

0

Gk(x, s)dx

)
p(s)f(s, u, v)ds

+
aλtk

1− aηk

∫ 1

0

Gk+1(η, s)p(s)f(s, u, v)ds.

one has that

Φ
′
u(t) = λ

∫ 1

0
Gk(t, s)p(s)f(s, u, v)ds

+akλtk−1

1−aηk
∫ 1

0
Gk+1(η, s)p(s)f(s, u, v)ds,

Φ(k+1)u(t) = (Φ
′
u(t))(k) = −λp(t)f(t, u, v).

Therefore the fixed point of Φ is the solution of the equation
(1.1). The proof is complete.
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Lemma 2.2. Φ : K → K is a completely continuous
operator.

Proof Clearly, we have ||Φu|| = ||Φu||[0,1],Φu(t) ≥
0,∀u(t) ∈ K, and

||Φu|| ≤ λ

∫ 1

0

G2(s, s)p(s)f(s, u, v)ds

+
aλ

1− aηn−1

∫ 1

0

G2(s, s)p(s)f(s, u, v)ds,

=
λ(1 + a− aηn−1)

1− aηn−1

∫ 1

0

G2(s, s)p(s)f(s, u, v)ds.

for t ∈ Jθ, we have

Φu(t) ≥ λ

∫ 1

0

Gn(t, s)p(s)f(s, u, v)ds

≥ λθn−1
∫ 1

0

G2(s, s)p(s)f(s, u, v)ds,

=
θn−1(1− aηn−1)

1 + a− aηn−1
||Φu||[0,1] ≥ γ||Φu||.

Then Φ : K → K. Because Φ is a sequential compact set,
we can conclude that Φ is a completely continuous operator
by Arzela-Ascoli Theorem.

Lemma 2.3 [1] . Let X be a Banach space, K a conic in
X , Ω1,Ω2 two open subsets in X , and 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. If
Φ : K ∩ (Ω2\Ω1)→ K is a completely continuous operator
and satisfies

(i) ||Φu|| ≤ ||u||, u ∈ K ∩ ∂Ω1 and ||Φu|| ≥ ||u||, u ∈
K ∩ ∂Ω2, or

(ii) ||Φu|| ≤ ||u||, u ∈ K ∩ ∂Ω2 and ||Φu|| ≥ ||u||, u ∈
K ∩ ∂Ω1,
then Ω has a fixed point in K ∩ (Ω2\Ω1).

Let α, β, ϕ and φ be non-negative continuous concave
functional on K. Then for positive real numbers b, c, d and
m, we define the following convex sets:
P (β,m) = {x ∈ K|β(x) < m},

P (β, α, b,m) = {x ∈ K|b ≤ α(x), β(x) ≤ m},

P (β, ϕ, α, b, d,m) = {x ∈ K|b ≤ α(x), ϕ(x) ≤
d, β(x) ≤ m}, and a closed set
R(β, φ, c,m) = {x ∈ K|c ≤ φ(x), β(x) ≤ m}.

Lemma 2.4 [4]. Let K be a cone in a real Banach space X .
Let β and ϕ be non-negative continuous convex functionals
on K, α be a non-negative continuous concave functional
on K, and φ be a non-negative continuous functional on K
satisfying φ(λu) ≤ λφ(u) for 0 ≤ λ ≤ 1, such that for some
positive numbers M and m,

α(u) ≤ φ(u), ‖u‖ ≤Mβ(u), for all u ∈ P (β,m).

Suppose Φ : P (β,m) −→ P (β,m) is completely continuous
and there exist positive numbers b, c and m with b > c such
that

(S1){u ∈ P (β, ϕ, α, b, d,m)|α(u) > b} 6= 0, and
α(Φu) > b for u ∈ P (β, ϕ, α, b, d,m).

(S2)α(Φ(u)) > b for P (β, α, b,m) with ϕ(Φ(u)) > d.

(S3)0 /∈ R(β, φ, c,m) and φ(Φ(u)) < c for u ∈
R(β, φ, b,m) with φ(Φ(u)) = c.
then Φ has at least three fixed points u1,u2, u3 ∈ P (β,m),
such that
β(ui) ≤ m, for i = 1, 2, 3;

b < α(u1);

c < φ(u2), with α(u2) < b;

φ(u3) < c.

III. THE CASE OF NO LESS THAN ONE SOLUTION

Let

M0 = lim
u→0
v→0

inf min
t∈[−τ,1]

f(t, u, v)√
u2 + v2

.

M∞ = lim
u→∞
v→∞

inf min
t∈[−τ,1]

f(t, u, v)√
u2 + v2

.

M0 = lim
u→0
v→0

sup max
t∈[−τ,1]

f(t, u, v)√
u2 + v2

.

M∞ = lim
u→∞
v→∞

sup max
t∈[−τ,1]

f(t, u, v)√
u2 + v2

.

L1 = λγθn−1
∫ 1−θ

θ+τ

G2(s, s)p(s)(1 + k0s)ds.

L2 =
1 + a− aηn−1

1− aηn−1

∫ 1

0

G2(s, s)p(s)(1 + k1s)ds.

In the following, we discuss the existence of at least the
positive solutions for all kinds of values and compositions of
M0,M∞,M

0 and M∞. In the theorem 3.1 and theorem 3.2,
we take ε > 0, such that satisfy (M0−ε) > 0, (M∞−ε) > 0.

Theorem 3.1 If the conditions(H1)−(H5)and the follow-
ing conditions

0 < M∞ < +∞, (3.1)

0 < M0 < +∞, (3.2)

1

L1(M∞ − ε)
≤ λ ≤ 1

L2(M0 + ε)
, (3.3)

hold, then the equation (1.2) has at least one solution.

Proof By (3.2),(3.3), for a given ε > 0,∃r1 > 0, when
0 <
√
u2 + v2 ≤ r1, f(t, u, v) ≤ (M0 + ε)

√
u2 + v2. Let

Ω1 = {t ∈ [−τ, 1] : ||
√
u2 + v2|| < r1},
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for u, v ∈ K ∩ ∂Ω1, we have

||Φu|| ≤ λ

∫ 1

0

Gn(s, s)f(s, u(s− τ), v)ds

+
λa

1− aηn−1

∫ 1

0

Gn(s, s)f(s, u(s− τ), v)ds,

=
λ(1 + a− aηn−1)

1− aηn−1
×∫ 1

0

Gn(s, s)p(s)f(s, u(s− τ), v)ds,

≤ λ(M0 + ε)(1 + a− aηn−1)

1− aηn−1
×∫ 1

0

G2(s, s)p(s)
√
u2(s− τ) + v2ds,

≤ λ(M0 + ε)(1 + a− aηn−1)

1− aηn−1
×∫ 1

0

G2(s, s)p(s)[u(s− τ) + v]ds,

≤ λ(M0 + ε)(1 + a− aηn−1)

1− aηn−1
×[ ∫ 1

0

G2(s, s)p(s)u(s− τ)ds

+

∫ 1

0

G2(s, s)p(s)

∫ s

0

k(t, s)u(t)dtds

]
,

≤ λ(M0 + ε)(1 + a− aηn−1)

1− aηn−1
×[ ∫ 1−τ

0

G2(s+ τ, s+ τ)p(s+ τ)u(s)ds

+k1

∫ 1

0

G2(s, s)p(s)

∫ s

0

u(t)dtds

]
,

≤ λ(M0 + ε)(1 + a− aηn−1)

1− aηn−1
×[ ∫ 1−τ

0

G2(s+ τ, s+ τ)p(s+ τ)ds

+k1

∫ 1

0

G2(s, s)p(s)sds

]
||u||,

≤ λ(M0 + ε)(1 + a− aηn−1)

1− aηn−1
×[ ∫ 1

0

G2(s, s)p(s)(1 + k1s)ds

]
||u||

= λ(M0 + ε)L2||u|| ≤ ||u||.

For the same above ε > 0, from (3.1) and (3.3), ∃R1 > r,
when

√
u2 + v2 ≥ R1, f(t, u, v) > (M∞ − ε)

√
u2 + v2.

Since γ < 1−τ
2 , then γ + τ < 1− γ. Let

Ω2 = {t ∈ [−τ, 1] : ||
√
u2 + v2|| < R1},

for u, v ∈ K ∩ ∂Ω2, we get

||Φu|| ≥ λ sup
t∈J

∫ 1

0

Gn(t, s)p(s)f(s, u, v)ds,

≥ λ(M∞ − ε) sup
t∈J

∫ 1

0

Gn(t, s)P (s)
√
u2 + v2ds,

≥ λ(M∞ − ε) sup
t∈J

∫ 1

0

Gn(t, s)P (s)
u+ v

2
ds,

=
λ(M∞ − ε)

2
sup
t∈J

[ ∫ 1

0

Gn(t, s)P (s)u(s− τ)ds

+

∫ 1

0

Gn(t, s)p(s)

∫ s

0

K(t, s)u(t)dtds

]
,

≥ λ(M∞ − ε)
2

sup
t∈J

[ ∫ 1−τ

−τ
Gn(t, s+ τ)p(s+ τ)

u(s)ds+ k0

∫ 1

0

Gn(t, s)p(s

∫ s

0

k0)u(t)dtds

]
,

≥ λ(M∞ − ε)
2

sup
t∈J

[ ∫ 1−θ

θ

Gn(t, s+ τ)p(s+ τ)γ

||u||ds+ k0

∫ 1−θ

θ

Gn(t, s)p(s)sγ||u||dtds
]
,

≥ λγ(M∞ − ε)
2

sup
t∈J

[ ∫ 1−θ+τ

θ+τ

Gn(t, s)p(s)||u||ds

+k0||u||
∫ 1−θ

θ

Gn(t, s)p(s)sds

]
,

≥ (M∞ − ε)λγθn−1

2
×[ ∫ 1−θ

θ+τ

G2(s, s)p(s)(1 + k0s)ds

]
||u||,

= λ(M∞ − ε)L1 ≥ ||u||.

Therefore, by Lemma 2.3, Φ has a fixed point
u ∈ K ∩ (Ω2\Ω1), and u(t) is a positive solution of
equation (1.2), completing the proof of Theorem 3.1

Theorem 3.2 If the conditions (H1) − (H5) and the
following conditions

0 < M0 < +∞, (3.4)

0 < M∞ < +∞, (3.5)

1

L1(M0 − ε)
≤ λ ≤ 1

L2(M∞ + ε)
, (3.6)

hold, then the equation (1.2) has at least one solution.

Proof By (3.4) and (3.6), for a given ε > 0, ∃r2 > 0,
when

√
u2 + v2 ≤ r2, f(t, u, v) ≥ (M0 − ε)

√
u2 + v2. Let

Ω1 = {t ∈ [−τ, 1] : ||
√
u2 + v2|| < r2},

for u, v ∈ K ∩ ∂Ω1, we have

||Φu|| ≥ λ sup
t∈J

∫ 1

0

Gn(t, s)p(s)f(s, u, v)ds,

≥ λ(M0 − ε) sup
t∈J

∫ 1

0

Gn(t, s)p(s)
√
u2 + v2ds,

≥ λ(M0 − ε) sup
t∈J

∫ 1

0

Gn(t, s)p(s)
u+ v

2
ds,

=
λ(M0 − ε)

2
sup
t∈J

[ ∫ 1

0

Gn(t, s)p(s)u(s− τ)ds

+

∫ 1

0

Gn(t, s)p(s)

∫ s

0

K(t, s)u(t)dtds

]
,

≥ λ(M0 − ε)
2

sup
t∈J

[ ∫ 1−τ

−τ
Gn(t, s+ τ)p(s+ τ)
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u(s)ds+ k0

∫ 1

0

Gn(t, s)p(s

∫ s

0

k0)u(t)dtds

]
,

≥ λ(M0 − ε)
2

sup
t∈J

[ ∫ 1−θ

θ

Gn(t, s+ τ)p(s+ τ)

γ||u||ds+ k0

∫ 1−θ

θ

Gn(t, s)p(s)sγ||u||dtds
]
,

≥ λγ(M0 − ε)
2

sup
t∈J

[ ∫ 1−θ+τ

θ+τ

Gn(t, s)p(s)||u||ds

+k0||u||
∫ 1−θ

θ

Gn(t, s)p(s)sds

]
,

≥ (M0 − ε)λγθn−1

2
×[ ∫ 1−θ

θ+τ

G2(s, s)p(s)(1 + k0s)ds

]
||u||,

= λ(M0 − ε)L1 ≥ ||u||.

For the same above ε > 0, from (3.5) and (3.6), ∃R2 >
r2, when

√
u2 + v2 ≥ R2, f(t, u, v) > (M∞+ ε)

√
u2 + v2.

Let

Ω2 = {t ∈ [−τ, 1] : ||
√
u2 + v2|| < R2},

for u, v ∈ K ∩ ∂Ω2, we get

||Φu|| ≤ λ

∫ 1

0

Gn(s, s)f(s, u(s− τ), v)ds

+
λa

1− aηn−1

∫ 1

0

Gn(s, s)f(s, u(s− τ), v)ds,

=
λ(1 + a− aηn−1)

1− aηn−1
×∫ 1

0

Gn(s, s)p(s)f(s, u(s− τ), v)ds},

≤ λ(M∞ + ε)(1 + a− aηn−1)

1− aηn−1
×∫ 1

0

G2(s, s)p(s)
√
u2(s− τ) + v2ds,

≤ λ(M∞ + ε)(1 + a− aηn−1)

1− aηn−1
×∫ 1

0

G2(s, s)p(s)[u(s− τ) + v]ds,

≤ λ(M∞ + ε)(1 + a− aηn−1)

1− aηn−1
×[ ∫ 1

0

G2(s, s)p(s)u(s− τ)ds

+

∫ 1

0

G2(s, s)p(s)

∫ s

0

k(t, s)u(t)dtds

]
,

≤ λ(M∞ + ε)(1 + a− aηn−1)

1− aηn−1
×[ ∫ 1−τ

0

G2(s+ τ, s+ τ)p(s+ τ)u(s)ds

+ k1

∫ 1

0

G2(s, s)p(s)

∫ s

0

u(t)dtds

]
,

≤ λ(M∞ + ε)(1 + a− aηn−1)

1− aηn−1
×[ ∫ 1−τ

0

G2(s+ τ, s+ τ)p(s+ τ)ds

+ k1

∫ 1

0

G2(s, s)p(s)sds

]
||u||,

≤ λ(M∞ + ε)(1 + a− aηn−1)

1− aηn−1
×[ ∫ 1

0

G2(s, s)p(s)(1 + k1s)ds

]
||u||

= λ(M∞ + ε)L2||u|| ≤ ||u||..

Therefore, by Lemma 2.3, Φ has a fixed point
u ∈ K ∩ (Ω2\Ω1), and u(t) is a positive solution of
equation (1.2), completing the proof of Theorem 3.2.

Theorem 3.3 If the conditions(H1) − (H5) satisfy and
M∞ =∞,M0 = 0. Then there exists two positive numbers
λ1, λ2, when λ1 ≤ λ ≤ λ2 , BVP (1.2) has at least a
positive solution.

Proof Since M∞ =∞, we can choose a positive constant
M > 0 such that f(t, u, v) ≥ M = αR3(α > 0) for any√
u2 + v2 ≥ R3, t ∈ J . Let

λ1 =

[
αθn−1

∫ 1

0

G2(s, s)p(s)ds

]−1
.

Ω1 = {t ∈ [−τ, 1] : ||
√
u2 + v2|| ≥ R3},

for u, v ∈ K ∩ ∂Ω1, λ ≥ λ1, we have

||Φu|| ≥ λ sup
t∈J

∫ 1

0

G(t, s)f(s, u, v)ds

≥ λM sup
t∈J

∫ 1

0

Gn(t, s)p(s)ds,

≥ λM sup
t∈Jθ

∫ 1

0

Gn(t, s)p(s)ds

≥ λMθn−1
∫ 1

0

G2(s, s)p(s)ds,

≥ λαR3θ
n−1

∫ 1

0

G2(s, s)p(s)ds =
λ

λ1
R3,

≥ ‖
√
u2 + v2‖ ≥ ‖u‖.

Because M0 = 0, we choose a value small enough for ε > 0,
so that

λ2 =

[
λθn−1ε(1+a−aηn−1)

1−aηn−1

∫ 1

0
G2(s, s)(1 + k1s)p(s)ds

]−1
> λ, and ∃0 < r3 < R3, such thatf(t, u, v) ≤ ε

√
u2 + v2

for any
√
u2 + v2 ≤ r3. Let

Ω1 = {t ∈ [−τ, 1] : ||
√
u2 + v2|| < r3},

for u, v ∈ K ∩ ∂Ω, we have

||Φu|| ≤ λ

∫ 1

0

Gn(s, s)p(s)f(s, u, v)ds

+
λa

1− aηn−1

∫ 1

0

Gn(s, s)p(s)f(s, u, v)ds,

≤ λε(1 + a− aηn−1)

1− aηn−1

∫ 1

0

Gn(s, s)p(s)
√
u2 + v2)ds,

≤ λε(1 + a− aηn−1)

1− aηn−1

∫ 1

0

Gn(s, s)p(s)(u+ v)ds,

=
λε(1 + a− aηn−1)

1− aηn−1

[ ∫ 1

0

Gn(s, s)p(s)u(s− τ)ds
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+

∫ 1

0

Gn(s, s)p(s)

∫ s

0

K(t, s)u(t)dtds

]
,

≤ λε(1 + a− aηn−1)

1− aηn−1
×[ ∫ 1−τ

−τ
Gn(s+ τ, s+ τ)p(s+ τ)u(s)ds

+k1

∫ 1

0

Gn(s, s)p(s)

∫ s

0

u(t)dtds

]
,

≤ λθn−1ε(1 + a− aηn−1)

1− aηn−1
×∫ 1

0

G2(s, s)(1 + k1s)p(s)ds||u||

≤ λ

λ2
||u|| ≤ ||u||.

Therefore, by Lemma 2.3, Φ has at least one fixed point
u ∈ K∩(Ω2\Ω1), and u(t) has at least one positive solution
of equation (1.2), completing the proof of Theorem 3.3.

Remark 3.1 If M0 = ∞,M∞ = 0, similarly we can
verify that BVP (1.2) has at least one positive solution.

IV. THE CASE OF NO LESS THAN THREE SOLUTIONS

In this section, by Lemma (2.4), we prove that BVP (1.1)
has at least three solutions when f(t, u, v) satisfies some
certain conditions. First, we define four the non-negative
continuous concave functions in K α, β, ϕ and φ
α(u) = min

θ≤t≤1−θ
|u(t)|, β(u) = max

0≤t≤1
|u(t)|,

ϕ(u) = φ(u) = max
θ−τ≤t≤1

|u(t)|. (4.1)

Set
(1) ω1(t), ω2(t) are two non-negative characteristic func-

tions and ω1(t) ∈ C[0, 1], ω2(t) ∈ C[θ + τ, 1− θ].
(2) L3 = 1+a−aηn−1

1−aηn−1 [
∫ 1

0
G2(s, s)p(s)ω1(s)(1 + k1s)ds].

(3) N1 = c
λL3(m+c) ,

N2 = 1

λγθn−1
√
k0
∫ 1−γ

γ+τ

√
sG2(s,s)p(s)ω2(s)ds

.

As we know, some researchers [27,28] had discussed
BVPs with at least three solutions. In these papers, the
relative conclusions were based on the assumption that
f(t, u(t)) be more than or less than a given constant.
In fact, it’s very difficult to find such functions. In our
paper, f(t, u, v) is assumed to be a function which
satisfies the conditions f(t, u, v) ≤ N1ω1(u + v)
or f(t, u, v) ≥ N2ω2

√
uv. Meanwhile, we

introduce two characteristic ω1, ω2. The conditions
f(t, u, v) ≤ N1ω1(u + v) or f(t, u, v) ≥ N2ω2

√
uv can be

easily satisfied for some equations when we choose suitable
characteristic functions. The conclusion is described in
Theorem 4.1. In section 5, we give example 2 to illustrate
our conclusion.

Theorem 4.1 If the conditions (H1) − (H5) hold and
there exist positive numbers b, c,m with m > b > c > 0
such that the following conditions are satisfied

(i)f(t, u, v) ≤ N1ω1(t)(u + v), (t, u) ∈ [0, 1] × [0,m],
where N1 ≤ c

λL2(m+c) ,

(ii)f(t, u, v) ≥ N2ω2(t)
√
uv, (t, u) ∈ [θ + τ, 1 − θ] ×

[b, (θ+1)2

γ b],

where N2 ≥ [λγγ1
√
k0
∫ 1−γ
γ+τ

G(s, s)
√
sds]−1.

Then BVP(1.2) has at least three solutions u1,u2, u3 ∈
P (β,m), such that
β(ui) ≤ m, for i = 1, 2, 3;
b < α(u1);
c < φ(u2), with α(u2) < b;
φ(u3) < c.

Proof By Lemma 2.1, we can derive that Φ : K → K
is completely continuous. It is easy to verify that
φ(λu) = λφ(u) for 0 ≤ λ ≤ 1 and α(u) ≤ φ(u).
According to the definition of norm and (4.1), if taking
M ≥ 1, then we have that ||u|| = β(u) and ||u|| ≤ Mβ(u)
for all u ∈ P (β,m). Therefore if u ∈ P (β,m), then
β(u) = ||u|| ≤ m, in addition

max
t∈[0,1]

|u(t − τ)| = max
t∈[−τ,1−τ ]

|u(t)| = max
t∈[0,1−τ ]

|u(t)| ≤

max
t∈[0,1]

|u(t)| ≤ m.

From the conditions (i) of theorem 4.1, we have

β(Φu) = max
t∈[0,1]

|(Φu)(t)| ≤ λ
∫ 1

0

Gn(s, s)p(s)f(s, u, v)ds

+
aλ

1− aηn−1

∫ 1

0

Gn(s, s)p(s)f(s, u, v)ds,

≤ λN1(1 + a− aηn−1)

1− aηn−1
×∫ 1

0

Gn(s, s)p(s)ω1(s)(u+ v)ds,

=
λN1(1 + a− aηn−1)

1− aηn−1
×[ ∫ 1

0

Gn(s, s)p(s)ω1(s)u(s− τ)ds

+

∫ 1

0

Gn(s, s)p(s)ω1(s)

∫ s

0

K(t, s)u(t)dtds

]
,

≤ λN1(1 + a− aηn−1)

1− aηn−1
×∫ 1

0

G2(s, s)p(s)ω1(s)(m+ k1m

∫ s

0

dt)ds,

=
λN1(1 + a− aη)m

1− aη
×∫ 1

0

(1 + k1s)G2(s, s)p(s)ω1(s)ds

= λN1mL2 ≤
mc

(m+ c)
< m.

So Φ : P (β,m)→ P (β,m).

If one choosing

u0(t) = − 4b
γ (t− 1+θ

2 )2 + (1+θ)2b
γ , t ∈ [0, 1],

we have that ϕ(u0) = (1+θ)2b
γ and α(u0) =

min
t∈[θ,1−θ]

|u0(t)| = u0(θ) = 4bθ
γ > b, then

u0 ∈ P (β, ϕ, α, b, (1+θ)
2b

γ ,m).
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Therefore {u ∈ P (β, ϕ, α, b, (1+θ)
2b

γ ,m)|α(u) > b} 6= 0.

On the other hand, if u ∈ P (β, ϕ, α, b, (1+θ)
2b

γ ,m), then
min

t∈[θ+τ,1−θ]
|u(t− τ)| = min

t∈[θ,1−θ−τ ]
|u(t)|

≥ min
t∈[θ,1−θ]

|u(t)| ≥ b

,
min

t∈[θ+τ,1−θ]
|u(t)| ≥ min

t∈[θ,1−θ]
|u(t)| ≥ b.

From the conditions (ii) of theorem 4.1 and Lemma 1.1,
we have

α(Φu) = min
t∈[θ,1−θ]

|(Φu)(t)| ≥ γ||(Φu)(t)||,

≥ λγ sup
t∈Jθ

∫ 1

0

Gn(t, s)f(s, u, v)ds

≥ λγN2 sup
t∈Jθ

∫ 1

0

Gn(t, s)p(s)ω2(s)
√
uvds,

= λγN2 sup
t∈Jθ

∫ 1

0

Gn(t, s))p(s)ω2(s)√
u(t− τ)

∫ s

0

k(t, s)u(t)dtds,

≥ λγN2 sup
t∈Jθ

∫ 1−θ

θ+τ

Gn(t, s)p(s)ω2(s)√
u(t− τ)

∫ s

0

k(t, s)u(t)dtds,

≥ [λθn−1γN2

√
k0

∫ 1−θ

θ+τ

G2(s, s)

p(s)ω2(s)
√
sds]b ≥ b.

So the condition (S1) of Lemma 2.4 is satisfied.

For all u ∈ P (β, α, b,m) with ϕ(Φu) > b(1+θ)2

γ , then
one has

α(Φu) ≥ γϕ(Φu) > γ b(1+θ)
2

γ > b.

So the condition (S2) of Lemma 2.4 is also satisfied.

Finally, we verify the condition (S3) of Lemma 2.4 holds.
Obviously, 0 /∈ R(β, φ, c,m). As if 0 ∈ R(β, φ, c,m), then
it is conflicts wit φ(0) = 0 < c. For all u ∈ R(β, φ, c,m)
with φ(u) = c, then

max
t∈[0,1]

|u(t)| ≤ m,

max
t∈[θ,1]

|u(t−τ)| = max
t∈[θ−τ,1−τ ]

|u(t)| ≤ max
t∈[θ−τ,1]

|u(t)| = c.

From the conditions (i) of theorem 4.1, we have

φ(Φu) = max
t∈[θ−τ,1]

|(Φu)(t)| ≤ max
t∈[0,1]

|(Φu)(t)|,

≤ λ

∫ 1

0

Gn(s, s)p(s)f(s, u, v)ds

+
aλ

1− aηn−1

∫ 1

0

Gn(s, s)p(s)f(s, u, v)ds,

≤ λN1(1 + a− aηn−1)

1− aηn−1
×∫ 1

0

Gn(s, s)p(s)(u+ v)ds,

=
λN1(1 + a− aηn−1)

1− aηn−1
[

∫ 1

0

Gn(s, s)p(s)u(s− τ)ds

+

∫ 1

0

Gn(s, s)p(s)

∫ s

0

K(t, s)u(t)dtds],

=
λN1(1 + a− aηn−1)

1− aηn−1

[ ∫ θ

0

Gn(s, s)p(s)u(s− τ)ds

+

∫ 1

θ

Gn(s, s)p(s)u(s− τ)ds

+

∫ θ−τ

0

Gn(s, s)p(s)

∫ s

0

K(t, s)u(t)dtds

+

∫ 1

θ−τ
Gn(s, s)p(s)

∫ s

0

K(t, s)u(t)dtds

]
,

≤ λN1(1 + a− aηn−1)

1− aηn−1

[
m

∫ θ

0

Gn(s, s)p(s)ds

+c

∫ 1

θ

Gn(s, s)p(s)ds

+mk1

∫ θ−τ

0

Gn(s, s)p(s)sds

+k1c

∫ 1

θ−τ
Gn(s, s)p(s)sds

]
,

≤ λN1(m+ c)(1 + a− aηn−1)

1− aηn−1∫ 1

0

G2(s, s)p(s)(1 + k1s)ds

= λN1(m+ c)L2 ≤ c.

Therefore, by Lemma 2.4, Φ has at least three fixed
points u1,u2, u3 ∈ P (β,m), then u1,u2, u3 are three positive
solution of equation (1.2), and u1,u2, u3 satisfy that
β(ui) ≤ m, for i = 1, 2, 3;
b < α(u1);
c < φ(u2), with α(u2) < b;

V. EXAMPLE

Consider the equation
−u(5)(t) = 1000

t

√
t2 + 1

[u2(t− 1
6 )+v

2(t)][1+u(t− 1
6 )+v(t)]

2+u(t− 1
6 )+v(t)

,

0 < t < 1, u(t) = 0,−τ ≤ t ≤ 0, (5.1)
u(1) = 4! 12u( 1

2 ).

Where f(t, u, v) =
√
t2 + 1

[u2(t− 1
6 )+v

2(t)][1+u(t− 1
6 )+v(t)]

2+u(t− 1
6 )+v(t)

;

v(t) =
∫ 1

0
(t+ s+ 1)u(s)ds, k(s, t) = t+ s+ 1, then

k1 = 3;p(t) = 1
t , t = 0 is its singularity. Here we have

M∞ = ∞,M0 = 0.If we choose M = 100, θ = 1
8 , λ =

1000, η = 1
2 , a = 1

2 , α = 100
11 . Then when

√
u2 + v2 ≥ 11,

f(t, u, v) ≥ M . We can calculate that λ1 = 22528
25 . If we

choose ε = 0.01, Calculations show that λ2 = 12679600
47 .

From Theorem 3.3, we have that if 22528
25 = λ1 ≤ λ ≤

λ2 = 12679600
47 , the problem (5.1) has at least one positive

solution.

Example 2 Consider the boundary value problem
−u(4)(t) = 1024min(1−t)

3(1−t)(2+t)

√
u2(t− 1

4 ) + v2(t) + u(t− 1
4 )v(t)

t ∈ (0, 1), u(t) = 0, −τ ≤ t ≤ 0, (5.2)
u(1) = 3! 12u( 1

2 ).
where λ = 1

3 ; τ = 1
4 ; k(t, s) = 2ts + 1, v(t) =∫ 1

0
k(t, s)u(s)ds, (t, s) ∈ [0, 1] × [0, 1]; f(t, u, v) =
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1024min(1−t)

2+t

√
u2(t− 1

4 ) + v2(t) + u(t− 1
4 )v(t); p(t) =

1
1−t , t = 1 is its singularity; u(t) satisfies the definition
of (4.1). If setting m = 2, c = 1, θ = 1

4 , such that
max
0≤t≤1

|u(t)| ≤ m, φ(u) = max
θ−τ≤t≤1

|u(t)| > c, we can easily

derive that

L2 =
11

6
, N1 =

6

11
, N2 = 60857.88.

Obviously, we have that

f(t, u, v) ≤ 1

2
(u+ v) < N1(u+ v), t ∈ [0, 1],

f(t, u, v) ≥ 106
√

3uv

3
> N2

√
uv, t ∈ [

1

2
,

3

4
].

From Theorem 4.1, the problem (5.2) has at least three
positive solutions.
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